1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jpegli/decode_scan.h"
#include <string.h>
#include <hwy/base.h>
#include "lib/jpegli/decode_internal.h"
#include "lib/jpegli/error.h"
#include "lib/jxl/base/status.h"
namespace jpegli {
namespace {
// Max 14 block per MCU (when 1 channel is subsampled)
// Max 64 nonzero coefficients per block
// Max 16 symbol bits plus 11 extra bits per nonzero symbol
// Max 2 bytes per 8 bits (worst case is all bytes are escaped 0xff)
constexpr int kMaxMCUByteSize = 6048;
// Helper structure to read bits from the entropy coded data segment.
struct BitReaderState {
BitReaderState(const uint8_t* data, const size_t len, size_t pos)
: data_(data), len_(len), start_pos_(pos) {
Reset(pos);
}
void Reset(size_t pos) {
pos_ = pos;
val_ = 0;
bits_left_ = 0;
next_marker_pos_ = len_;
FillBitWindow();
}
// Returns the next byte and skips the 0xff/0x00 escape sequences.
uint8_t GetNextByte() {
if (pos_ >= next_marker_pos_) {
++pos_;
return 0;
}
uint8_t c = data_[pos_++];
if (c == 0xff) {
uint8_t escape = pos_ < len_ ? data_[pos_] : 0;
if (escape == 0) {
++pos_;
} else {
// 0xff was followed by a non-zero byte, which means that we found the
// start of the next marker segment.
next_marker_pos_ = pos_ - 1;
}
}
return c;
}
void FillBitWindow() {
if (bits_left_ <= 16) {
while (bits_left_ <= 56) {
val_ <<= 8;
val_ |= static_cast<uint64_t>(GetNextByte());
bits_left_ += 8;
}
}
}
int ReadBits(int nbits) {
FillBitWindow();
uint64_t val = (val_ >> (bits_left_ - nbits)) & ((1ULL << nbits) - 1);
bits_left_ -= nbits;
return val;
}
// Sets *pos to the next stream position, and *bit_pos to the bit position
// within the next byte where parsing should continue.
// Returns false if the stream ended too early.
bool FinishStream(size_t* pos, size_t* bit_pos) {
*bit_pos = (8 - (bits_left_ & 7)) & 7;
// Give back some bytes that we did not use.
int unused_bytes_left = DivCeil(bits_left_, 8);
while (unused_bytes_left-- > 0) {
--pos_;
// If we give back a 0 byte, we need to check if it was a 0xff/0x00 escape
// sequence, and if yes, we need to give back one more byte.
if (((pos_ == len_ && pos_ == next_marker_pos_) ||
(pos_ > 0 && pos_ < next_marker_pos_ && data_[pos_] == 0)) &&
(data_[pos_ - 1] == 0xff)) {
--pos_;
}
}
if (pos_ >= next_marker_pos_) {
*pos = next_marker_pos_;
if (pos_ > next_marker_pos_ || *bit_pos > 0) {
// Data ran out before the scan was complete.
return false;
}
}
*pos = pos_;
return true;
}
const uint8_t* data_;
const size_t len_;
size_t pos_;
uint64_t val_;
int bits_left_;
size_t next_marker_pos_;
size_t start_pos_;
};
// Returns the next Huffman-coded symbol.
int ReadSymbol(const HuffmanTableEntry* table, BitReaderState* br) {
int nbits;
br->FillBitWindow();
int val = (br->val_ >> (br->bits_left_ - 8)) & 0xff;
table += val;
nbits = table->bits - 8;
if (nbits > 0) {
br->bits_left_ -= 8;
table += table->value;
val = (br->val_ >> (br->bits_left_ - nbits)) & ((1 << nbits) - 1);
table += val;
}
br->bits_left_ -= table->bits;
return table->value;
}
/**
* Returns the DC diff or AC value for extra bits value x and prefix code s.
*
* CCITT Rec. T.81 (1992 E)
* Table F.1 – Difference magnitude categories for DC coding
* SSSS | DIFF values
* ------+--------------------------
* 0 | 0
* 1 | –1, 1
* 2 | –3, –2, 2, 3
* 3 | –7..–4, 4..7
* ......|..........................
* 11 | –2047..–1024, 1024..2047
*
* CCITT Rec. T.81 (1992 E)
* Table F.2 – Categories assigned to coefficient values
* [ Same as Table F.1, but does not include SSSS equal to 0 and 11]
*
*
* CCITT Rec. T.81 (1992 E)
* F.1.2.1.1 Structure of DC code table
* For each category,... additional bits... appended... to uniquely identify
* which difference... occurred... When DIFF is positive... SSSS... bits of DIFF
* are appended. When DIFF is negative... SSSS... bits of (DIFF – 1) are
* appended... Most significant bit... is 0 for negative differences and 1 for
* positive differences.
*
* In other words the upper half of extra bits range represents DIFF as is.
* The lower half represents the negative DIFFs with an offset.
*/
int HuffExtend(int x, int s) {
JXL_DASSERT(s >= 1);
int half = 1 << (s - 1);
if (x >= half) {
JXL_DASSERT(x < (1 << s));
return x;
} else {
return x - (1 << s) + 1;
}
}
// Decodes one 8x8 block of DCT coefficients from the bit stream.
bool DecodeDCTBlock(const HuffmanTableEntry* dc_huff,
const HuffmanTableEntry* ac_huff, int Ss, int Se, int Al,
int* eobrun, BitReaderState* br, coeff_t* last_dc_coeff,
coeff_t* coeffs) {
// Nowadays multiplication is even faster than variable shift.
int Am = 1 << Al;
bool eobrun_allowed = Ss > 0;
if (Ss == 0) {
int s = ReadSymbol(dc_huff, br);
if (s >= kJpegDCAlphabetSize) {
return false;
}
int diff = 0;
if (s > 0) {
int bits = br->ReadBits(s);
diff = HuffExtend(bits, s);
}
int coeff = diff + *last_dc_coeff;
const int dc_coeff = coeff * Am;
coeffs[0] = dc_coeff;
// TODO(eustas): is there a more elegant / explicit way to check this?
if (dc_coeff != coeffs[0]) {
return false;
}
*last_dc_coeff = coeff;
++Ss;
}
if (Ss > Se) {
return true;
}
if (*eobrun > 0) {
--(*eobrun);
return true;
}
for (int k = Ss; k <= Se; k++) {
int sr = ReadSymbol(ac_huff, br);
if (sr >= kJpegHuffmanAlphabetSize) {
return false;
}
int r = sr >> 4;
int s = sr & 15;
if (s > 0) {
k += r;
if (k > Se) {
return false;
}
if (s + Al >= kJpegDCAlphabetSize) {
return false;
}
int bits = br->ReadBits(s);
int coeff = HuffExtend(bits, s);
coeffs[kJPEGNaturalOrder[k]] = coeff * Am;
} else if (r == 15) {
k += 15;
} else {
*eobrun = 1 << r;
if (r > 0) {
if (!eobrun_allowed) {
return false;
}
*eobrun += br->ReadBits(r);
}
break;
}
}
--(*eobrun);
return true;
}
bool RefineDCTBlock(const HuffmanTableEntry* ac_huff, int Ss, int Se, int Al,
int* eobrun, BitReaderState* br, coeff_t* coeffs) {
// Nowadays multiplication is even faster than variable shift.
int Am = 1 << Al;
bool eobrun_allowed = Ss > 0;
if (Ss == 0) {
int s = br->ReadBits(1);
coeff_t dc_coeff = coeffs[0];
dc_coeff |= s * Am;
coeffs[0] = dc_coeff;
++Ss;
}
if (Ss > Se) {
return true;
}
int p1 = Am;
int m1 = -Am;
int k = Ss;
int r;
int s;
bool in_zero_run = false;
if (*eobrun <= 0) {
for (; k <= Se; k++) {
s = ReadSymbol(ac_huff, br);
if (s >= kJpegHuffmanAlphabetSize) {
return false;
}
r = s >> 4;
s &= 15;
if (s) {
if (s != 1) {
return false;
}
s = br->ReadBits(1) ? p1 : m1;
in_zero_run = false;
} else {
if (r != 15) {
*eobrun = 1 << r;
if (r > 0) {
if (!eobrun_allowed) {
return false;
}
*eobrun += br->ReadBits(r);
}
break;
}
in_zero_run = true;
}
do {
coeff_t thiscoef = coeffs[kJPEGNaturalOrder[k]];
if (thiscoef != 0) {
if (br->ReadBits(1)) {
if ((thiscoef & p1) == 0) {
if (thiscoef >= 0) {
thiscoef += p1;
} else {
thiscoef += m1;
}
}
}
coeffs[kJPEGNaturalOrder[k]] = thiscoef;
} else {
if (--r < 0) {
break;
}
}
k++;
} while (k <= Se);
if (s) {
if (k > Se) {
return false;
}
coeffs[kJPEGNaturalOrder[k]] = s;
}
}
}
if (in_zero_run) {
return false;
}
if (*eobrun > 0) {
for (; k <= Se; k++) {
coeff_t thiscoef = coeffs[kJPEGNaturalOrder[k]];
if (thiscoef != 0) {
if (br->ReadBits(1)) {
if ((thiscoef & p1) == 0) {
if (thiscoef >= 0) {
thiscoef += p1;
} else {
thiscoef += m1;
}
}
}
coeffs[kJPEGNaturalOrder[k]] = thiscoef;
}
}
}
--(*eobrun);
return true;
}
void SaveMCUCodingState(j_decompress_ptr cinfo) {
jpeg_decomp_master* m = cinfo->master;
memcpy(m->mcu_.last_dc_coeff, m->last_dc_coeff_, sizeof(m->last_dc_coeff_));
m->mcu_.eobrun = m->eobrun_;
size_t offset = 0;
for (int i = 0; i < cinfo->comps_in_scan; ++i) {
const jpeg_component_info* comp = cinfo->cur_comp_info[i];
int c = comp->component_index;
size_t block_x = m->scan_mcu_col_ * comp->MCU_width;
for (int iy = 0; iy < comp->MCU_height; ++iy) {
size_t block_y = m->scan_mcu_row_ * comp->MCU_height + iy;
size_t biy = block_y % comp->v_samp_factor;
if (block_y >= comp->height_in_blocks) {
continue;
}
size_t nblocks =
std::min<size_t>(comp->MCU_width, comp->width_in_blocks - block_x);
size_t ncoeffs = nblocks * DCTSIZE2;
coeff_t* coeffs = &m->coeff_rows[c][biy][block_x][0];
memcpy(&m->mcu_.coeffs[offset], coeffs, ncoeffs * sizeof(coeffs[0]));
offset += ncoeffs;
}
}
}
void RestoreMCUCodingState(j_decompress_ptr cinfo) {
jpeg_decomp_master* m = cinfo->master;
memcpy(m->last_dc_coeff_, m->mcu_.last_dc_coeff, sizeof(m->last_dc_coeff_));
m->eobrun_ = m->mcu_.eobrun;
size_t offset = 0;
for (int i = 0; i < cinfo->comps_in_scan; ++i) {
const jpeg_component_info* comp = cinfo->cur_comp_info[i];
int c = comp->component_index;
size_t block_x = m->scan_mcu_col_ * comp->MCU_width;
for (int iy = 0; iy < comp->MCU_height; ++iy) {
size_t block_y = m->scan_mcu_row_ * comp->MCU_height + iy;
size_t biy = block_y % comp->v_samp_factor;
if (block_y >= comp->height_in_blocks) {
continue;
}
size_t nblocks =
std::min<size_t>(comp->MCU_width, comp->width_in_blocks - block_x);
size_t ncoeffs = nblocks * DCTSIZE2;
coeff_t* coeffs = &m->coeff_rows[c][biy][block_x][0];
memcpy(coeffs, &m->mcu_.coeffs[offset], ncoeffs * sizeof(coeffs[0]));
offset += ncoeffs;
}
}
}
bool FinishScan(j_decompress_ptr cinfo, const uint8_t* data, const size_t len,
size_t* pos, size_t* bit_pos) {
jpeg_decomp_master* m = cinfo->master;
if (m->eobrun_ > 0) {
JPEGLI_ERROR("End-of-block run too long.");
}
m->eobrun_ = -1;
memset(m->last_dc_coeff_, 0, sizeof(m->last_dc_coeff_));
if (*bit_pos == 0) {
return true;
}
if (data[*pos] == 0xff) {
// After last br.FinishStream we checked that there is at least 2 bytes
// in the buffer.
JXL_DASSERT(*pos + 1 < len);
// br.FinishStream would have detected an early marker.
JXL_DASSERT(data[*pos + 1] == 0);
*pos += 2;
} else {
*pos += 1;
}
*bit_pos = 0;
return true;
}
} // namespace
void PrepareForiMCURow(j_decompress_ptr cinfo) {
jpeg_decomp_master* m = cinfo->master;
for (int i = 0; i < cinfo->comps_in_scan; ++i) {
const jpeg_component_info* comp = cinfo->cur_comp_info[i];
int c = comp->component_index;
int by0 = cinfo->input_iMCU_row * comp->v_samp_factor;
int block_rows_left = comp->height_in_blocks - by0;
int max_block_rows = std::min(comp->v_samp_factor, block_rows_left);
int offset = m->streaming_mode_ ? 0 : by0;
m->coeff_rows[c] = (*cinfo->mem->access_virt_barray)(
reinterpret_cast<j_common_ptr>(cinfo), m->coef_arrays[c], offset,
max_block_rows, TRUE);
}
}
int ProcessScan(j_decompress_ptr cinfo, const uint8_t* const data,
const size_t len, size_t* pos, size_t* bit_pos) {
if (len == 0) {
return kNeedMoreInput;
}
jpeg_decomp_master* m = cinfo->master;
for (;;) {
// Handle the restart intervals.
if (cinfo->restart_interval > 0 && m->restarts_to_go_ == 0) {
if (!FinishScan(cinfo, data, len, pos, bit_pos)) {
return kNeedMoreInput;
}
// Go to the next marker, warn if we had to skip any data.
size_t num_skipped = 0;
while (*pos + 1 < len && (data[*pos] != 0xff || data[*pos + 1] == 0 ||
data[*pos + 1] == 0xff)) {
++(*pos);
++num_skipped;
}
if (num_skipped > 0) {
JPEGLI_WARN("Skipped %d bytes before restart marker",
static_cast<int>(num_skipped));
}
if (*pos + 2 > len) {
return kNeedMoreInput;
}
cinfo->unread_marker = data[*pos + 1];
*pos += 2;
return kHandleRestart;
}
size_t start_pos = *pos;
BitReaderState br(data, len, start_pos);
if (*bit_pos > 0) {
br.ReadBits(*bit_pos);
}
if (start_pos + kMaxMCUByteSize > len) {
SaveMCUCodingState(cinfo);
}
// Decode one MCU.
HWY_ALIGN_MAX static coeff_t sink_block[DCTSIZE2] = {0};
bool scan_ok = true;
for (int i = 0; i < cinfo->comps_in_scan; ++i) {
const jpeg_component_info* comp = cinfo->cur_comp_info[i];
int c = comp->component_index;
const HuffmanTableEntry* dc_lut =
&m->dc_huff_lut_[comp->dc_tbl_no * kJpegHuffmanLutSize];
const HuffmanTableEntry* ac_lut =
&m->ac_huff_lut_[comp->ac_tbl_no * kJpegHuffmanLutSize];
for (int iy = 0; iy < comp->MCU_height; ++iy) {
size_t block_y = m->scan_mcu_row_ * comp->MCU_height + iy;
int biy = block_y % comp->v_samp_factor;
for (int ix = 0; ix < comp->MCU_width; ++ix) {
size_t block_x = m->scan_mcu_col_ * comp->MCU_width + ix;
coeff_t* coeffs;
if (block_x >= comp->width_in_blocks ||
block_y >= comp->height_in_blocks) {
// Note that it is OK that sink_block is uninitialized because
// it will never be used in any branches, even in the RefineDCTBlock
// case, because only DC scans can be interleaved and we don't use
// the zero-ness of the DC coeff in the DC refinement code-path.
coeffs = sink_block;
} else {
coeffs = &m->coeff_rows[c][biy][block_x][0];
}
if (cinfo->Ah == 0) {
if (!DecodeDCTBlock(dc_lut, ac_lut, cinfo->Ss, cinfo->Se, cinfo->Al,
&m->eobrun_, &br,
&m->last_dc_coeff_[comp->component_index],
coeffs)) {
scan_ok = false;
}
} else {
if (!RefineDCTBlock(ac_lut, cinfo->Ss, cinfo->Se, cinfo->Al,
&m->eobrun_, &br, coeffs)) {
scan_ok = false;
}
}
}
}
}
size_t new_pos;
size_t new_bit_pos;
bool stream_ok = br.FinishStream(&new_pos, &new_bit_pos);
if (new_pos + 2 > len) {
// If reading stopped within the last two bytes, we have to request more
// input even if FinishStream() returned true, since the Huffman code
// reader could have peaked ahead some bits past the current input chunk
// and thus the last prefix code length could have been wrong. We can do
// this because a valid JPEG bit stream has two extra bytes at the end.
RestoreMCUCodingState(cinfo);
return kNeedMoreInput;
}
*pos = new_pos;
*bit_pos = new_bit_pos;
if (!stream_ok) {
// We hit a marker during parsing.
JXL_DASSERT(data[*pos] == 0xff);
JXL_DASSERT(data[*pos + 1] != 0);
RestoreMCUCodingState(cinfo);
JPEGLI_WARN("Incomplete scan detected.");
return JPEG_SCAN_COMPLETED;
}
if (!scan_ok) {
JPEGLI_ERROR("Failed to decode DCT block");
}
if (m->restarts_to_go_ > 0) {
--m->restarts_to_go_;
}
++m->scan_mcu_col_;
if (m->scan_mcu_col_ == cinfo->MCUs_per_row) {
++m->scan_mcu_row_;
m->scan_mcu_col_ = 0;
if (m->scan_mcu_row_ == cinfo->MCU_rows_in_scan) {
if (!FinishScan(cinfo, data, len, pos, bit_pos)) {
return kNeedMoreInput;
}
break;
} else if ((m->scan_mcu_row_ % m->mcu_rows_per_iMCU_row_) == 0) {
// Current iMCU row is done.
break;
}
}
}
++cinfo->input_iMCU_row;
if (cinfo->input_iMCU_row < cinfo->total_iMCU_rows) {
PrepareForiMCURow(cinfo);
return JPEG_ROW_COMPLETED;
}
return JPEG_SCAN_COMPLETED;
}
} // namespace jpegli
|