1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
// Copyright 2021 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "hwy/aligned_allocator.h"
// clang-format off
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "hwy/contrib/dot/dot_test.cc"
#include "hwy/foreach_target.h" // IWYU pragma: keep
#include "hwy/highway.h"
#include "hwy/contrib/dot/dot-inl.h"
#include "hwy/tests/test_util-inl.h"
// clang-format on
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
template <typename T>
HWY_NOINLINE T SimpleDot(const T* pa, const T* pb, size_t num) {
double sum = 0.0;
for (size_t i = 0; i < num; ++i) {
sum += pa[i] * pb[i];
}
return static_cast<T>(sum);
}
HWY_NOINLINE float SimpleDot(const bfloat16_t* pa, const bfloat16_t* pb,
size_t num) {
float sum = 0.0f;
for (size_t i = 0; i < num; ++i) {
sum += F32FromBF16(pa[i]) * F32FromBF16(pb[i]);
}
return sum;
}
template <typename T>
void SetValue(const float value, T* HWY_RESTRICT ptr) {
*ptr = static_cast<T>(value);
}
void SetValue(const float value, bfloat16_t* HWY_RESTRICT ptr) {
*ptr = BF16FromF32(value);
}
class TestDot {
// Computes/verifies one dot product.
template <int kAssumptions, class D>
void Test(D d, size_t num, size_t misalign_a, size_t misalign_b,
RandomState& rng) {
using T = TFromD<D>;
const size_t N = Lanes(d);
const auto random_t = [&rng]() {
const int32_t bits = static_cast<int32_t>(Random32(&rng)) & 1023;
return static_cast<float>(bits - 512) * (1.0f / 64);
};
const size_t padded =
(kAssumptions & Dot::kPaddedToVector) ? RoundUpTo(num, N) : num;
AlignedFreeUniquePtr<T[]> pa = AllocateAligned<T>(misalign_a + padded);
AlignedFreeUniquePtr<T[]> pb = AllocateAligned<T>(misalign_b + padded);
HWY_ASSERT(pa && pb);
T* a = pa.get() + misalign_a;
T* b = pb.get() + misalign_b;
size_t i = 0;
for (; i < num; ++i) {
SetValue(random_t(), a + i);
SetValue(random_t(), b + i);
}
// Fill padding with NaN - the values are not used, but avoids MSAN errors.
for (; i < padded; ++i) {
ScalableTag<float> df1;
SetValue(GetLane(NaN(df1)), a + i);
SetValue(GetLane(NaN(df1)), b + i);
}
const auto expected = SimpleDot(a, b, num);
const auto actual = Dot::Compute<kAssumptions>(d, a, b, num);
const auto max = static_cast<decltype(actual)>(8 * 8 * num);
HWY_ASSERT(-max <= actual && actual <= max);
HWY_ASSERT(expected - 1E-4 <= actual && actual <= expected + 1E-4);
}
// Runs tests with various alignments.
template <int kAssumptions, class D>
void ForeachMisalign(D d, size_t num, RandomState& rng) {
const size_t N = Lanes(d);
const size_t misalignments[3] = {0, N / 4, 3 * N / 5};
for (size_t ma : misalignments) {
for (size_t mb : misalignments) {
Test<kAssumptions>(d, num, ma, mb, rng);
}
}
}
// Runs tests with various lengths compatible with the given assumptions.
template <int kAssumptions, class D>
void ForeachCount(D d, RandomState& rng) {
const size_t N = Lanes(d);
const size_t counts[] = {1,
3,
7,
16,
HWY_MAX(N / 2, 1),
HWY_MAX(2 * N / 3, 1),
N,
N + 1,
4 * N / 3,
3 * N,
8 * N,
8 * N + 2};
for (size_t num : counts) {
if ((kAssumptions & Dot::kAtLeastOneVector) && num < N) continue;
if ((kAssumptions & Dot::kMultipleOfVector) && (num % N) != 0) continue;
ForeachMisalign<kAssumptions>(d, num, rng);
}
}
public:
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
RandomState rng;
// All 8 combinations of the three length-related flags:
ForeachCount<0>(d, rng);
ForeachCount<Dot::kAtLeastOneVector>(d, rng);
ForeachCount<Dot::kMultipleOfVector>(d, rng);
ForeachCount<Dot::kMultipleOfVector | Dot::kAtLeastOneVector>(d, rng);
ForeachCount<Dot::kPaddedToVector>(d, rng);
ForeachCount<Dot::kPaddedToVector | Dot::kAtLeastOneVector>(d, rng);
ForeachCount<Dot::kPaddedToVector | Dot::kMultipleOfVector>(d, rng);
ForeachCount<Dot::kPaddedToVector | Dot::kMultipleOfVector |
Dot::kAtLeastOneVector>(d, rng);
}
};
void TestAllDot() { ForFloatTypes(ForPartialVectors<TestDot>()); }
void TestAllDotBF16() { ForShrinkableVectors<TestDot>()(bfloat16_t()); }
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace hwy
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace hwy {
HWY_BEFORE_TEST(DotTest);
HWY_EXPORT_AND_TEST_P(DotTest, TestAllDot);
HWY_EXPORT_AND_TEST_P(DotTest, TestAllDotBF16);
} // namespace hwy
#endif
|