summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/x86/av1_k_means_avx2.c
blob: 52ddc664370a60831b9601f23540250dfbc0e6b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */
#include <immintrin.h>  // AVX2

#include "config/av1_rtcd.h"
#include "aom_dsp/x86/synonyms.h"

static int64_t k_means_horizontal_sum_avx2(__m256i a) {
  const __m128i low = _mm256_castsi256_si128(a);
  const __m128i high = _mm256_extracti128_si256(a, 1);
  const __m128i sum = _mm_add_epi64(low, high);
  const __m128i sum_high = _mm_unpackhi_epi64(sum, sum);
  int64_t res;
  _mm_storel_epi64((__m128i *)&res, _mm_add_epi64(sum, sum_high));
  return res;
}

void av1_calc_indices_dim1_avx2(const int16_t *data, const int16_t *centroids,
                                uint8_t *indices, int64_t *total_dist, int n,
                                int k) {
  const __m256i v_zero = _mm256_setzero_si256();
  __m256i sum = _mm256_setzero_si256();
  __m256i cents[PALETTE_MAX_SIZE];
  for (int j = 0; j < k; ++j) {
    cents[j] = _mm256_set1_epi16(centroids[j]);
  }

  for (int i = 0; i < n; i += 16) {
    const __m256i in = _mm256_loadu_si256((__m256i *)data);
    __m256i ind = _mm256_setzero_si256();
    // Compute the distance to the first centroid.
    __m256i d1 = _mm256_sub_epi16(in, cents[0]);
    __m256i dist_min = _mm256_abs_epi16(d1);

    for (int j = 1; j < k; ++j) {
      // Compute the distance to the centroid.
      d1 = _mm256_sub_epi16(in, cents[j]);
      const __m256i dist = _mm256_abs_epi16(d1);
      // Compare to the minimal one.
      const __m256i cmp = _mm256_cmpgt_epi16(dist_min, dist);
      dist_min = _mm256_min_epi16(dist_min, dist);
      const __m256i ind1 = _mm256_set1_epi16(j);
      ind = _mm256_or_si256(_mm256_andnot_si256(cmp, ind),
                            _mm256_and_si256(cmp, ind1));
    }

    const __m256i p1 = _mm256_packus_epi16(ind, v_zero);
    const __m256i px = _mm256_permute4x64_epi64(p1, 0x58);
    const __m128i d2 = _mm256_extracti128_si256(px, 0);

    _mm_storeu_si128((__m128i *)indices, d2);

    if (total_dist) {
      // Square, convert to 32 bit and add together.
      dist_min = _mm256_madd_epi16(dist_min, dist_min);
      // Convert to 64 bit and add to sum.
      const __m256i dist1 = _mm256_unpacklo_epi32(dist_min, v_zero);
      const __m256i dist2 = _mm256_unpackhi_epi32(dist_min, v_zero);
      sum = _mm256_add_epi64(sum, dist1);
      sum = _mm256_add_epi64(sum, dist2);
    }

    indices += 16;
    data += 16;
  }
  if (total_dist) {
    *total_dist = k_means_horizontal_sum_avx2(sum);
  }
}

void av1_calc_indices_dim2_avx2(const int16_t *data, const int16_t *centroids,
                                uint8_t *indices, int64_t *total_dist, int n,
                                int k) {
  const __m256i v_zero = _mm256_setzero_si256();
  const __m256i permute = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0);
  __m256i sum = _mm256_setzero_si256();
  __m256i ind[2];
  __m256i cents[PALETTE_MAX_SIZE];
  for (int j = 0; j < k; ++j) {
    const int16_t cx = centroids[2 * j], cy = centroids[2 * j + 1];
    cents[j] = _mm256_set_epi16(cy, cx, cy, cx, cy, cx, cy, cx, cy, cx, cy, cx,
                                cy, cx, cy, cx);
  }

  for (int i = 0; i < n; i += 16) {
    for (int l = 0; l < 2; ++l) {
      const __m256i in = _mm256_loadu_si256((__m256i *)data);
      ind[l] = _mm256_setzero_si256();
      // Compute the distance to the first centroid.
      __m256i d1 = _mm256_sub_epi16(in, cents[0]);
      __m256i dist_min = _mm256_madd_epi16(d1, d1);

      for (int j = 1; j < k; ++j) {
        // Compute the distance to the centroid.
        d1 = _mm256_sub_epi16(in, cents[j]);
        const __m256i dist = _mm256_madd_epi16(d1, d1);
        // Compare to the minimal one.
        const __m256i cmp = _mm256_cmpgt_epi32(dist_min, dist);
        dist_min = _mm256_min_epi32(dist_min, dist);
        const __m256i ind1 = _mm256_set1_epi32(j);
        ind[l] = _mm256_or_si256(_mm256_andnot_si256(cmp, ind[l]),
                                 _mm256_and_si256(cmp, ind1));
      }
      if (total_dist) {
        // Convert to 64 bit and add to sum.
        const __m256i dist1 = _mm256_unpacklo_epi32(dist_min, v_zero);
        const __m256i dist2 = _mm256_unpackhi_epi32(dist_min, v_zero);
        sum = _mm256_add_epi64(sum, dist1);
        sum = _mm256_add_epi64(sum, dist2);
      }
      data += 16;
    }
    // Cast to 8 bit and store.
    const __m256i d2 = _mm256_packus_epi32(ind[0], ind[1]);
    const __m256i d3 = _mm256_packus_epi16(d2, v_zero);
    const __m256i d4 = _mm256_permutevar8x32_epi32(d3, permute);
    const __m128i d5 = _mm256_extracti128_si256(d4, 0);
    _mm_storeu_si128((__m128i *)indices, d5);
    indices += 16;
  }
  if (total_dist) {
    *total_dist = k_means_horizontal_sum_avx2(sum);
  }
}