summaryrefslogtreecommitdiffstats
path: root/third_party/highway/hwy/examples/benchmark.cc
blob: 003d6cb606be0701303a2624b40934cbdde0400c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Copyright 2019 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS  // before inttypes.h
#endif
#include <inttypes.h>  // IWYU pragma: keep
#include <stdio.h>
#include <stdlib.h>  // abort

#include <cmath>  // std::abs
#include <memory>
#include <numeric>  // std::iota, std::inner_product

#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "hwy/examples/benchmark.cc"
#include "hwy/foreach_target.h"  // IWYU pragma: keep

// Must come after foreach_target.h to avoid redefinition errors.
#include "hwy/aligned_allocator.h"
#include "hwy/highway.h"
#include "hwy/nanobenchmark.h"

HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {

// These templates are not found via ADL.
#if HWY_TARGET != HWY_SCALAR
using hwy::HWY_NAMESPACE::CombineShiftRightLanes;
#endif

class TwoArray {
 public:
  // Must be a multiple of the vector lane count * 8.
  static size_t NumItems() { return 3456; }

  TwoArray()
      : a_(AllocateAligned<float>(NumItems() * 2)), b_(a_.get() + NumItems()) {
    // = 1, but compiler doesn't know
    const float init = static_cast<float>(Unpredictable1());
    std::iota(a_.get(), a_.get() + NumItems(), init);
    std::iota(b_, b_ + NumItems(), init);
  }

 protected:
  AlignedFreeUniquePtr<float[]> a_;
  float* b_;
};

// Measures durations, verifies results, prints timings.
template <class Benchmark>
void RunBenchmark(const char* caption) {
  printf("%10s: ", caption);
  const size_t kNumInputs = 1;
  const size_t num_items = Benchmark::NumItems() * size_t(Unpredictable1());
  const FuncInput inputs[kNumInputs] = {num_items};
  Result results[kNumInputs];

  Benchmark benchmark;

  Params p;
  p.verbose = false;
  p.max_evals = 7;
  p.target_rel_mad = 0.002;
  const size_t num_results = MeasureClosure(
      [&benchmark](const FuncInput input) { return benchmark(input); }, inputs,
      kNumInputs, results, p);
  if (num_results != kNumInputs) {
    fprintf(stderr, "MeasureClosure failed.\n");
  }

  benchmark.Verify(num_items);

  for (size_t i = 0; i < num_results; ++i) {
    const double cycles_per_item =
        results[i].ticks / static_cast<double>(results[i].input);
    const double mad = results[i].variability * cycles_per_item;
    printf("%6" PRIu64 ": %6.3f (+/- %5.3f)\n",
           static_cast<uint64_t>(results[i].input), cycles_per_item, mad);
  }
}

void Intro() {
  const float in[16] = {1, 2, 3, 4, 5, 6};
  float out[16];
  const ScalableTag<float> d;  // largest possible vector
  for (size_t i = 0; i < 16; i += Lanes(d)) {
    const auto vec = LoadU(d, in + i);  // no alignment requirement
    auto result = Mul(vec, vec);
    result = Add(result, result);  // can update if not const
    StoreU(result, d, out + i);
  }
  printf("\nF(x)->2*x^2, F(%.0f) = %.1f\n", in[2], out[2]);
}

// BEGINNER: dot product
// 0.4 cyc/float = bronze, 0.25 = silver, 0.15 = gold!
class BenchmarkDot : public TwoArray {
 public:
  BenchmarkDot() : dot_{-1.0f} {}

  FuncOutput operator()(const size_t num_items) {
    const ScalableTag<float> d;
    const size_t N = Lanes(d);
    using V = decltype(Zero(d));
    // Compiler doesn't make independent sum* accumulators, so unroll manually.
    // We cannot use an array because V might be a sizeless type. For reasonable
    // code, we unroll 4x, but 8x might help (2 FMA ports * 4 cycle latency).
    V sum0 = Zero(d);
    V sum1 = Zero(d);
    V sum2 = Zero(d);
    V sum3 = Zero(d);
    const float* const HWY_RESTRICT pa = &a_[0];
    const float* const HWY_RESTRICT pb = b_;
    for (size_t i = 0; i < num_items; i += 4 * N) {
      const auto a0 = Load(d, pa + i + 0 * N);
      const auto b0 = Load(d, pb + i + 0 * N);
      sum0 = MulAdd(a0, b0, sum0);
      const auto a1 = Load(d, pa + i + 1 * N);
      const auto b1 = Load(d, pb + i + 1 * N);
      sum1 = MulAdd(a1, b1, sum1);
      const auto a2 = Load(d, pa + i + 2 * N);
      const auto b2 = Load(d, pb + i + 2 * N);
      sum2 = MulAdd(a2, b2, sum2);
      const auto a3 = Load(d, pa + i + 3 * N);
      const auto b3 = Load(d, pb + i + 3 * N);
      sum3 = MulAdd(a3, b3, sum3);
    }
    // Reduction tree: sum of all accumulators by pairs into sum0.
    sum0 = Add(sum0, sum1);
    sum2 = Add(sum2, sum3);
    sum0 = Add(sum0, sum2);
    // Remember to store the result in `dot_` for verification; see `Verify`.
    dot_ = ReduceSum(d, sum0);
    // Return the result so that the benchmarking framework can ensure that the
    // computation is not elided by the compiler.
    return static_cast<FuncOutput>(dot_);
  }
  void Verify(size_t num_items) {
    if (dot_ == -1.0f) {
      fprintf(stderr, "Dot: must call Verify after benchmark");
      abort();
    }

    const float expected =
        std::inner_product(a_.get(), a_.get() + num_items, b_, 0.0f);
    const float rel_err = std::abs(expected - dot_) / expected;
    if (rel_err > 1.1E-6f) {
      fprintf(stderr, "Dot: expected %e actual %e (%e)\n", expected, dot_,
              rel_err);
      abort();
    }
  }

 private:
  float dot_;  // for Verify
};

// INTERMEDIATE: delta coding
// 1.0 cycles/float = bronze, 0.7 = silver, 0.4 = gold!
struct BenchmarkDelta : public TwoArray {
  FuncOutput operator()(const size_t num_items) const {
#if HWY_TARGET == HWY_SCALAR
    b_[0] = a_[0];
    for (size_t i = 1; i < num_items; ++i) {
      b_[i] = a_[i] - a_[i - 1];
    }
#elif HWY_CAP_GE256
    // Larger vectors are split into 128-bit blocks, easiest to use the
    // unaligned load support to shift between them.
    const ScalableTag<float> df;
    const size_t N = Lanes(df);
    size_t i;
    b_[0] = a_[0];
    for (i = 1; i < N; ++i) {
      b_[i] = a_[i] - a_[i - 1];
    }
    for (; i < num_items; i += N) {
      const auto a = Load(df, &a_[i]);
      const auto shifted = LoadU(df, &a_[i - 1]);
      Store(a - shifted, df, &b_[i]);
    }
#else  // 128-bit
    // Slightly better than unaligned loads
    const HWY_CAPPED(float, 4) df;
    const size_t N = Lanes(df);
    size_t i;
    b_[0] = a_[0];
    for (i = 1; i < N; ++i) {
      b_[i] = a_[i] - a_[i - 1];
    }
    auto prev = Load(df, &a_[0]);
    for (; i < num_items; i += Lanes(df)) {
      const auto a = Load(df, &a_[i]);
      const auto shifted = CombineShiftRightLanes<3>(df, a, prev);
      prev = a;
      Store(Sub(a, shifted), df, &b_[i]);
    }
#endif
    return static_cast<FuncOutput>(b_[num_items - 1]);
  }

  void Verify(size_t num_items) {
    for (size_t i = 0; i < num_items; ++i) {
      const float expected = (i == 0) ? a_[0] : a_[i] - a_[i - 1];
      const float err = std::abs(expected - b_[i]);
      if (err > 1E-6f) {
        fprintf(stderr, "Delta: expected %e, actual %e\n", expected, b_[i]);
      }
    }
  }
};

void RunBenchmarks() {
  Intro();
  printf("------------------------ %s\n", TargetName(HWY_TARGET));
  RunBenchmark<BenchmarkDot>("dot");
  RunBenchmark<BenchmarkDelta>("delta");
}

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace hwy
HWY_AFTER_NAMESPACE();

#if HWY_ONCE
namespace hwy {
HWY_EXPORT(RunBenchmarks);

void Run() {
  for (int64_t target : SupportedAndGeneratedTargets()) {
    SetSupportedTargetsForTest(target);
    HWY_DYNAMIC_DISPATCH(RunBenchmarks)();
  }
  SetSupportedTargetsForTest(0);  // Reset the mask afterwards.
}

}  // namespace hwy

int main(int /*argc*/, char** /*argv*/) {
  hwy::Run();
  return 0;
}
#endif  // HWY_ONCE