summaryrefslogtreecommitdiffstats
path: root/third_party/aom/test/hadamard_test.cc
blob: b01e78faaa48f105e5ba02f83c96c61fb960e651 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/*
 *  Copyright (c) 2019, Alliance for Open Media. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <algorithm>
#include <ostream>

#include "third_party/googletest/src/googletest/include/gtest/gtest.h"

#include "config/aom_dsp_rtcd.h"

#include "test/acm_random.h"
#include "test/register_state_check.h"
#include "test/util.h"

namespace {

using libaom_test::ACMRandom;

using HadamardFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
                              tran_low_t *b);
// Low precision version of Hadamard Transform
using HadamardLPFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
                                int16_t *b);
// Low precision version of Hadamard Transform 8x8 - Dual
using HadamardLP8x8DualFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
                                       int16_t *b);

template <typename OutputType>
void Hadamard4x4(const OutputType *a, OutputType *out) {
  OutputType b[8];
  for (int i = 0; i < 4; i += 2) {
    b[i + 0] = (a[i * 4] + a[(i + 1) * 4]) >> 1;
    b[i + 1] = (a[i * 4] - a[(i + 1) * 4]) >> 1;
  }

  out[0] = b[0] + b[2];
  out[1] = b[1] + b[3];
  out[2] = b[0] - b[2];
  out[3] = b[1] - b[3];
}

template <typename OutputType>
void ReferenceHadamard4x4(const int16_t *a, int a_stride, OutputType *b) {
  OutputType input[16];
  OutputType buf[16];
  for (int i = 0; i < 4; ++i) {
    for (int j = 0; j < 4; ++j) {
      input[i * 4 + j] = static_cast<OutputType>(a[i * a_stride + j]);
    }
  }
  for (int i = 0; i < 4; ++i) Hadamard4x4(input + i, buf + i * 4);
  for (int i = 0; i < 4; ++i) Hadamard4x4(buf + i, b + i * 4);

  // Extra transpose to match C and SSE2 behavior(i.e., aom_hadamard_4x4).
  for (int i = 0; i < 4; i++) {
    for (int j = i + 1; j < 4; j++) {
      OutputType temp = b[j * 4 + i];
      b[j * 4 + i] = b[i * 4 + j];
      b[i * 4 + j] = temp;
    }
  }
}

template <typename OutputType>
void HadamardLoop(const OutputType *a, OutputType *out) {
  OutputType b[8];
  for (int i = 0; i < 8; i += 2) {
    b[i + 0] = a[i * 8] + a[(i + 1) * 8];
    b[i + 1] = a[i * 8] - a[(i + 1) * 8];
  }
  OutputType c[8];
  for (int i = 0; i < 8; i += 4) {
    c[i + 0] = b[i + 0] + b[i + 2];
    c[i + 1] = b[i + 1] + b[i + 3];
    c[i + 2] = b[i + 0] - b[i + 2];
    c[i + 3] = b[i + 1] - b[i + 3];
  }
  out[0] = c[0] + c[4];
  out[7] = c[1] + c[5];
  out[3] = c[2] + c[6];
  out[4] = c[3] + c[7];
  out[2] = c[0] - c[4];
  out[6] = c[1] - c[5];
  out[1] = c[2] - c[6];
  out[5] = c[3] - c[7];
}

template <typename OutputType>
void ReferenceHadamard8x8(const int16_t *a, int a_stride, OutputType *b) {
  OutputType input[64];
  OutputType buf[64];
  for (int i = 0; i < 8; ++i) {
    for (int j = 0; j < 8; ++j) {
      input[i * 8 + j] = static_cast<OutputType>(a[i * a_stride + j]);
    }
  }
  for (int i = 0; i < 8; ++i) HadamardLoop(input + i, buf + i * 8);
  for (int i = 0; i < 8; ++i) HadamardLoop(buf + i, b + i * 8);

  // Extra transpose to match SSE2 behavior (i.e., aom_hadamard_8x8 and
  // aom_hadamard_lp_8x8).
  for (int i = 0; i < 8; i++) {
    for (int j = i + 1; j < 8; j++) {
      OutputType temp = b[j * 8 + i];
      b[j * 8 + i] = b[i * 8 + j];
      b[i * 8 + j] = temp;
    }
  }
}

template <typename OutputType>
void ReferenceHadamard8x8Dual(const int16_t *a, int a_stride, OutputType *b) {
  /* The source is a 8x16 block. The destination is rearranged to 8x16.
   * Input is 9 bit. */
  ReferenceHadamard8x8(a, a_stride, b);
  ReferenceHadamard8x8(a + 8, a_stride, b + 64);
}

template <typename OutputType>
void ReferenceHadamard16x16(const int16_t *a, int a_stride, OutputType *b,
                            bool shift) {
  /* The source is a 16x16 block. The destination is rearranged to 8x32.
   * Input is 9 bit. */
  ReferenceHadamard8x8(a + 0 + 0 * a_stride, a_stride, b + 0);
  ReferenceHadamard8x8(a + 8 + 0 * a_stride, a_stride, b + 64);
  ReferenceHadamard8x8(a + 0 + 8 * a_stride, a_stride, b + 128);
  ReferenceHadamard8x8(a + 8 + 8 * a_stride, a_stride, b + 192);

  /* Overlay the 8x8 blocks and combine. */
  for (int i = 0; i < 64; ++i) {
    /* 8x8 steps the range up to 15 bits. */
    const OutputType a0 = b[0];
    const OutputType a1 = b[64];
    const OutputType a2 = b[128];
    const OutputType a3 = b[192];

    /* Prevent the result from escaping int16_t. */
    const OutputType b0 = (a0 + a1) >> 1;
    const OutputType b1 = (a0 - a1) >> 1;
    const OutputType b2 = (a2 + a3) >> 1;
    const OutputType b3 = (a2 - a3) >> 1;

    /* Store a 16 bit value. */
    b[0] = b0 + b2;
    b[64] = b1 + b3;
    b[128] = b0 - b2;
    b[192] = b1 - b3;

    ++b;
  }

  if (shift) {
    b -= 64;
    // Extra shift to match aom_hadamard_16x16_c and aom_hadamard_16x16_avx2.
    for (int i = 0; i < 16; i++) {
      for (int j = 0; j < 4; j++) {
        OutputType temp = b[i * 16 + 4 + j];
        b[i * 16 + 4 + j] = b[i * 16 + 8 + j];
        b[i * 16 + 8 + j] = temp;
      }
    }
  }
}

template <typename OutputType>
void ReferenceHadamard32x32(const int16_t *a, int a_stride, OutputType *b,
                            bool shift) {
  ReferenceHadamard16x16(a + 0 + 0 * a_stride, a_stride, b + 0, shift);
  ReferenceHadamard16x16(a + 16 + 0 * a_stride, a_stride, b + 256, shift);
  ReferenceHadamard16x16(a + 0 + 16 * a_stride, a_stride, b + 512, shift);
  ReferenceHadamard16x16(a + 16 + 16 * a_stride, a_stride, b + 768, shift);

  for (int i = 0; i < 256; ++i) {
    const OutputType a0 = b[0];
    const OutputType a1 = b[256];
    const OutputType a2 = b[512];
    const OutputType a3 = b[768];

    const OutputType b0 = (a0 + a1) >> 2;
    const OutputType b1 = (a0 - a1) >> 2;
    const OutputType b2 = (a2 + a3) >> 2;
    const OutputType b3 = (a2 - a3) >> 2;

    b[0] = b0 + b2;
    b[256] = b1 + b3;
    b[512] = b0 - b2;
    b[768] = b1 - b3;

    ++b;
  }
}

template <typename OutputType>
void ReferenceHadamard(const int16_t *a, int a_stride, OutputType *b, int bw,
                       int bh, bool shift) {
  if (bw == 32 && bh == 32) {
    ReferenceHadamard32x32(a, a_stride, b, shift);
  } else if (bw == 16 && bh == 16) {
    ReferenceHadamard16x16(a, a_stride, b, shift);
  } else if (bw == 8 && bh == 8) {
    ReferenceHadamard8x8(a, a_stride, b);
  } else if (bw == 4 && bh == 4) {
    ReferenceHadamard4x4(a, a_stride, b);
  } else if (bw == 8 && bh == 16) {
    ReferenceHadamard8x8Dual(a, a_stride, b);
  } else {
    GTEST_FAIL() << "Invalid Hadamard transform size " << bw << bh << std::endl;
  }
}

template <typename HadamardFuncType>
struct FuncWithSize {
  FuncWithSize(HadamardFuncType f, int bw, int bh)
      : func(f), block_width(bw), block_height(bh) {}
  HadamardFuncType func;
  int block_width;
  int block_height;
};

using HadamardFuncWithSize = FuncWithSize<HadamardFunc>;
using HadamardLPFuncWithSize = FuncWithSize<HadamardLPFunc>;
using HadamardLP8x8DualFuncWithSize = FuncWithSize<HadamardLP8x8DualFunc>;

template <typename OutputType, typename HadamardFuncType>
class HadamardTestBase
    : public ::testing::TestWithParam<FuncWithSize<HadamardFuncType>> {
 public:
  HadamardTestBase(const FuncWithSize<HadamardFuncType> &func_param,
                   bool do_shift) {
    h_func_ = func_param.func;
    bw_ = func_param.block_width;
    bh_ = func_param.block_height;
    shift_ = do_shift;
  }

  void SetUp() override { rnd_.Reset(ACMRandom::DeterministicSeed()); }

  // The Rand() function generates values in the range [-((1 << BitDepth) - 1),
  // (1 << BitDepth) - 1]. This is because the input to the Hadamard transform
  // is the residual pixel, which is defined as 'source pixel - predicted
  // pixel'. Source pixel and predicted pixel take values in the range
  // [0, (1 << BitDepth) - 1] and thus the residual pixel ranges from
  // -((1 << BitDepth) - 1) to ((1 << BitDepth) - 1).
  virtual int16_t Rand() = 0;

  void CompareReferenceRandom() {
    const int kMaxBlockSize = 32 * 32;
    const int block_size = bw_ * bh_;

    DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize]);
    DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
    memset(a, 0, sizeof(a));
    memset(b, 0, sizeof(b));

    OutputType b_ref[kMaxBlockSize];
    memset(b_ref, 0, sizeof(b_ref));

    for (int i = 0; i < block_size; ++i) a[i] = Rand();
    ReferenceHadamard(a, bw_, b_ref, bw_, bh_, shift_);
    API_REGISTER_STATE_CHECK(h_func_(a, bw_, b));

    // The order of the output is not important. Sort before checking.
    std::sort(b, b + block_size);
    std::sort(b_ref, b_ref + block_size);
    EXPECT_EQ(memcmp(b, b_ref, sizeof(b)), 0);
  }

  void CompareReferenceExtreme() {
    const int kMaxBlockSize = 32 * 32;
    const int block_size = bw_ * bh_;
    const int kBitDepth = 8;
    DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize]);
    DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
    memset(b, 0, sizeof(b));

    OutputType b_ref[kMaxBlockSize];
    memset(b_ref, 0, sizeof(b_ref));
    for (int i = 0; i < 2; ++i) {
      const int sign = (i == 0) ? 1 : -1;
      for (int j = 0; j < block_size; ++j) a[j] = sign * ((1 << kBitDepth) - 1);

      ReferenceHadamard(a, bw_, b_ref, bw_, bh_, shift_);
      API_REGISTER_STATE_CHECK(h_func_(a, bw_, b));

      // The order of the output is not important. Sort before checking.
      std::sort(b, b + block_size);
      std::sort(b_ref, b_ref + block_size);
      EXPECT_EQ(memcmp(b, b_ref, sizeof(b)), 0);
    }
  }

  void VaryStride() {
    const int kMaxBlockSize = 32 * 32;
    const int block_size = bw_ * bh_;

    DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize * 8]);
    DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
    memset(a, 0, sizeof(a));
    for (int i = 0; i < block_size * 8; ++i) a[i] = Rand();

    OutputType b_ref[kMaxBlockSize];
    for (int i = 8; i < 64; i += 8) {
      memset(b, 0, sizeof(b));
      memset(b_ref, 0, sizeof(b_ref));

      ReferenceHadamard(a, i, b_ref, bw_, bh_, shift_);
      API_REGISTER_STATE_CHECK(h_func_(a, i, b));

      // The order of the output is not important. Sort before checking.
      std::sort(b, b + block_size);
      std::sort(b_ref, b_ref + block_size);
      EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b)));
    }
  }

  void SpeedTest(int times) {
    const int kMaxBlockSize = 32 * 32;
    DECLARE_ALIGNED(16, int16_t, input[kMaxBlockSize]);
    DECLARE_ALIGNED(16, OutputType, output[kMaxBlockSize]);
    memset(input, 1, sizeof(input));
    memset(output, 0, sizeof(output));

    aom_usec_timer timer;
    aom_usec_timer_start(&timer);
    for (int i = 0; i < times; ++i) {
      h_func_(input, bw_, output);
    }
    aom_usec_timer_mark(&timer);

    const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
    printf("Hadamard%dx%d[%12d runs]: %d us\n", bw_, bh_, times, elapsed_time);
  }

 protected:
  ACMRandom rnd_;

 private:
  HadamardFuncType h_func_;
  int bw_;
  int bh_;
  bool shift_;
};

class HadamardLowbdTest : public HadamardTestBase<tran_low_t, HadamardFunc> {
 public:
  HadamardLowbdTest() : HadamardTestBase(GetParam(), /*do_shift=*/true) {}
  // Use values between -255 (0xFF01) and 255 (0x00FF)
  int16_t Rand() override {
    int16_t src = rnd_.Rand8();
    int16_t pred = rnd_.Rand8();
    return src - pred;
  }
};

TEST_P(HadamardLowbdTest, CompareReferenceRandom) { CompareReferenceRandom(); }

TEST_P(HadamardLowbdTest, CompareReferenceExtreme) {
  CompareReferenceExtreme();
}

TEST_P(HadamardLowbdTest, VaryStride) { VaryStride(); }

TEST_P(HadamardLowbdTest, DISABLED_SpeedTest) { SpeedTest(1000000); }

INSTANTIATE_TEST_SUITE_P(
    C, HadamardLowbdTest,
    ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_c, 4, 4),
                      HadamardFuncWithSize(&aom_hadamard_8x8_c, 8, 8),
                      HadamardFuncWithSize(&aom_hadamard_16x16_c, 16, 16),
                      HadamardFuncWithSize(&aom_hadamard_32x32_c, 32, 32)));

#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
    SSE2, HadamardLowbdTest,
    ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_sse2, 4, 4),
                      HadamardFuncWithSize(&aom_hadamard_8x8_sse2, 8, 8),
                      HadamardFuncWithSize(&aom_hadamard_16x16_sse2, 16, 16),
                      HadamardFuncWithSize(&aom_hadamard_32x32_sse2, 32, 32)));
#endif  // HAVE_SSE2

#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
    AVX2, HadamardLowbdTest,
    ::testing::Values(HadamardFuncWithSize(&aom_hadamard_16x16_avx2, 16, 16),
                      HadamardFuncWithSize(&aom_hadamard_32x32_avx2, 32, 32)));
#endif  // HAVE_AVX2

// TODO(aomedia:3314): Disable NEON unit test for now, since hadamard 16x16 NEON
// need modifications to match C/AVX2 behavior.
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
    NEON, HadamardLowbdTest,
    ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_neon, 4, 4),
                      HadamardFuncWithSize(&aom_hadamard_8x8_neon, 8, 8),
                      HadamardFuncWithSize(&aom_hadamard_16x16_neon, 16, 16),
                      HadamardFuncWithSize(&aom_hadamard_32x32_neon, 32, 32)));
#endif  // HAVE_NEON

#if CONFIG_AV1_HIGHBITDEPTH
class HadamardHighbdTest : public HadamardTestBase<tran_low_t, HadamardFunc> {
 protected:
  HadamardHighbdTest() : HadamardTestBase(GetParam(), /*do_shift=*/true) {}
  // Use values between -4095 (0xF001) and 4095 (0x0FFF)
  int16_t Rand() override {
    int16_t src = rnd_.Rand12();
    int16_t pred = rnd_.Rand12();
    return src - pred;
  }
};

TEST_P(HadamardHighbdTest, CompareReferenceRandom) { CompareReferenceRandom(); }

TEST_P(HadamardHighbdTest, VaryStride) { VaryStride(); }

TEST_P(HadamardHighbdTest, DISABLED_Speed) {
  SpeedTest(10);
  SpeedTest(10000);
  SpeedTest(10000000);
}

INSTANTIATE_TEST_SUITE_P(
    C, HadamardHighbdTest,
    ::testing::Values(
        HadamardFuncWithSize(&aom_highbd_hadamard_8x8_c, 8, 8),
        HadamardFuncWithSize(&aom_highbd_hadamard_16x16_c, 16, 16),
        HadamardFuncWithSize(&aom_highbd_hadamard_32x32_c, 32, 32)));

#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
    AVX2, HadamardHighbdTest,
    ::testing::Values(
        HadamardFuncWithSize(&aom_highbd_hadamard_8x8_avx2, 8, 8),
        HadamardFuncWithSize(&aom_highbd_hadamard_16x16_avx2, 16, 16),
        HadamardFuncWithSize(&aom_highbd_hadamard_32x32_avx2, 32, 32)));
#endif  // HAVE_AVX2

#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
    NEON, HadamardHighbdTest,
    ::testing::Values(
        HadamardFuncWithSize(&aom_highbd_hadamard_8x8_neon, 8, 8),
        HadamardFuncWithSize(&aom_highbd_hadamard_16x16_neon, 16, 16),
        HadamardFuncWithSize(&aom_highbd_hadamard_32x32_neon, 32, 32)));
#endif  // HAVE_NEON

#endif  // CONFIG_AV1_HIGHBITDEPTH

// Tests for low precision
class HadamardLowbdLPTest : public HadamardTestBase<int16_t, HadamardLPFunc> {
 public:
  HadamardLowbdLPTest() : HadamardTestBase(GetParam(), /*do_shift=*/false) {}
  // Use values between -255 (0xFF01) and 255 (0x00FF)
  int16_t Rand() override {
    int16_t src = rnd_.Rand8();
    int16_t pred = rnd_.Rand8();
    return src - pred;
  }
};

TEST_P(HadamardLowbdLPTest, CompareReferenceRandom) {
  CompareReferenceRandom();
}

TEST_P(HadamardLowbdLPTest, VaryStride) { VaryStride(); }

TEST_P(HadamardLowbdLPTest, DISABLED_SpeedTest) { SpeedTest(1000000); }

INSTANTIATE_TEST_SUITE_P(
    C, HadamardLowbdLPTest,
    ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_c, 8, 8),
                      HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_c, 16,
                                             16)));

#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
    SSE2, HadamardLowbdLPTest,
    ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_sse2, 8, 8),
                      HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_sse2, 16,
                                             16)));
#endif  // HAVE_SSE2

#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, HadamardLowbdLPTest,
                         ::testing::Values(HadamardLPFuncWithSize(
                             &aom_hadamard_lp_16x16_avx2, 16, 16)));
#endif  // HAVE_AVX2

#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
    NEON, HadamardLowbdLPTest,
    ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_neon, 8, 8),
                      HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_neon, 16,
                                             16)));
#endif  // HAVE_NEON

// Tests for 8x8 dual low precision
class HadamardLowbdLP8x8DualTest
    : public HadamardTestBase<int16_t, HadamardLP8x8DualFunc> {
 public:
  HadamardLowbdLP8x8DualTest()
      : HadamardTestBase(GetParam(), /*do_shift=*/false) {}
  // Use values between -255 (0xFF01) and 255 (0x00FF)
  int16_t Rand() override {
    int16_t src = rnd_.Rand8();
    int16_t pred = rnd_.Rand8();
    return src - pred;
  }
};

TEST_P(HadamardLowbdLP8x8DualTest, CompareReferenceRandom) {
  CompareReferenceRandom();
}

TEST_P(HadamardLowbdLP8x8DualTest, VaryStride) { VaryStride(); }

TEST_P(HadamardLowbdLP8x8DualTest, DISABLED_SpeedTest) { SpeedTest(1000000); }

INSTANTIATE_TEST_SUITE_P(C, HadamardLowbdLP8x8DualTest,
                         ::testing::Values(HadamardLP8x8DualFuncWithSize(
                             &aom_hadamard_lp_8x8_dual_c, 8, 16)));

#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, HadamardLowbdLP8x8DualTest,
                         ::testing::Values(HadamardLP8x8DualFuncWithSize(
                             &aom_hadamard_lp_8x8_dual_sse2, 8, 16)));
#endif  // HAVE_SSE2

#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, HadamardLowbdLP8x8DualTest,
                         ::testing::Values(HadamardLP8x8DualFuncWithSize(
                             &aom_hadamard_lp_8x8_dual_avx2, 8, 16)));
#endif  // HAVE_AVX2

#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, HadamardLowbdLP8x8DualTest,
                         ::testing::Values(HadamardLP8x8DualFuncWithSize(
                             &aom_hadamard_lp_8x8_dual_neon, 8, 16)));
#endif  // HAVE_NEON

}  // namespace