summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/x86/cnn_avx2.c
blob: 9c26a566419d21f6a0825aa1662de8ce3c321c0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <immintrin.h>
#include <math.h>

#include "aom_dsp/aom_dsp_common.h"
#include "av1/common/av1_common_int.h"
#include "av1/encoder/cnn.h"

// This mask rearranges source pixels in the order shown below.
// shuffle_src_layer0[0][8]: applied on source pixels 0 to 7.
// shuffle_src_layer0[1][8]: applied on source pixels 7 to 14.
// This shuffling is needed to process 3 5x5 blocks which need
// source pixels in the following order.
// 1st 5x5 block: source pixels needed are 0 to 4,
// 2nd 5x5 block: source pixels needed are 4 to 8,
// 3rd 5x5 block: source pixels needed are 8 to 12.
// Source pixels are loaded like mentioned below.
// load_src0 : 0, 1, 2, 3, 4, 5, 6, 7
// load_src1 : 7, 8, 9, 10, 11, 12, 13, 14
// After applying masks, source bytes will be in the order:
// load_src0 : 0, 1, 2, 3, 4, 4, 5, 6
//             consists 5 pixels needed for 1st 5x5 block and
//             first 3 pixels needed for 2nd 5x5 block.
// load_src1 : 7, 8, 8, 9, 10, 11, 12, x
//             consists last 2 pixels needed for 2nd 5x5 block and
//             5 pixels needed for 3rd 5x5 block.
DECLARE_ALIGNED(32, static const uint32_t,
                shuffle_src_layer0[2][8]) = { { 0, 1, 2, 3, 4, 4, 5, 6 },
                                              { 0, 1, 1, 2, 3, 4, 5, 0 } };

// This mask rearrange the weights to match shuffled source pixels order.
DECLARE_ALIGNED(32, static const uint32_t,
                shuffle_weight_layer0[2][8]) = { { 0, 1, 2, 3, 4, 0, 1, 2 },
                                                 { 3, 4, 0, 1, 2, 3, 4, 0 } };

// Shuffle mask used to rearrange weights corresponding to layer 1 and layer 2.
// For layer 1 and layer 2, convolution happens at 2x2 as filter_width and
// filter_height are equal to 2. So rearranging the weights in the
// order shown below to match source pixels. Basically this mask replicates
// the weights across the width of 2.
DECLARE_ALIGNED(32, static const uint32_t,
                shuffle_weight_layer_1_and_2[2][8]) = {
  { 0, 1, 0, 1, 0, 1, 0, 1 }, { 2, 3, 2, 3, 2, 3, 2, 3 }
};

// After the stages of multiplication and accumulation, the output values
// in the register will be jumbled. In order to store register into
// output buffer in a proper way, the following mask is applied on output
// register.
DECLARE_ALIGNED(32, static const uint32_t,
                shuffle_output_layer_1_and_2[8]) = { 0, 1, 4, 5, 2, 3, 6, 7 };

// Load weights needed for layer 0 (for 5x5 block processing),
// and fill the registers appropriately to match source pixel mapping.
static INLINE void prepare_weights_for_5x5_convolve(
    const float *layer_config_weights, int off, float weight[5][8],
    const int cstep, __m256 *shuffle_weight, const __m256i weight_mask_0,
    const __m256i weight_mask_1) {
  for (int row = 0; row < 5; ++row) {
    for (int col = 0; col < 5; ++col) {
      weight[row][col] = layer_config_weights[off];
      off += cstep;
    }
  }
  shuffle_weight[0] = _mm256_loadu_ps(weight[0]);
  shuffle_weight[1] = _mm256_loadu_ps(weight[1]);
  shuffle_weight[2] = _mm256_loadu_ps(weight[2]);
  shuffle_weight[3] = _mm256_loadu_ps(weight[3]);
  shuffle_weight[4] = _mm256_loadu_ps(weight[4]);

  shuffle_weight[0] =
      _mm256_permutevar8x32_ps(shuffle_weight[0], weight_mask_0);
  shuffle_weight[1] =
      _mm256_permutevar8x32_ps(shuffle_weight[1], weight_mask_0);
  shuffle_weight[2] =
      _mm256_permutevar8x32_ps(shuffle_weight[2], weight_mask_0);
  shuffle_weight[3] =
      _mm256_permutevar8x32_ps(shuffle_weight[3], weight_mask_0);
  shuffle_weight[4] =
      _mm256_permutevar8x32_ps(shuffle_weight[4], weight_mask_0);
  shuffle_weight[5] =
      _mm256_permutevar8x32_ps(shuffle_weight[0], weight_mask_1);
  shuffle_weight[6] =
      _mm256_permutevar8x32_ps(shuffle_weight[1], weight_mask_1);
  shuffle_weight[7] =
      _mm256_permutevar8x32_ps(shuffle_weight[2], weight_mask_1);
  shuffle_weight[8] =
      _mm256_permutevar8x32_ps(shuffle_weight[3], weight_mask_1);
  shuffle_weight[9] =
      _mm256_permutevar8x32_ps(shuffle_weight[4], weight_mask_1);
}

// For each row, loads source pixels 0 to 7(load_src_0), 7 to 14(load_src_1) and
// arranges them appropriately to process 3 blocks.
#define PERFORM_CONVOLVE_FOR_3_5X5_BLOCKS()                            \
  do {                                                                 \
    for (int row = 0; row < 5; row++) {                                \
      load_src_0 = _mm256_loadu_ps(input_ptr);                         \
      load_src_1 = _mm256_loadu_ps(input_ptr + 7);                     \
      load_src_0 = _mm256_permutevar8x32_ps(load_src_0, block0_1);     \
      load_src_1 = _mm256_permutevar8x32_ps(load_src_1, block1_2);     \
      load_src_0 = _mm256_mul_ps(load_src_0, shuffle_weight[0 + row]); \
      load_src_1 = _mm256_mul_ps(load_src_1, shuffle_weight[5 + row]); \
      accum_src_0 = _mm256_add_ps(load_src_0, accum_src_0);            \
      accum_src_1 = _mm256_add_ps(load_src_1, accum_src_1);            \
      input_ptr += in_stride;                                          \
    }                                                                  \
  } while (0)

// Load masks needed for shuffling of output and weights.
static INLINE void load_shuffle_masks_for_2x2_convolve(__m256i *output_mask,
                                                       __m256i *weight_mask) {
  // Load shuffle buffer needed to sort the output.
  *output_mask =
      _mm256_load_si256((const __m256i *)shuffle_output_layer_1_and_2);

  // Load shuffle buffers needed for weight.
  weight_mask[0] =
      _mm256_load_si256((const __m256i *)shuffle_weight_layer_1_and_2[0]);
  weight_mask[1] =
      _mm256_load_si256((const __m256i *)shuffle_weight_layer_1_and_2[1]);
}

// Load weights needed for layer 1 and 2 (for 2x2 block processing),
// and fill the registers appropriately to match source pixel mapping.
static INLINE void prepare_weights_for_2x2_convolve(
    const float *layer_config_weights, int off, const int cstep,
    __m256 *shuffle_weight, __m256i *weight_mask) {
  // Weights needed for 2x2 block.
  float weight[4] = { 0 };
  for (int i = 0; i < 4; ++i) {
    weight[i] = layer_config_weights[off];
    off += cstep;
  }

  const __m256 weight_vec = _mm256_castps128_ps256(_mm_loadu_ps(weight));
  shuffle_weight[0] = _mm256_permutevar8x32_ps(weight_vec, weight_mask[0]);
  shuffle_weight[1] = _mm256_permutevar8x32_ps(weight_vec, weight_mask[1]);
}

// Do convolution of one 5x5 block.
#define PERFORM_CONVOLVE_FOR_1_5X5_BLOCK(w, accum0, in_stride)           \
  do {                                                                   \
    __m128 load_src[5];                                                  \
    load_src[0] = _mm_loadu_ps(input_ptr);                               \
    last_column_sum += input_ptr[4] * weight[0][4];                      \
    input_ptr += in_stride;                                              \
    load_src[1] = _mm_loadu_ps(input_ptr);                               \
    last_column_sum += input_ptr[4] * weight[1][4];                      \
    input_ptr += in_stride;                                              \
    load_src[2] = _mm_loadu_ps(input_ptr);                               \
    last_column_sum += input_ptr[4] * weight[2][4];                      \
    input_ptr += in_stride;                                              \
    load_src[3] = _mm_loadu_ps(input_ptr);                               \
    last_column_sum += input_ptr[4] * weight[3][4];                      \
    input_ptr += in_stride;                                              \
    load_src[4] = _mm_loadu_ps(input_ptr);                               \
    last_column_sum += input_ptr[4] * weight[4][4];                      \
                                                                         \
    load_src[0] = _mm_mul_ps(load_src[0], _mm256_castps256_ps128(w[0])); \
    load_src[1] = _mm_mul_ps(load_src[1], _mm256_castps256_ps128(w[1])); \
    load_src[2] = _mm_mul_ps(load_src[2], _mm256_castps256_ps128(w[2])); \
    load_src[3] = _mm_mul_ps(load_src[3], _mm256_castps256_ps128(w[3])); \
    load_src[4] = _mm_mul_ps(load_src[4], _mm256_castps256_ps128(w[4])); \
                                                                         \
    accum0 = _mm_add_ps(load_src[0], accum0);                            \
    load_src[1] = _mm_add_ps(load_src[1], load_src[2]);                  \
    load_src[3] = _mm_add_ps(load_src[3], load_src[4]);                  \
    load_src[1] = _mm_add_ps(load_src[1], load_src[3]);                  \
    accum0 = _mm_add_ps(accum0, load_src[1]);                            \
  } while (0)

// Do convolution on 8 horizontal 2x2 blocks.
static INLINE void perform_convolve_for_8h_2x2_blocks(
    const float *input_ptr, int in_stride, __m256 *weight, __m256 *out_accum,
    __m256i shuffle_output_mask) {
  __m256 load_src[4];
  // Load input into source registers.
  load_src[0] = _mm256_loadu_ps(input_ptr);
  load_src[1] = _mm256_loadu_ps(input_ptr + 8);
  load_src[2] = _mm256_loadu_ps(input_ptr + in_stride);
  load_src[3] = _mm256_loadu_ps(input_ptr + in_stride + 8);

  // Multiply the loaded input with corresponding weights.
  load_src[0] = _mm256_mul_ps(load_src[0], weight[0]);
  load_src[1] = _mm256_mul_ps(load_src[1], weight[0]);
  load_src[2] = _mm256_mul_ps(load_src[2], weight[1]);
  load_src[3] = _mm256_mul_ps(load_src[3], weight[1]);

  // Accumulate across 2x2 blocks.
  load_src[0] = _mm256_add_ps(load_src[0], load_src[2]);
  load_src[1] = _mm256_add_ps(load_src[1], load_src[3]);
  load_src[0] = _mm256_hadd_ps(load_src[0], load_src[1]);

  // Sort the output in order to store into output buffer.
  load_src[0] = _mm256_permutevar8x32_ps(load_src[0], shuffle_output_mask);
  *out_accum = _mm256_add_ps(*out_accum, load_src[0]);
}

// Do convolution on 8 (4 horizontal x 2 vertical) 2x2 blocks.
static INLINE void perform_convolve_for_4hx2v_2x2_blocks(
    const float *input_ptr, int in_stride, __m256 *weight, __m256 *out_accum,
    __m256i shuffle_output_mask) {
  __m256 load_src[4];
  // Load input into source registers.
  load_src[0] = _mm256_loadu_ps(input_ptr);
  load_src[1] = _mm256_loadu_ps(input_ptr + in_stride);
  load_src[2] = _mm256_loadu_ps(input_ptr + (in_stride * 2));
  load_src[3] = _mm256_loadu_ps(input_ptr + (in_stride * 3));

  // Multiply the loaded input with corresponding weights.
  load_src[0] = _mm256_mul_ps(load_src[0], weight[0]);
  load_src[1] = _mm256_mul_ps(load_src[1], weight[1]);
  load_src[2] = _mm256_mul_ps(load_src[2], weight[0]);
  load_src[3] = _mm256_mul_ps(load_src[3], weight[1]);

  // Accumulate across 2x2 blocks.
  load_src[0] = _mm256_add_ps(load_src[0], load_src[1]);
  load_src[2] = _mm256_add_ps(load_src[2], load_src[3]);
  load_src[0] = _mm256_hadd_ps(load_src[0], load_src[2]);

  // Sort the output in order to store into output buffer.
  load_src[0] = _mm256_permutevar8x32_ps(load_src[0], shuffle_output_mask);
  *out_accum = _mm256_add_ps(*out_accum, load_src[0]);
}

// AVX2 variant of av1_cnn_convolve_no_maxpool_padding_valid_c(), when
// filter_width and filter_height are equal to 5.
// CNN convolve parsing is based on av1_intra_mode_cnn_partition_cnn_config.
// Based on the configuration set for each layer, the current encoder
// always chooses the case of no_maxpool_padding_valid.
// And also for layer 0 convolution happens at 5x5 level as the
// filter_width and filter_height are set as 5.
static void cnn_convolve_no_maxpool_padding_valid_5x5_avx2(
    const float **input, int in_width, int in_height, int in_stride,
    const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
    int start_idx, const int cstep, const int channel_step) {
  const int kFilterWidth = 5;
  const int kFilterHeight = 5;
  const int kSkipWidth = 4;
  const int kSkipHeight = 4;
  assert(layer_config->filter_width == kFilterWidth &&
         layer_config->filter_height == kFilterHeight);
  assert(layer_config->skip_width == kSkipWidth &&
         layer_config->skip_height == kSkipHeight);

  // Load shuffle buffers needed for source.
  const __m256i block0_1 =
      _mm256_load_si256((const __m256i *)shuffle_src_layer0[0]);
  const __m256i block1_2 =
      _mm256_load_si256((const __m256i *)shuffle_src_layer0[1]);

  // Load shuffle buffers needed for weight.
  const __m256i weight_mask_0 =
      _mm256_load_si256((const __m256i *)shuffle_weight_layer0[0]);
  const __m256i weight_mask_1 =
      _mm256_load_si256((const __m256i *)shuffle_weight_layer0[1]);

  // Width needs to be moved to go to next iteration of processing 3 5x5 blocks.
  const int kSkipWidthForNextIter = kSkipWidth * 3;

  // Minimum width required to process 3 5x5 blocks at a time.
  // min width (for processing 3 5x5 block) = 2*skip_width + filter_width
  // Here, skip_width specifies how much width we should move while processing
  // next block convolution and filter_width specifies for how many pixels
  // filter needs to be applied.
  const int kMinWidthFor3_5x5Blocks = (kSkipWidth * 2) + kFilterWidth;
  for (int i = start_idx; i < layer_config->out_channels; i += channel_step) {
    const float out_ch_bias = layer_config->bias[i];
    for (int k = 0; k < layer_config->in_channels; ++k) {
      __m256 shuffle_weight[10];

      // Weights needed are 5x5, for SIMD purpose made this array as 5x8.
      float weight[5][8] = { { 0 } };
      int off = k * layer_config->out_channels + i;

      // In layer 0, the convolution process happens at 5x5.
      // The weights needed for 5x5 block are same across the in-channels,
      // which is why the load of weights happens once for each in-channel.
      prepare_weights_for_5x5_convolve(layer_config->weights, off, weight,
                                       cstep, shuffle_weight, weight_mask_0,
                                       weight_mask_1);

      for (int h = 0, u = 0; h < in_height - kFilterHeight + 1;
           h += kSkipHeight, ++u) {
        const int out_h = u * out_stride;
        int v = 0;
        int w = 0;
        int rem_width = in_width;
        // Processing 3 5x5 blocks at a time, if sufficient width is present.
        while (rem_width >= kMinWidthFor3_5x5Blocks) {
          __m256 load_src_0, load_src_1;
          __m256 accum_src_0 = _mm256_setzero_ps();
          __m256 accum_src_1 = _mm256_setzero_ps();
          const float *input_ptr = &input[k][h * in_stride + w];
          PERFORM_CONVOLVE_FOR_3_5X5_BLOCKS();

          // Accumulate across column.
          __m256 accum = _mm256_hadd_ps(accum_src_0, accum_src_1);
          __m128 tmp_reg_0 = _mm256_extractf128_ps(accum_src_0, 1);
          __m128 tmp_reg_1 = _mm256_extractf128_ps(accum_src_1, 1);

          __m128 accum_l = _mm256_castps256_ps128(accum);
          __m128 accum_h = _mm256_extractf128_ps(accum, 1);

          __m128 tmp_reg_2 = _mm_add_ps(accum_l, tmp_reg_0);
          __m128 tmp_reg_3 = _mm_add_ps(tmp_reg_0, accum_h);
          __m128 tmp_reg_4 = _mm_add_ps(tmp_reg_1, accum_h);

          // 1st 5x5 block output.
          output[i][out_h + v] =
              out_ch_bias + _mm_cvtss_f32(tmp_reg_2) +
              _mm_cvtss_f32(_mm_shuffle_ps(accum_l, accum_l, 1));

          // 2nd 5x5 block output.
          output[i][out_h + v + 1] =
              out_ch_bias +
              _mm_cvtss_f32(_mm_shuffle_ps(tmp_reg_3, tmp_reg_3, 1)) +
              _mm_cvtss_f32(_mm_shuffle_ps(accum_l, accum_l, 2));

          // 3rd 5x5 block output.
          output[i][out_h + v + 2] =
              out_ch_bias +
              _mm_cvtss_f32(_mm_shuffle_ps(tmp_reg_4, tmp_reg_4, 2)) +
              _mm_cvtss_f32(_mm_shuffle_ps(accum_l, accum_l, 3));

          v += 3;
          w += kSkipWidthForNextIter;
          rem_width -= kSkipWidthForNextIter;
        }

        // Process remaining blocks as single 5x5 block at a time.
        while (rem_width >= kFilterWidth) {
          float last_column_sum = 0;
          __m128 accum = _mm_setzero_ps();
          const float *input_ptr = &input[k][h * in_stride + w];
          PERFORM_CONVOLVE_FOR_1_5X5_BLOCK(shuffle_weight, accum, in_stride);

          // Accumulate across column.
          accum = _mm_hadd_ps(accum, accum);
          output[i][out_h + v] = out_ch_bias + last_column_sum +
                                 _mm_cvtss_f32(accum) +
                                 _mm_cvtss_f32(_mm_shuffle_ps(accum, accum, 1));

          v += 1;
          w += kSkipWidth;
          rem_width -= kSkipWidth;
        }
      }
    }
  }
}

// AVX2 implementation for layer 1.
static INLINE void cnn_convolve_no_maxpool_padding_valid_layer1_avx2(
    const float **input, int in_stride,
    const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
    int start_idx, const int cstep, const int channel_step) {
  __m256i weight_mask[2];
  __m256i shuffle_output_mask;
  load_shuffle_masks_for_2x2_convolve(&shuffle_output_mask, weight_mask);

  const int kInHeight = 16;
  const int kFilterHeight = 2;
  const int kSkipHeight = 2;
  for (int i = start_idx; i < layer_config->out_channels; i += channel_step) {
    __m256 bias_reg = _mm256_set1_ps(layer_config->bias[i]);
    // out_accum registers are used to store the 2x2 convolve outputs
    // (calculated over input block size), which are accumulated across the
    // in_channels. As per the design, each iteration of for loop processes 8
    // (horizontal) 2x2 blocks and stores in corresponding out_accum register
    // (as input size is 16x16, a total of 64 2x2 blocks are present and 8
    // out_accum registers are enough to store the outputs).
    // Hence for loops corresponding to 'j' and 'h', below, run over the number
    // of out_accum registers.
    __m256 out_accum[8];
    for (int j = 0; j < 8; ++j) out_accum[j] = bias_reg;
    for (int k = 0; k < layer_config->in_channels; ++k) {
      __m256 shuffle_weight[2];
      int off = k * layer_config->out_channels + i;
      // In layer 1, the convolution process happens at 2x2.
      // The weights needed for 2x2 block are same across the in-channels,
      // which is why the load of weights happens once for each in-channel.
      prepare_weights_for_2x2_convolve(layer_config->weights, off, cstep,
                                       shuffle_weight, weight_mask);

      for (int h = 0, u = 0; h < kInHeight - kFilterHeight + 1;
           h += kSkipHeight, ++u) {
        const float *input_ptr = &input[k][h * in_stride];
        perform_convolve_for_8h_2x2_blocks(input_ptr, in_stride, shuffle_weight,
                                           &out_accum[u], shuffle_output_mask);
      }
    }
    // Store output of layer 1.
    for (int j = 0; j < 8; ++j) {
      _mm256_storeu_ps(&output[i][j * out_stride], out_accum[j]);
    }
  }
}

// AVX2 implementation for layer 2.
static INLINE void cnn_convolve_no_maxpool_padding_valid_layer2_avx2(
    const float **input, int in_stride,
    const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
    int start_idx, const int cstep, const int channel_step) {
  __m256i weight_mask[2];
  __m256i shuffle_output_mask;
  load_shuffle_masks_for_2x2_convolve(&shuffle_output_mask, weight_mask);

  const int kInHeight = 8;
  const int kFilterHeight = 2;
  const int kSkipHeight = 2;
  for (int i = start_idx; i < layer_config->out_channels; i += channel_step) {
    __m256 bias_reg = _mm256_set1_ps(layer_config->bias[i]);
    // out_accum registers are used to store the 2x2 convolve outputs
    // (calculated over input block size), which are accumulated across the
    // in_channels. As per the design, each iteration of for loop processes 8
    // (4 horizontal x 2 vertical) 2x2 blocks and stores in corresponding
    // out_accum register (as input size is 8x8, a total of 16 2x2 blocks are
    // present and 2 out_accum registers are enough to store the outputs).
    // Hence for loops corresponding to 'j' and 'h', below, run over the number
    // of out_accum registers.
    __m256 out_accum[2];

    // Height needs to be moved to go to next iteration of processing
    // while processing 2 2x2 blocks vertically.
    const int kSkipHeightForNextIter = kSkipHeight * 2;
    for (int j = 0; j < 2; ++j) out_accum[j] = bias_reg;
    for (int k = 0; k < layer_config->in_channels; ++k) {
      __m256 shuffle_weight[2];
      int off = k * layer_config->out_channels + i;
      // In layer 2, the convolution process happens at 2x2.
      // The weights needed for 2x2 block are same across the in-channels,
      // which is why the load of weights happens once for each in-channel.
      prepare_weights_for_2x2_convolve(layer_config->weights, off, cstep,
                                       shuffle_weight, weight_mask);

      for (int h = 0, u = 0; h < kInHeight - kFilterHeight + 1;
           h += kSkipHeightForNextIter, ++u) {
        const float *input_ptr = &input[k][h * in_stride];
        perform_convolve_for_4hx2v_2x2_blocks(input_ptr, in_stride,
                                              shuffle_weight, &out_accum[u],
                                              shuffle_output_mask);
      }
    }
    // Store output of layer 2.
    for (int j = 0; j < 2; ++j) {
      _mm256_storeu_ps(&output[i][j * out_stride * 2], out_accum[j]);
    }
  }
}

// AVX2 variant of av1_cnn_convolve_no_maxpool_padding_valid_c(), when
// filter_width and filter_height are equal to 2.
// As per the layer config set by av1_intra_mode_cnn_partition_cnn_config,
// the filter_width and filter_height are equal to 2 for layer >= 1. So
// convolution happens at 2x2 for layer >= 1.
static void cnn_convolve_no_maxpool_padding_valid_2x2_avx2(
    const float **input, int in_width, int in_height, int in_stride,
    const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
    int start_idx, const int cstep, const int channel_step) {
  assert(layer_config->filter_width == 2 && layer_config->filter_height == 2);
  assert(layer_config->skip_width == 2 && layer_config->skip_height == 2);

  if (in_width == 16 && in_height == 16) {
    // This case of in_width and in_height equal to 16 corresponds to layer 1.
    // The output size of this layer is 8x8.
    cnn_convolve_no_maxpool_padding_valid_layer1_avx2(
        input, in_stride, layer_config, output, out_stride, start_idx, cstep,
        channel_step);
  } else if (in_width == 8 && in_height == 8) {
    // This case of in_width and in_height equal to 8 corresponds to layer 2.
    // The output size of this layer is 4x4.
    cnn_convolve_no_maxpool_padding_valid_layer2_avx2(
        input, in_stride, layer_config, output, out_stride, start_idx, cstep,
        channel_step);
  } else {
    // For layer equal to 3 and 4, the input is of size 4x4 and 2x2
    // respectively. Implementing SIMD for these cases might not be optimal,
    // which is why we call C path for layer >= 3.
    av1_cnn_convolve_no_maxpool_padding_valid_c(
        input, in_width, in_height, in_stride, layer_config, output, out_stride,
        start_idx, cstep, channel_step);
  }
}

// AVX2 variant of av1_cnn_convolve_no_maxpool_padding_valid_c().
// As per the current encoder, av1_cnn_convolve function gets called for
// block size equal to 64x64. av1_cnn_convolve() uses layer config values
// set by av1_intra_mode_cnn_partition_cnn_config. The following are a few
// details related to each layer's config parameters.
// Layer_Number in_size out_size filter_wd filter_ht skip_wd skip_ht
//     0         64x64    16x16      5         5         4       4
//     1         16x16    8x8        2         2         2       2
//     2         8x8      4x4        2         2         2       2
//     3         4x4      2x2        2         2         2       2
//     4         2x2      1x1        2         2         2       2
// Here,
// filter_wd = filter_width and filter_ht = filter_height,
// skip_wd = skip_width and skip_ht = skip_height.
void av1_cnn_convolve_no_maxpool_padding_valid_avx2(
    const float **input, int in_width, int in_height, int in_stride,
    const CNN_LAYER_CONFIG *layer_config, float **output, int out_stride,
    int start_idx, int cstep, int channel_step) {
  if (layer_config->filter_width == 5 && layer_config->filter_height == 5 &&
      layer_config->skip_width == 4 && layer_config->skip_height == 4) {
    cnn_convolve_no_maxpool_padding_valid_5x5_avx2(
        input, in_width, in_height, in_stride, layer_config, output, out_stride,
        start_idx, cstep, channel_step);
  } else if (layer_config->filter_width == 2 &&
             layer_config->filter_height == 2 &&
             layer_config->skip_width == 2 && layer_config->skip_height == 2) {
    cnn_convolve_no_maxpool_padding_valid_2x2_avx2(
        input, in_width, in_height, in_stride, layer_config, output, out_stride,
        start_idx, cstep, channel_step);
  } else {
    av1_cnn_convolve_no_maxpool_padding_valid_c(
        input, in_width, in_height, in_stride, layer_config, output, out_stride,
        start_idx, cstep, channel_step);
  }
}