1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
|
// Copyright 2019 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Target-specific helper functions for use by *_test.cc.
#include <stdio.h>
#include <string.h> // memset
// IWYU pragma: begin_exports
#include "hwy/aligned_allocator.h"
#include "hwy/base.h"
#include "hwy/detect_targets.h"
#include "hwy/targets.h"
#include "hwy/tests/hwy_gtest.h"
#include "hwy/tests/test_util.h"
// IWYU pragma: end_exports
// After test_util (also includes highway.h)
#include "hwy/print-inl.h"
// Per-target include guard
#if defined(HIGHWAY_HWY_TESTS_TEST_UTIL_INL_H_) == defined(HWY_TARGET_TOGGLE)
#ifdef HIGHWAY_HWY_TESTS_TEST_UTIL_INL_H_
#undef HIGHWAY_HWY_TESTS_TEST_UTIL_INL_H_
#else
#define HIGHWAY_HWY_TESTS_TEST_UTIL_INL_H_
#endif
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
// Compare expected vector to vector.
// HWY_INLINE works around a Clang SVE compiler bug where all but the first
// 128 bits (the NEON register) of actual are zero.
template <class D, typename T = TFromD<D>, class V = Vec<D>>
HWY_INLINE void AssertVecEqual(D d, const T* expected, VecArg<V> actual,
const char* filename, const int line) {
const size_t N = Lanes(d);
auto actual_lanes = AllocateAligned<T>(N);
Store(actual, d, actual_lanes.get());
const auto info = hwy::detail::MakeTypeInfo<T>();
const char* target_name = hwy::TargetName(HWY_TARGET);
hwy::detail::AssertArrayEqual(info, expected, actual_lanes.get(), N,
target_name, filename, line);
}
// Compare expected lanes to vector.
// HWY_INLINE works around a Clang SVE compiler bug where all but the first
// 128 bits (the NEON register) of actual are zero.
template <class D, typename T = TFromD<D>, class V = Vec<D>>
HWY_INLINE void AssertVecEqual(D d, VecArg<V> expected, VecArg<V> actual,
const char* filename, int line) {
auto expected_lanes = AllocateAligned<T>(Lanes(d));
Store(expected, d, expected_lanes.get());
AssertVecEqual(d, expected_lanes.get(), actual, filename, line);
}
// Only checks the valid mask elements (those whose index < Lanes(d)).
template <class D>
HWY_NOINLINE void AssertMaskEqual(D d, VecArg<Mask<D>> a, VecArg<Mask<D>> b,
const char* filename, int line) {
// lvalues prevented MSAN failure in farm_sve.
const Vec<D> va = VecFromMask(d, a);
const Vec<D> vb = VecFromMask(d, b);
AssertVecEqual(d, va, vb, filename, line);
const char* target_name = hwy::TargetName(HWY_TARGET);
AssertEqual(CountTrue(d, a), CountTrue(d, b), target_name, filename, line);
AssertEqual(AllTrue(d, a), AllTrue(d, b), target_name, filename, line);
AssertEqual(AllFalse(d, a), AllFalse(d, b), target_name, filename, line);
const size_t N = Lanes(d);
#if HWY_TARGET == HWY_SCALAR
const Rebind<uint8_t, D> d8;
#else
const Repartition<uint8_t, D> d8;
#endif
const size_t N8 = Lanes(d8);
auto bits_a = AllocateAligned<uint8_t>(HWY_MAX(size_t{8}, N8));
auto bits_b = AllocateAligned<uint8_t>(size_t{HWY_MAX(8, N8)});
memset(bits_a.get(), 0, N8);
memset(bits_b.get(), 0, N8);
const size_t num_bytes_a = StoreMaskBits(d, a, bits_a.get());
const size_t num_bytes_b = StoreMaskBits(d, b, bits_b.get());
AssertEqual(num_bytes_a, num_bytes_b, target_name, filename, line);
size_t i = 0;
// First check whole bytes (if that many elements are still valid)
for (; i < N / 8; ++i) {
if (bits_a[i] != bits_b[i]) {
fprintf(stderr, "Mismatch in byte %d: %d != %d\n", static_cast<int>(i),
bits_a[i], bits_b[i]);
Print(d8, "expect", Load(d8, bits_a.get()), 0, N8);
Print(d8, "actual", Load(d8, bits_b.get()), 0, N8);
hwy::Abort(filename, line, "Masks not equal");
}
}
// Then the valid bit(s) in the last byte.
const size_t remainder = N % 8;
if (remainder != 0) {
const int mask = (1 << remainder) - 1;
const int valid_a = bits_a[i] & mask;
const int valid_b = bits_b[i] & mask;
if (valid_a != valid_b) {
fprintf(stderr, "Mismatch in last byte %d: %d != %d\n",
static_cast<int>(i), valid_a, valid_b);
Print(d8, "expect", Load(d8, bits_a.get()), 0, N8);
Print(d8, "actual", Load(d8, bits_b.get()), 0, N8);
hwy::Abort(filename, line, "Masks not equal");
}
}
}
// Only sets valid elements (those whose index < Lanes(d)). This helps catch
// tests that are not masking off the (undefined) upper mask elements.
//
// TODO(janwas): with HWY_NOINLINE GCC zeros the upper half of AVX2 masks.
template <class D>
HWY_INLINE Mask<D> MaskTrue(const D d) {
return FirstN(d, Lanes(d));
}
// Defined in rvv-inl.h for slightly better codegen.
#if HWY_TARGET != HWY_RVV
template <class D>
HWY_INLINE Mask<D> MaskFalse(const D d) {
// Signed comparisons are cheaper on x86.
const RebindToSigned<D> di;
const Vec<decltype(di)> zero = Zero(di);
return RebindMask(d, Lt(zero, zero));
}
#endif // HWY_TARGET != HWY_RVV
#ifndef HWY_ASSERT_EQ
#define HWY_ASSERT_EQ(expected, actual) \
hwy::AssertEqual(expected, actual, hwy::TargetName(HWY_TARGET), __FILE__, \
__LINE__)
#define HWY_ASSERT_ARRAY_EQ(expected, actual, count) \
hwy::AssertArrayEqual(expected, actual, count, hwy::TargetName(HWY_TARGET), \
__FILE__, __LINE__)
#define HWY_ASSERT_STRING_EQ(expected, actual) \
hwy::AssertStringEqual(expected, actual, hwy::TargetName(HWY_TARGET), \
__FILE__, __LINE__)
#define HWY_ASSERT_VEC_EQ(d, expected, actual) \
AssertVecEqual(d, expected, actual, __FILE__, __LINE__)
#define HWY_ASSERT_MASK_EQ(d, expected, actual) \
AssertMaskEqual(d, expected, actual, __FILE__, __LINE__)
#endif // HWY_ASSERT_EQ
namespace detail {
// Helpers for instantiating tests with combinations of lane types / counts.
// Calls Test for each CappedTag<T, N> where N is in [kMinLanes, kMul * kMinArg]
// and the resulting Lanes() is in [min_lanes, max_lanes]. The upper bound
// is required to ensure capped vectors remain extendable. Implemented by
// recursively halving kMul until it is zero.
template <typename T, size_t kMul, size_t kMinArg, class Test, int kPow2 = 0>
struct ForeachCappedR {
static void Do(size_t min_lanes, size_t max_lanes) {
const CappedTag<T, kMul * kMinArg, kPow2> d;
// If we already don't have enough lanes, stop.
const size_t lanes = Lanes(d);
if (lanes < min_lanes) return;
if (lanes <= max_lanes) {
Test()(T(), d);
}
ForeachCappedR<T, kMul / 2, kMinArg, Test, kPow2>::Do(min_lanes, max_lanes);
}
};
// Base case to stop the recursion.
template <typename T, size_t kMinArg, class Test, int kPow2>
struct ForeachCappedR<T, 0, kMinArg, Test, kPow2> {
static void Do(size_t, size_t) {}
};
#if HWY_HAVE_SCALABLE
template <typename T>
constexpr int MinPow2() {
// Highway follows RVV LMUL in that the smallest fraction is 1/8th (encoded
// as kPow2 == -3). The fraction also must not result in zero lanes for the
// smallest possible vector size, which is 128 bits even on RISC-V (with the
// application processor profile).
return HWY_MAX(-3, -static_cast<int>(CeilLog2(16 / sizeof(T))));
}
constexpr int MaxPow2() {
#if HWY_TARGET == HWY_RVV
// Only RVV allows multiple vector registers.
return 3; // LMUL=8
#else
// For all other platforms, we cannot exceed a full vector.
return 0;
#endif
}
// Iterates kPow2 up to and including kMaxPow2. Below we specialize for
// valid=false to stop the iteration. The ForeachPow2Trim enables shorter
// argument lists, but use ForeachPow2 when you want to specify the actual min.
template <typename T, int kPow2, int kMaxPow2, bool valid, class Test>
struct ForeachPow2 {
static void Do(size_t min_lanes) {
const ScalableTag<T, kPow2> d;
static_assert(MinPow2<T>() <= kPow2 && kPow2 <= MaxPow2(), "");
if (Lanes(d) >= min_lanes) {
Test()(T(), d);
} else {
fprintf(stderr, "%d lanes < %d: T=%d pow=%d\n",
static_cast<int>(Lanes(d)), static_cast<int>(min_lanes),
static_cast<int>(sizeof(T)), kPow2);
HWY_ASSERT(min_lanes != 1);
}
ForeachPow2<T, kPow2 + 1, kMaxPow2, (kPow2 + 1) <= kMaxPow2, Test>::Do(
min_lanes);
}
};
// Base case to stop the iteration.
template <typename T, int kPow2, int kMaxPow2, class Test>
struct ForeachPow2<T, kPow2, kMaxPow2, /*valid=*/false, Test> {
static void Do(size_t) {}
};
// Iterates kPow2 over [MinPow2<T>() + kAddMin, MaxPow2() - kSubMax].
// This is a wrapper that shortens argument lists, allowing users to skip the
// MinPow2 and MaxPow2. Nonzero kAddMin implies a minimum LMUL, and nonzero
// kSubMax reduces the maximum LMUL (e.g. for type promotions, where the result
// is larger, thus the input cannot already use the maximum LMUL).
template <typename T, int kAddMin, int kSubMax, class Test>
using ForeachPow2Trim =
ForeachPow2<T, MinPow2<T>() + kAddMin, MaxPow2() - kSubMax,
MinPow2<T>() + kAddMin <= MaxPow2() - kSubMax, Test>;
#else
// ForeachCappedR already handled all possible sizes.
#endif // HWY_HAVE_SCALABLE
} // namespace detail
// These 'adapters' call a test for all possible N or kPow2 subject to
// constraints such as "vectors must be extendable" or "vectors >= 128 bits".
// They may be called directly, or via For*Types. Note that for an adapter C,
// `C<Test>(T())` does not call the test - the correct invocation is
// `C<Test>()(T())`, or preferably `ForAllTypes(C<Test>())`. We check at runtime
// that operator() is called to prevent such bugs. Note that this is not
// thread-safe, but that is fine because C are typically local variables.
// Calls Test for all powers of two in [1, Lanes(d) * (RVV? 2 : 1) ]. For
// interleaved_test; RVV segments are limited to 8 registers, so we can only go
// up to LMUL=2.
template <class Test>
class ForMaxPow2 {
mutable bool called_ = false;
public:
~ForMaxPow2() {
if (!called_) {
HWY_ABORT("Test is incorrect, ensure operator() is called");
}
}
template <typename T>
void operator()(T /*unused*/) const {
called_ = true;
#if HWY_TARGET == HWY_SCALAR
detail::ForeachCappedR<T, 1, 1, Test>::Do(1, 1);
#else
detail::ForeachCappedR<T, HWY_LANES(T), 1, Test>::Do(
1, Lanes(ScalableTag<T>()));
#if HWY_TARGET == HWY_RVV
// To get LMUL=2 (kPow2=1), 2 is what we subtract from MaxPow2()=3.
detail::ForeachPow2Trim<T, 0, 2, Test>::Do(1);
#elif HWY_HAVE_SCALABLE
detail::ForeachPow2Trim<T, 0, 0, Test>::Do(1);
#endif
#endif // HWY_TARGET == HWY_SCALAR
}
};
// Calls Test for all powers of two in [1, Lanes(d) >> kPow2]. This is for
// ops that widen their input, e.g. Combine (not supported by HWY_SCALAR).
template <class Test, int kPow2 = 1>
class ForExtendableVectors {
mutable bool called_ = false;
public:
~ForExtendableVectors() {
if (!called_) {
HWY_ABORT("Test is incorrect, ensure operator() is called");
}
}
template <typename T>
void operator()(T /*unused*/) const {
called_ = true;
constexpr size_t kMaxCapped = HWY_LANES(T);
// Skip CappedTag that are already full vectors.
const size_t max_lanes = Lanes(ScalableTag<T>()) >> kPow2;
(void)kMaxCapped;
(void)max_lanes;
#if HWY_TARGET == HWY_SCALAR
// not supported
#else
constexpr size_t kMul = kMaxCapped >> kPow2;
constexpr size_t kMinArg = size_t{1} << kPow2;
detail::ForeachCappedR<T, kMul, kMinArg, Test, -kPow2>::Do(1, max_lanes);
#if HWY_HAVE_SCALABLE
detail::ForeachPow2Trim<T, 0, kPow2, Test>::Do(1);
#endif
#endif // HWY_SCALAR
}
};
// Calls Test for all power of two N in [1 << kPow2, Lanes(d)]. This is for ops
// that narrow their input, e.g. UpperHalf.
template <class Test, int kPow2 = 1>
class ForShrinkableVectors {
mutable bool called_ = false;
public:
~ForShrinkableVectors() {
if (!called_) {
HWY_ABORT("Test is incorrect, ensure operator() is called");
}
}
template <typename T>
void operator()(T /*unused*/) const {
called_ = true;
constexpr size_t kMinLanes = size_t{1} << kPow2;
constexpr size_t kMaxCapped = HWY_LANES(T);
// For shrinking, an upper limit is unnecessary.
constexpr size_t max_lanes = kMaxCapped;
(void)kMinLanes;
(void)max_lanes;
(void)max_lanes;
#if HWY_TARGET == HWY_SCALAR
// not supported
#else
detail::ForeachCappedR<T, (kMaxCapped >> kPow2), kMinLanes, Test>::Do(
kMinLanes, max_lanes);
#if HWY_HAVE_SCALABLE
detail::ForeachPow2Trim<T, kPow2, 0, Test>::Do(kMinLanes);
#endif
#endif // HWY_TARGET == HWY_SCALAR
}
};
// Calls Test for all supported power of two vectors of at least kMinBits.
// Examples: AES or 64x64 require 128 bits, casts may require 64 bits.
template <size_t kMinBits, class Test>
class ForGEVectors {
mutable bool called_ = false;
public:
~ForGEVectors() {
if (!called_) {
HWY_ABORT("Test is incorrect, ensure operator() is called");
}
}
template <typename T>
void operator()(T /*unused*/) const {
called_ = true;
constexpr size_t kMaxCapped = HWY_LANES(T);
constexpr size_t kMinLanes = kMinBits / 8 / sizeof(T);
// An upper limit is unnecessary.
constexpr size_t max_lanes = kMaxCapped;
(void)max_lanes;
#if HWY_TARGET == HWY_SCALAR
(void)kMinLanes; // not supported
#else
detail::ForeachCappedR<T, HWY_LANES(T) / kMinLanes, kMinLanes, Test>::Do(
kMinLanes, max_lanes);
#if HWY_HAVE_SCALABLE
// Can be 0 (handled below) if kMinBits > 128.
constexpr size_t kRatio = 128 / kMinBits;
constexpr int kMinPow2 =
kRatio == 0 ? 0 : -static_cast<int>(CeilLog2(kRatio));
constexpr bool kValid = kMinPow2 <= detail::MaxPow2();
detail::ForeachPow2<T, kMinPow2, detail::MaxPow2(), kValid, Test>::Do(
kMinLanes);
#endif
#endif // HWY_TARGET == HWY_SCALAR
}
};
template <class Test>
using ForGE128Vectors = ForGEVectors<128, Test>;
// Calls Test for all N that can be promoted (not the same as Extendable because
// HWY_SCALAR has one lane). Also used for ZipLower, but not ZipUpper.
template <class Test, int kPow2 = 1>
class ForPromoteVectors {
mutable bool called_ = false;
public:
~ForPromoteVectors() {
if (!called_) {
HWY_ABORT("Test is incorrect, ensure operator() is called");
}
}
template <typename T>
void operator()(T /*unused*/) const {
called_ = true;
constexpr size_t kFactor = size_t{1} << kPow2;
static_assert(kFactor >= 2 && kFactor * sizeof(T) <= sizeof(uint64_t), "");
constexpr size_t kMaxCapped = HWY_LANES(T);
// Skip CappedTag that are already full vectors.
const size_t max_lanes = Lanes(ScalableTag<T>()) >> kPow2;
(void)kMaxCapped;
(void)max_lanes;
#if HWY_TARGET == HWY_SCALAR
detail::ForeachCappedR<T, 1, 1, Test>::Do(1, 1);
#else
using DLargestFrom = CappedTag<T, (kMaxCapped >> kPow2) * kFactor, -kPow2>;
static_assert(HWY_MAX_LANES_D(DLargestFrom) <= (kMaxCapped >> kPow2),
"HWY_MAX_LANES_D(DLargestFrom) must be less than or equal to "
"(kMaxCapped >> kPow2)");
detail::ForeachCappedR<T, (kMaxCapped >> kPow2), kFactor, Test, -kPow2>::Do(
1, max_lanes);
#if HWY_HAVE_SCALABLE
detail::ForeachPow2Trim<T, 0, kPow2, Test>::Do(1);
#endif
#endif // HWY_SCALAR
}
};
// Calls Test for all N than can be demoted (not the same as Shrinkable because
// HWY_SCALAR has one lane).
template <class Test, int kPow2 = 1>
class ForDemoteVectors {
mutable bool called_ = false;
public:
~ForDemoteVectors() {
if (!called_) {
HWY_ABORT("Test is incorrect, ensure operator() is called");
}
}
template <typename T>
void operator()(T /*unused*/) const {
called_ = true;
constexpr size_t kMinLanes = size_t{1} << kPow2;
constexpr size_t kMaxCapped = HWY_LANES(T);
// For shrinking, an upper limit is unnecessary.
constexpr size_t max_lanes = kMaxCapped;
(void)kMinLanes;
(void)max_lanes;
(void)max_lanes;
#if HWY_TARGET == HWY_SCALAR
detail::ForeachCappedR<T, 1, 1, Test>::Do(1, 1);
#else
detail::ForeachCappedR<T, (kMaxCapped >> kPow2), kMinLanes, Test>::Do(
kMinLanes, max_lanes);
// TODO(janwas): call Extendable if kMinLanes check not required?
#if HWY_HAVE_SCALABLE
detail::ForeachPow2Trim<T, kPow2, 0, Test>::Do(kMinLanes);
#endif
#endif // HWY_TARGET == HWY_SCALAR
}
};
// For LowerHalf/Quarter.
template <class Test, int kPow2 = 1>
class ForHalfVectors {
mutable bool called_ = false;
public:
~ForHalfVectors() {
if (!called_) {
HWY_ABORT("Test is incorrect, ensure operator() is called");
}
}
template <typename T>
void operator()(T /*unused*/) const {
called_ = true;
#if HWY_TARGET == HWY_SCALAR
detail::ForeachCappedR<T, 1, 1, Test>::Do(1, 1);
#else
constexpr size_t kMinLanes = size_t{1} << kPow2;
// For shrinking, an upper limit is unnecessary.
constexpr size_t kMaxCapped = HWY_LANES(T);
detail::ForeachCappedR<T, (kMaxCapped >> kPow2), kMinLanes, Test>::Do(
kMinLanes, kMaxCapped);
// TODO(janwas): call Extendable if kMinLanes check not required?
#if HWY_HAVE_SCALABLE
detail::ForeachPow2Trim<T, kPow2, 0, Test>::Do(kMinLanes);
#endif
#endif // HWY_TARGET == HWY_SCALAR
}
};
// Calls Test for all power of two N in [1, Lanes(d)]. This is the default
// for ops that do not narrow nor widen their input, nor require 128 bits.
template <class Test>
class ForPartialVectors {
mutable bool called_ = false;
public:
~ForPartialVectors() {
if (!called_) {
HWY_ABORT("Test is incorrect, ensure operator() is called");
}
}
template <typename T>
void operator()(T t) const {
called_ = true;
#if HWY_TARGET == HWY_SCALAR
(void)t;
detail::ForeachCappedR<T, 1, 1, Test>::Do(1, 1);
#else
ForExtendableVectors<Test, 0>()(t);
#endif
}
};
// Type lists to shorten call sites:
template <class Func>
void ForSignedTypes(const Func& func) {
func(int8_t());
func(int16_t());
func(int32_t());
#if HWY_HAVE_INTEGER64
func(int64_t());
#endif
}
template <class Func>
void ForUnsignedTypes(const Func& func) {
func(uint8_t());
func(uint16_t());
func(uint32_t());
#if HWY_HAVE_INTEGER64
func(uint64_t());
#endif
}
template <class Func>
void ForIntegerTypes(const Func& func) {
ForSignedTypes(func);
ForUnsignedTypes(func);
}
template <class Func>
void ForFloatTypes(const Func& func) {
func(float());
#if HWY_HAVE_FLOAT64
func(double());
#endif
}
template <class Func>
void ForAllTypes(const Func& func) {
ForIntegerTypes(func);
ForFloatTypes(func);
}
template <class Func>
void ForUI8(const Func& func) {
func(uint8_t());
func(int8_t());
}
template <class Func>
void ForUI16(const Func& func) {
func(uint16_t());
func(int16_t());
}
template <class Func>
void ForUIF16(const Func& func) {
ForUI16(func);
#if HWY_HAVE_FLOAT16
func(float16_t());
#endif
}
template <class Func>
void ForUI32(const Func& func) {
func(uint32_t());
func(int32_t());
}
template <class Func>
void ForUIF32(const Func& func) {
ForUI32(func);
func(float());
}
template <class Func>
void ForUI64(const Func& func) {
#if HWY_HAVE_INTEGER64
func(uint64_t());
func(int64_t());
#endif
}
template <class Func>
void ForUIF64(const Func& func) {
ForUI64(func);
#if HWY_HAVE_FLOAT64
func(double());
#endif
}
template <class Func>
void ForUI3264(const Func& func) {
ForUI32(func);
ForUI64(func);
}
template <class Func>
void ForUIF3264(const Func& func) {
ForUIF32(func);
ForUIF64(func);
}
template <class Func>
void ForU163264(const Func& func) {
func(uint16_t());
func(uint32_t());
#if HWY_HAVE_INTEGER64
func(uint64_t());
#endif
}
template <class Func>
void ForUI163264(const Func& func) {
ForUI16(func);
ForUI3264(func);
}
template <class Func>
void ForUIF163264(const Func& func) {
ForUIF16(func);
ForUIF3264(func);
}
// For tests that involve loops, adjust the trip count so that emulated tests
// finish quickly (but always at least 2 iterations to ensure some diversity).
constexpr size_t AdjustedReps(size_t max_reps) {
#if HWY_ARCH_RVV
return HWY_MAX(max_reps / 32, 2);
#elif HWY_IS_DEBUG_BUILD
return HWY_MAX(max_reps / 8, 2);
#elif HWY_ARCH_ARM
return HWY_MAX(max_reps / 4, 2);
#else
return HWY_MAX(max_reps, 2);
#endif
}
// Same as above, but the loop trip count will be 1 << max_pow2.
constexpr size_t AdjustedLog2Reps(size_t max_pow2) {
// If "negative" (unsigned wraparound), use original.
#if HWY_ARCH_RVV
return HWY_MIN(max_pow2 - 4, max_pow2);
#elif HWY_IS_DEBUG_BUILD
return HWY_MIN(max_pow2 - 1, max_pow2);
#elif HWY_ARCH_ARM
return HWY_MIN(max_pow2 - 1, max_pow2);
#else
return max_pow2;
#endif
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace hwy
HWY_AFTER_NAMESPACE();
#endif // per-target include guard
|