1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jpegli/adaptive_quantization.h"
#include <jxl/types.h>
#include <stddef.h>
#include <stdlib.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <string>
#include <vector>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jpegli/adaptive_quantization.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jpegli/encode_internal.h"
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/status.h"
HWY_BEFORE_NAMESPACE();
namespace jpegli {
namespace HWY_NAMESPACE {
namespace {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::AbsDiff;
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::And;
using hwy::HWY_NAMESPACE::Div;
using hwy::HWY_NAMESPACE::Floor;
using hwy::HWY_NAMESPACE::GetLane;
using hwy::HWY_NAMESPACE::Max;
using hwy::HWY_NAMESPACE::Min;
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::MulAdd;
using hwy::HWY_NAMESPACE::NegMulAdd;
using hwy::HWY_NAMESPACE::Rebind;
using hwy::HWY_NAMESPACE::ShiftLeft;
using hwy::HWY_NAMESPACE::ShiftRight;
using hwy::HWY_NAMESPACE::Sqrt;
using hwy::HWY_NAMESPACE::Sub;
using hwy::HWY_NAMESPACE::ZeroIfNegative;
constexpr float kInputScaling = 1.0f / 255.0f;
// Primary template: default to actual division.
template <typename T, class V>
struct FastDivision {
HWY_INLINE V operator()(const V n, const V d) const { return n / d; }
};
// Partial specialization for float vectors.
template <class V>
struct FastDivision<float, V> {
// One Newton-Raphson iteration.
static HWY_INLINE V ReciprocalNR(const V x) {
const auto rcp = ApproximateReciprocal(x);
const auto sum = Add(rcp, rcp);
const auto x_rcp = Mul(x, rcp);
return NegMulAdd(x_rcp, rcp, sum);
}
V operator()(const V n, const V d) const {
#if JXL_TRUE // Faster on SKX
return Div(n, d);
#else
return n * ReciprocalNR(d);
#endif
}
};
// Approximates smooth functions via rational polynomials (i.e. dividing two
// polynomials). Evaluates polynomials via Horner's scheme, which is faster than
// Clenshaw recurrence for Chebyshev polynomials. LoadDup128 allows us to
// specify constants (replicated 4x) independently of the lane count.
template <size_t NP, size_t NQ, class D, class V, typename T>
HWY_INLINE HWY_MAYBE_UNUSED V EvalRationalPolynomial(const D d, const V x,
const T (&p)[NP],
const T (&q)[NQ]) {
constexpr size_t kDegP = NP / 4 - 1;
constexpr size_t kDegQ = NQ / 4 - 1;
auto yp = LoadDup128(d, &p[kDegP * 4]);
auto yq = LoadDup128(d, &q[kDegQ * 4]);
// We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
// compiler warning that the index is out of bounds since we are already
// checking that it is not out of bounds with (kDegP >= n) and the access
// will be optimized away. Similarly with q and kDegQ.
HWY_FENCE;
if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
HWY_FENCE;
if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
HWY_FENCE;
if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
HWY_FENCE;
if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
HWY_FENCE;
if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
HWY_FENCE;
if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
HWY_FENCE;
if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
return FastDivision<T, V>()(yp, yq);
}
// Computes base-2 logarithm like std::log2. Undefined if negative / NaN.
// L1 error ~3.9E-6
template <class DF, class V>
V FastLog2f(const DF df, V x) {
// 2,2 rational polynomial approximation of std::log1p(x) / std::log(2).
HWY_ALIGN const float p[4 * (2 + 1)] = {HWY_REP4(-1.8503833400518310E-06f),
HWY_REP4(1.4287160470083755E+00f),
HWY_REP4(7.4245873327820566E-01f)};
HWY_ALIGN const float q[4 * (2 + 1)] = {HWY_REP4(9.9032814277590719E-01f),
HWY_REP4(1.0096718572241148E+00f),
HWY_REP4(1.7409343003366853E-01f)};
const Rebind<int32_t, DF> di;
const auto x_bits = BitCast(di, x);
// Range reduction to [-1/3, 1/3] - 3 integer, 2 float ops
const auto exp_bits = Sub(x_bits, Set(di, 0x3f2aaaab)); // = 2/3
// Shifted exponent = log2; also used to clear mantissa.
const auto exp_shifted = ShiftRight<23>(exp_bits);
const auto mantissa = BitCast(df, Sub(x_bits, ShiftLeft<23>(exp_shifted)));
const auto exp_val = ConvertTo(df, exp_shifted);
return Add(EvalRationalPolynomial(df, Sub(mantissa, Set(df, 1.0f)), p, q),
exp_val);
}
// max relative error ~3e-7
template <class DF, class V>
V FastPow2f(const DF df, V x) {
const Rebind<int32_t, DF> di;
auto floorx = Floor(x);
auto exp =
BitCast(df, ShiftLeft<23>(Add(ConvertTo(di, floorx), Set(di, 127))));
auto frac = Sub(x, floorx);
auto num = Add(frac, Set(df, 1.01749063e+01));
num = MulAdd(num, frac, Set(df, 4.88687798e+01));
num = MulAdd(num, frac, Set(df, 9.85506591e+01));
num = Mul(num, exp);
auto den = MulAdd(frac, Set(df, 2.10242958e-01), Set(df, -2.22328856e-02));
den = MulAdd(den, frac, Set(df, -1.94414990e+01));
den = MulAdd(den, frac, Set(df, 9.85506633e+01));
return Div(num, den);
}
inline float FastPow2f(float f) {
HWY_CAPPED(float, 1) D;
return GetLane(FastPow2f(D, Set(D, f)));
}
// The following functions modulate an exponent (out_val) and return the updated
// value. Their descriptor is limited to 8 lanes for 8x8 blocks.
template <class D, class V>
V ComputeMask(const D d, const V out_val) {
const auto kBase = Set(d, -0.74174993f);
const auto kMul4 = Set(d, 3.2353257320940401f);
const auto kMul2 = Set(d, 12.906028311180409f);
const auto kOffset2 = Set(d, 305.04035728311436f);
const auto kMul3 = Set(d, 5.0220313103171232f);
const auto kOffset3 = Set(d, 2.1925739705298404f);
const auto kOffset4 = Mul(Set(d, 0.25f), kOffset3);
const auto kMul0 = Set(d, 0.74760422233706747f);
const auto k1 = Set(d, 1.0f);
// Avoid division by zero.
const auto v1 = Max(Mul(out_val, kMul0), Set(d, 1e-3f));
const auto v2 = Div(k1, Add(v1, kOffset2));
const auto v3 = Div(k1, MulAdd(v1, v1, kOffset3));
const auto v4 = Div(k1, MulAdd(v1, v1, kOffset4));
// TODO(jyrki):
// A log or two here could make sense. In butteraugli we have effectively
// log(log(x + C)) for this kind of use, as a single log is used in
// saturating visual masking and here the modulation values are exponential,
// another log would counter that.
return Add(kBase, MulAdd(kMul4, v4, MulAdd(kMul2, v2, Mul(kMul3, v3))));
}
// mul and mul2 represent a scaling difference between jxl and butteraugli.
const float kSGmul = 226.0480446705883f;
const float kSGmul2 = 1.0f / 73.377132366608819f;
const float kLog2 = 0.693147181f;
// Includes correction factor for std::log -> log2.
const float kSGRetMul = kSGmul2 * 18.6580932135f * kLog2;
const float kSGVOffset = 7.14672470003f;
template <bool invert, typename D, typename V>
V RatioOfDerivativesOfCubicRootToSimpleGamma(const D d, V v) {
// The opsin space in jxl is the cubic root of photons, i.e., v * v * v
// is related to the number of photons.
//
// SimpleGamma(v * v * v) is the psychovisual space in butteraugli.
// This ratio allows quantization to move from jxl's opsin space to
// butteraugli's log-gamma space.
static const float kEpsilon = 1e-2;
static const float kNumOffset = kEpsilon / kInputScaling / kInputScaling;
static const float kNumMul = kSGRetMul * 3 * kSGmul;
static const float kVOffset = (kSGVOffset * kLog2 + kEpsilon) / kInputScaling;
static const float kDenMul = kLog2 * kSGmul * kInputScaling * kInputScaling;
v = ZeroIfNegative(v);
const auto num_mul = Set(d, kNumMul);
const auto num_offset = Set(d, kNumOffset);
const auto den_offset = Set(d, kVOffset);
const auto den_mul = Set(d, kDenMul);
const auto v2 = Mul(v, v);
const auto num = MulAdd(num_mul, v2, num_offset);
const auto den = MulAdd(Mul(den_mul, v), v2, den_offset);
return invert ? Div(num, den) : Div(den, num);
}
template <bool invert = false>
float RatioOfDerivativesOfCubicRootToSimpleGamma(float v) {
using DScalar = HWY_CAPPED(float, 1);
auto vscalar = Load(DScalar(), &v);
return GetLane(
RatioOfDerivativesOfCubicRootToSimpleGamma<invert>(DScalar(), vscalar));
}
// TODO(veluca): this function computes an approximation of the derivative of
// SimpleGamma with (f(x+eps)-f(x))/eps. Consider two-sided approximation or
// exact derivatives. For reference, SimpleGamma was:
/*
template <typename D, typename V>
V SimpleGamma(const D d, V v) {
// A simple HDR compatible gamma function.
const auto mul = Set(d, kSGmul);
const auto kRetMul = Set(d, kSGRetMul);
const auto kRetAdd = Set(d, kSGmul2 * -20.2789020414f);
const auto kVOffset = Set(d, kSGVOffset);
v *= mul;
// This should happen rarely, but may lead to a NaN, which is rather
// undesirable. Since negative photons don't exist we solve the NaNs by
// clamping here.
// TODO(veluca): with FastLog2f, this no longer leads to NaNs.
v = ZeroIfNegative(v);
return kRetMul * FastLog2f(d, v + kVOffset) + kRetAdd;
}
*/
template <class D, class V>
V GammaModulation(const D d, const size_t x, const size_t y,
const RowBuffer<float>& input, const V out_val) {
static const float kBias = 0.16f / kInputScaling;
static const float kScale = kInputScaling / 64.0f;
auto overall_ratio = Zero(d);
const auto bias = Set(d, kBias);
const auto scale = Set(d, kScale);
const float* const JXL_RESTRICT block_start = input.Row(y) + x;
for (size_t dy = 0; dy < 8; ++dy) {
const float* const JXL_RESTRICT row_in = block_start + dy * input.stride();
for (size_t dx = 0; dx < 8; dx += Lanes(d)) {
const auto iny = Add(Load(d, row_in + dx), bias);
const auto ratio_g =
RatioOfDerivativesOfCubicRootToSimpleGamma</*invert=*/true>(d, iny);
overall_ratio = Add(overall_ratio, ratio_g);
}
}
overall_ratio = Mul(SumOfLanes(d, overall_ratio), scale);
// ideally -1.0, but likely optimal correction adds some entropy, so slightly
// less than that.
// ln(2) constant folded in because we want std::log but have FastLog2f.
const auto kGam = Set(d, -0.15526878023684174f * 0.693147180559945f);
return MulAdd(kGam, FastLog2f(d, overall_ratio), out_val);
}
// Change precision in 8x8 blocks that have high frequency content.
template <class D, class V>
V HfModulation(const D d, const size_t x, const size_t y,
const RowBuffer<float>& input, const V out_val) {
// Zero out the invalid differences for the rightmost value per row.
const Rebind<uint32_t, D> du;
HWY_ALIGN constexpr uint32_t kMaskRight[8] = {~0u, ~0u, ~0u, ~0u,
~0u, ~0u, ~0u, 0};
auto sum = Zero(d); // sum of absolute differences with right and below
static const float kSumCoeff = -2.0052193233688884f * kInputScaling / 112.0;
auto sumcoeff = Set(d, kSumCoeff);
const float* const JXL_RESTRICT block_start = input.Row(y) + x;
for (size_t dy = 0; dy < 8; ++dy) {
const float* JXL_RESTRICT row_in = block_start + dy * input.stride();
const float* JXL_RESTRICT row_in_next =
dy == 7 ? row_in : row_in + input.stride();
for (size_t dx = 0; dx < 8; dx += Lanes(d)) {
const auto p = Load(d, row_in + dx);
const auto pr = LoadU(d, row_in + dx + 1);
const auto mask = BitCast(d, Load(du, kMaskRight + dx));
sum = Add(sum, And(mask, AbsDiff(p, pr)));
const auto pd = Load(d, row_in_next + dx);
sum = Add(sum, AbsDiff(p, pd));
}
}
sum = SumOfLanes(d, sum);
return MulAdd(sum, sumcoeff, out_val);
}
void PerBlockModulations(const float y_quant_01, const RowBuffer<float>& input,
const size_t yb0, const size_t yblen,
RowBuffer<float>* aq_map) {
static const float kAcQuant = 0.841f;
float base_level = 0.48f * kAcQuant;
float kDampenRampStart = 9.0f;
float kDampenRampEnd = 65.0f;
float dampen = 1.0f;
if (y_quant_01 >= kDampenRampStart) {
dampen = 1.0f - ((y_quant_01 - kDampenRampStart) /
(kDampenRampEnd - kDampenRampStart));
if (dampen < 0) {
dampen = 0;
}
}
const float mul = kAcQuant * dampen;
const float add = (1.0f - dampen) * base_level;
for (size_t iy = 0; iy < yblen; iy++) {
const size_t yb = yb0 + iy;
const size_t y = yb * 8;
float* const JXL_RESTRICT row_out = aq_map->Row(yb);
const HWY_CAPPED(float, 8) df;
for (size_t ix = 0; ix < aq_map->xsize(); ix++) {
size_t x = ix * 8;
auto out_val = Set(df, row_out[ix]);
out_val = ComputeMask(df, out_val);
out_val = HfModulation(df, x, y, input, out_val);
out_val = GammaModulation(df, x, y, input, out_val);
// We want multiplicative quantization field, so everything
// until this point has been modulating the exponent.
row_out[ix] = FastPow2f(GetLane(out_val) * 1.442695041f) * mul + add;
}
}
}
template <typename D, typename V>
V MaskingSqrt(const D d, V v) {
static const float kLogOffset = 28;
static const float kMul = 211.50759899638012f;
const auto mul_v = Set(d, kMul * 1e8);
const auto offset_v = Set(d, kLogOffset);
return Mul(Set(d, 0.25f), Sqrt(MulAdd(v, Sqrt(mul_v), offset_v)));
}
template <typename V>
void Sort4(V& min0, V& min1, V& min2, V& min3) {
const auto tmp0 = Min(min0, min1);
const auto tmp1 = Max(min0, min1);
const auto tmp2 = Min(min2, min3);
const auto tmp3 = Max(min2, min3);
const auto tmp4 = Max(tmp0, tmp2);
const auto tmp5 = Min(tmp1, tmp3);
min0 = Min(tmp0, tmp2);
min1 = Min(tmp4, tmp5);
min2 = Max(tmp4, tmp5);
min3 = Max(tmp1, tmp3);
}
template <typename V>
void UpdateMin4(const V v, V& min0, V& min1, V& min2, V& min3) {
const auto tmp0 = Max(min0, v);
const auto tmp1 = Max(min1, tmp0);
const auto tmp2 = Max(min2, tmp1);
min0 = Min(min0, v);
min1 = Min(min1, tmp0);
min2 = Min(min2, tmp1);
min3 = Min(min3, tmp2);
}
// Computes a linear combination of the 4 lowest values of the 3x3 neighborhood
// of each pixel. Output is downsampled 2x.
void FuzzyErosion(const RowBuffer<float>& pre_erosion, const size_t yb0,
const size_t yblen, RowBuffer<float>* tmp,
RowBuffer<float>* aq_map) {
int xsize_blocks = aq_map->xsize();
int xsize = pre_erosion.xsize();
HWY_FULL(float) d;
const auto mul0 = Set(d, 0.125f);
const auto mul1 = Set(d, 0.075f);
const auto mul2 = Set(d, 0.06f);
const auto mul3 = Set(d, 0.05f);
for (size_t iy = 0; iy < 2 * yblen; ++iy) {
size_t y = 2 * yb0 + iy;
const float* JXL_RESTRICT rowt = pre_erosion.Row(y - 1);
const float* JXL_RESTRICT rowm = pre_erosion.Row(y);
const float* JXL_RESTRICT rowb = pre_erosion.Row(y + 1);
float* row_out = tmp->Row(y);
for (int x = 0; x < xsize; x += Lanes(d)) {
int xm1 = x - 1;
int xp1 = x + 1;
auto min0 = LoadU(d, rowm + x);
auto min1 = LoadU(d, rowm + xm1);
auto min2 = LoadU(d, rowm + xp1);
auto min3 = LoadU(d, rowt + xm1);
Sort4(min0, min1, min2, min3);
UpdateMin4(LoadU(d, rowt + x), min0, min1, min2, min3);
UpdateMin4(LoadU(d, rowt + xp1), min0, min1, min2, min3);
UpdateMin4(LoadU(d, rowb + xm1), min0, min1, min2, min3);
UpdateMin4(LoadU(d, rowb + x), min0, min1, min2, min3);
UpdateMin4(LoadU(d, rowb + xp1), min0, min1, min2, min3);
const auto v = Add(Add(Mul(mul0, min0), Mul(mul1, min1)),
Add(Mul(mul2, min2), Mul(mul3, min3)));
Store(v, d, row_out + x);
}
if (iy % 2 == 1) {
const float* JXL_RESTRICT row_out0 = tmp->Row(y - 1);
float* JXL_RESTRICT aq_out = aq_map->Row(yb0 + iy / 2);
for (int bx = 0, x = 0; bx < xsize_blocks; ++bx, x += 2) {
aq_out[bx] =
(row_out[x] + row_out[x + 1] + row_out0[x] + row_out0[x + 1]);
}
}
}
}
void ComputePreErosion(const RowBuffer<float>& input, const size_t xsize,
const size_t y0, const size_t ylen, int border,
float* diff_buffer, RowBuffer<float>* pre_erosion) {
const size_t xsize_out = xsize / 4;
const size_t y0_out = y0 / 4;
// The XYB gamma is 3.0 to be able to decode faster with two muls.
// Butteraugli's gamma is matching the gamma of human eye, around 2.6.
// We approximate the gamma difference by adding one cubic root into
// the adaptive quantization. This gives us a total gamma of 2.6666
// for quantization uses.
static const float match_gamma_offset = 0.019 / kInputScaling;
const HWY_CAPPED(float, 8) df;
static const float limit = 0.2f;
// Computes image (padded to multiple of 8x8) of local pixel differences.
// Subsample both directions by 4.
for (size_t iy = 0; iy < ylen; ++iy) {
size_t y = y0 + iy;
const float* row_in = input.Row(y);
const float* row_in1 = input.Row(y + 1);
const float* row_in2 = input.Row(y - 1);
float* JXL_RESTRICT row_out = diff_buffer;
const auto match_gamma_offset_v = Set(df, match_gamma_offset);
const auto quarter = Set(df, 0.25f);
for (size_t x = 0; x < xsize; x += Lanes(df)) {
const auto in = LoadU(df, row_in + x);
const auto in_r = LoadU(df, row_in + x + 1);
const auto in_l = LoadU(df, row_in + x - 1);
const auto in_t = LoadU(df, row_in2 + x);
const auto in_b = LoadU(df, row_in1 + x);
const auto base = Mul(quarter, Add(Add(in_r, in_l), Add(in_t, in_b)));
const auto gammacv =
RatioOfDerivativesOfCubicRootToSimpleGamma</*invert=*/false>(
df, Add(in, match_gamma_offset_v));
auto diff = Mul(gammacv, Sub(in, base));
diff = Mul(diff, diff);
diff = Min(diff, Set(df, limit));
diff = MaskingSqrt(df, diff);
if ((iy & 3) != 0) {
diff = Add(diff, LoadU(df, row_out + x));
}
StoreU(diff, df, row_out + x);
}
if (iy % 4 == 3) {
size_t y_out = y0_out + iy / 4;
float* row_dout = pre_erosion->Row(y_out);
for (size_t x = 0; x < xsize_out; x++) {
row_dout[x] = (row_out[x * 4] + row_out[x * 4 + 1] +
row_out[x * 4 + 2] + row_out[x * 4 + 3]) *
0.25f;
}
pre_erosion->PadRow(y_out, xsize_out, border);
}
}
}
} // namespace
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jpegli
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jpegli {
HWY_EXPORT(ComputePreErosion);
HWY_EXPORT(FuzzyErosion);
HWY_EXPORT(PerBlockModulations);
namespace {
constexpr int kPreErosionBorder = 1;
} // namespace
void ComputeAdaptiveQuantField(j_compress_ptr cinfo) {
jpeg_comp_master* m = cinfo->master;
if (!m->use_adaptive_quantization) {
return;
}
int y_channel = cinfo->jpeg_color_space == JCS_RGB ? 1 : 0;
jpeg_component_info* y_comp = &cinfo->comp_info[y_channel];
int y_quant_01 = cinfo->quant_tbl_ptrs[y_comp->quant_tbl_no]->quantval[1];
if (m->next_iMCU_row == 0) {
m->input_buffer[y_channel].CopyRow(-1, 0, 1);
}
if (m->next_iMCU_row + 1 == cinfo->total_iMCU_rows) {
size_t last_row = m->ysize_blocks * DCTSIZE - 1;
m->input_buffer[y_channel].CopyRow(last_row + 1, last_row, 1);
}
const RowBuffer<float>& input = m->input_buffer[y_channel];
const size_t xsize_blocks = y_comp->width_in_blocks;
const size_t xsize = xsize_blocks * DCTSIZE;
const size_t yb0 = m->next_iMCU_row * cinfo->max_v_samp_factor;
const size_t yblen = cinfo->max_v_samp_factor;
size_t y0 = yb0 * DCTSIZE;
size_t ylen = cinfo->max_v_samp_factor * DCTSIZE;
if (y0 == 0) {
ylen += 4;
} else {
y0 += 4;
}
if (m->next_iMCU_row + 1 == cinfo->total_iMCU_rows) {
ylen -= 4;
}
HWY_DYNAMIC_DISPATCH(ComputePreErosion)
(input, xsize, y0, ylen, kPreErosionBorder, m->diff_buffer, &m->pre_erosion);
if (y0 == 0) {
m->pre_erosion.CopyRow(-1, 0, kPreErosionBorder);
}
if (m->next_iMCU_row + 1 == cinfo->total_iMCU_rows) {
size_t last_row = m->ysize_blocks * 2 - 1;
m->pre_erosion.CopyRow(last_row + 1, last_row, kPreErosionBorder);
}
HWY_DYNAMIC_DISPATCH(FuzzyErosion)
(m->pre_erosion, yb0, yblen, &m->fuzzy_erosion_tmp, &m->quant_field);
HWY_DYNAMIC_DISPATCH(PerBlockModulations)
(y_quant_01, input, yb0, yblen, &m->quant_field);
for (int y = 0; y < cinfo->max_v_samp_factor; ++y) {
float* row = m->quant_field.Row(yb0 + y);
for (size_t x = 0; x < xsize_blocks; ++x) {
row[x] = std::max(0.0f, (0.6f / row[x]) - 1.0f);
}
}
}
} // namespace jpegli
#endif // HWY_ONCE
|