summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/extras/metrics.cc
blob: f70ab0a61daa57df98aae1333603faba227d9fdb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/extras/metrics.h"

#include <math.h>
#include <stdlib.h>

#include <atomic>

#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/extras/metrics.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>

#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/rect.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/color_encoding_internal.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {

// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::GetLane;
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::Rebind;

double ComputeDistanceP(const ImageF& distmap, const ButteraugliParams& params,
                        double p) {
  const double onePerPixels = 1.0 / (distmap.ysize() * distmap.xsize());
  if (std::abs(p - 3.0) < 1E-6) {
    double sum1[3] = {0.0};

// Prefer double if possible, but otherwise use float rather than scalar.
#if HWY_CAP_FLOAT64
    using T = double;
    const Rebind<float, HWY_FULL(double)> df;
#else
    using T = float;
#endif
    const HWY_FULL(T) d;
    constexpr size_t N = MaxLanes(d);
    // Manually aligned storage to avoid asan crash on clang-7 due to
    // unaligned spill.
    HWY_ALIGN T sum_totals0[N] = {0};
    HWY_ALIGN T sum_totals1[N] = {0};
    HWY_ALIGN T sum_totals2[N] = {0};

    for (size_t y = 0; y < distmap.ysize(); ++y) {
      const float* JXL_RESTRICT row = distmap.ConstRow(y);

      auto sums0 = Zero(d);
      auto sums1 = Zero(d);
      auto sums2 = Zero(d);

      size_t x = 0;
      for (; x + Lanes(d) <= distmap.xsize(); x += Lanes(d)) {
#if HWY_CAP_FLOAT64
        const auto d1 = PromoteTo(d, Load(df, row + x));
#else
        const auto d1 = Load(d, row + x);
#endif
        const auto d2 = Mul(d1, Mul(d1, d1));
        sums0 = Add(sums0, d2);
        const auto d3 = Mul(d2, d2);
        sums1 = Add(sums1, d3);
        const auto d4 = Mul(d3, d3);
        sums2 = Add(sums2, d4);
      }

      Store(Add(sums0, Load(d, sum_totals0)), d, sum_totals0);
      Store(Add(sums1, Load(d, sum_totals1)), d, sum_totals1);
      Store(Add(sums2, Load(d, sum_totals2)), d, sum_totals2);

      for (; x < distmap.xsize(); ++x) {
        const double d1 = row[x];
        double d2 = d1 * d1 * d1;
        sum1[0] += d2;
        d2 *= d2;
        sum1[1] += d2;
        d2 *= d2;
        sum1[2] += d2;
      }
    }
    double v = 0;
    v += pow(
        onePerPixels * (sum1[0] + GetLane(SumOfLanes(d, Load(d, sum_totals0)))),
        1.0 / (p * 1.0));
    v += pow(
        onePerPixels * (sum1[1] + GetLane(SumOfLanes(d, Load(d, sum_totals1)))),
        1.0 / (p * 2.0));
    v += pow(
        onePerPixels * (sum1[2] + GetLane(SumOfLanes(d, Load(d, sum_totals2)))),
        1.0 / (p * 4.0));
    v /= 3.0;
    return v;
  } else {
    static std::atomic<int> once{0};
    if (once.fetch_add(1, std::memory_order_relaxed) == 0) {
      JXL_WARNING("WARNING: using slow ComputeDistanceP");
    }
    double sum1[3] = {0.0};
    for (size_t y = 0; y < distmap.ysize(); ++y) {
      const float* JXL_RESTRICT row = distmap.ConstRow(y);
      for (size_t x = 0; x < distmap.xsize(); ++x) {
        double d2 = std::pow(row[x], p);
        sum1[0] += d2;
        d2 *= d2;
        sum1[1] += d2;
        d2 *= d2;
        sum1[2] += d2;
      }
    }
    double v = 0;
    for (int i = 0; i < 3; ++i) {
      v += pow(onePerPixels * (sum1[i]), 1.0 / (p * (1 << i)));
    }
    v /= 3.0;
    return v;
  }
}

void ComputeSumOfSquares(const ImageBundle& ib1, const ImageBundle& ib2,
                         const JxlCmsInterface& cms, double sum_of_squares[3]) {
  // Convert to sRGB - closer to perception than linear.
  const Image3F* srgb1 = &ib1.color();
  Image3F copy1;
  if (!ib1.IsSRGB()) {
    JXL_CHECK(
        ib1.CopyTo(Rect(ib1), ColorEncoding::SRGB(ib1.IsGray()), cms, &copy1));
    srgb1 = &copy1;
  }
  const Image3F* srgb2 = &ib2.color();
  Image3F copy2;
  if (!ib2.IsSRGB()) {
    JXL_CHECK(
        ib2.CopyTo(Rect(ib2), ColorEncoding::SRGB(ib2.IsGray()), cms, &copy2));
    srgb2 = &copy2;
  }

  JXL_CHECK(SameSize(*srgb1, *srgb2));

  // TODO(veluca): SIMD.
  float yuvmatrix[3][3] = {{0.299, 0.587, 0.114},
                           {-0.14713, -0.28886, 0.436},
                           {0.615, -0.51499, -0.10001}};
  for (size_t y = 0; y < srgb1->ysize(); ++y) {
    const float* JXL_RESTRICT row1[3];
    const float* JXL_RESTRICT row2[3];
    for (size_t j = 0; j < 3; j++) {
      row1[j] = srgb1->ConstPlaneRow(j, y);
      row2[j] = srgb2->ConstPlaneRow(j, y);
    }
    for (size_t x = 0; x < srgb1->xsize(); ++x) {
      float cdiff[3] = {};
      // YUV conversion is linear, so we can run it on the difference.
      for (size_t j = 0; j < 3; j++) {
        cdiff[j] = row1[j][x] - row2[j][x];
      }
      float yuvdiff[3] = {};
      for (size_t j = 0; j < 3; j++) {
        for (size_t k = 0; k < 3; k++) {
          yuvdiff[j] += yuvmatrix[j][k] * cdiff[k];
        }
      }
      for (size_t j = 0; j < 3; j++) {
        sum_of_squares[j] += yuvdiff[j] * yuvdiff[j];
      }
    }
  }
}

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace jxl
HWY_AFTER_NAMESPACE();

#if HWY_ONCE
namespace jxl {
HWY_EXPORT(ComputeDistanceP);
double ComputeDistanceP(const ImageF& distmap, const ButteraugliParams& params,
                        double p) {
  return HWY_DYNAMIC_DISPATCH(ComputeDistanceP)(distmap, params, p);
}

HWY_EXPORT(ComputeSumOfSquares);

double ComputeDistance2(const ImageBundle& ib1, const ImageBundle& ib2,
                        const JxlCmsInterface& cms) {
  double sum_of_squares[3] = {};
  HWY_DYNAMIC_DISPATCH(ComputeSumOfSquares)(ib1, ib2, cms, sum_of_squares);
  // Weighted PSNR as in JPEG-XL: chroma counts 1/8.
  const float weights[3] = {6.0f / 8, 1.0f / 8, 1.0f / 8};
  // Avoid squaring the weight - 1/64 is too extreme.
  double norm = 0;
  for (size_t i = 0; i < 3; i++) {
    norm += std::sqrt(sum_of_squares[i]) * weights[i];
  }
  // This function returns distance *squared*.
  return norm * norm;
}

double ComputePSNR(const ImageBundle& ib1, const ImageBundle& ib2,
                   const JxlCmsInterface& cms) {
  if (!SameSize(ib1, ib2)) return 0.0;
  double sum_of_squares[3] = {};
  HWY_DYNAMIC_DISPATCH(ComputeSumOfSquares)(ib1, ib2, cms, sum_of_squares);
  constexpr double kChannelWeights[3] = {6.0 / 8, 1.0 / 8, 1.0 / 8};
  double avg_psnr = 0;
  const size_t input_pixels = ib1.xsize() * ib1.ysize();
  for (int i = 0; i < 3; ++i) {
    const double rmse = std::sqrt(sum_of_squares[i] / input_pixels);
    const double psnr =
        sum_of_squares[i] == 0 ? 99.99 : (20 * std::log10(1 / rmse));
    avg_psnr += kChannelWeights[i] * psnr;
  }
  return avg_psnr;
}

}  // namespace jxl
#endif