1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef LIB_JXL_AC_CONTEXT_H_
#define LIB_JXL_AC_CONTEXT_H_
#include <algorithm>
#include <vector>
#include "lib/jxl/base/bits.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/coeff_order_fwd.h"
namespace jxl {
// Block context used for scanning order, number of non-zeros, AC coefficients.
// Equal to the channel.
constexpr uint32_t kDCTOrderContextStart = 0;
// The number of predicted nonzeros goes from 0 to 1008. We use
// ceil(log2(predicted+1)) as a context for the number of nonzeros, so from 0 to
// 10, inclusive.
constexpr uint32_t kNonZeroBuckets = 37;
static const uint16_t kCoeffFreqContext[64] = {
0xBAD, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26,
27, 27, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30,
};
static const uint16_t kCoeffNumNonzeroContext[64] = {
0xBAD, 0, 31, 62, 62, 93, 93, 93, 93, 123, 123, 123, 123,
152, 152, 152, 152, 152, 152, 152, 152, 180, 180, 180, 180, 180,
180, 180, 180, 180, 180, 180, 180, 206, 206, 206, 206, 206, 206,
206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206,
206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206,
};
// Supremum of ZeroDensityContext(x, y) + 1, when x + y < 64.
constexpr int kZeroDensityContextCount = 458;
// Supremum of ZeroDensityContext(x, y) + 1.
constexpr int kZeroDensityContextLimit = 474;
/* This function is used for entropy-sources pre-clustering.
*
* Ideally, each combination of |nonzeros_left| and |k| should go to its own
* bucket; but it implies (64 * 63 / 2) == 2016 buckets. If there is other
* dimension (e.g. block context), then number of primary clusters becomes too
* big.
*
* To solve this problem, |nonzeros_left| and |k| values are clustered. It is
* known that their sum is at most 64, consequently, the total number buckets
* is at most A(64) * B(64).
*/
// TODO(user): investigate, why disabling pre-clustering makes entropy code
// less dense. Perhaps we would need to add HQ clustering algorithm that would
// be able to squeeze better by spending more CPU cycles.
static JXL_INLINE size_t ZeroDensityContext(size_t nonzeros_left, size_t k,
size_t covered_blocks,
size_t log2_covered_blocks,
size_t prev) {
JXL_DASSERT((1u << log2_covered_blocks) == covered_blocks);
nonzeros_left = (nonzeros_left + covered_blocks - 1) >> log2_covered_blocks;
k >>= log2_covered_blocks;
JXL_DASSERT(k > 0);
JXL_DASSERT(k < 64);
JXL_DASSERT(nonzeros_left > 0);
// Asserting nonzeros_left + k < 65 here causes crashes in debug mode with
// invalid input, since the (hot) decoding loop does not check this condition.
// As no out-of-bound memory reads are issued even if that condition is
// broken, we check this simpler condition which holds anyway. The decoder
// will still mark a file in which that condition happens as not valid at the
// end of the decoding loop, as `nzeros` will not be `0`.
JXL_DASSERT(nonzeros_left < 64);
return (kCoeffNumNonzeroContext[nonzeros_left] + kCoeffFreqContext[k]) * 2 +
prev;
}
struct BlockCtxMap {
std::vector<int> dc_thresholds[3];
std::vector<uint32_t> qf_thresholds;
std::vector<uint8_t> ctx_map;
size_t num_ctxs, num_dc_ctxs;
static constexpr uint8_t kDefaultCtxMap[] = {
// Default ctx map clusters all the large transforms together.
0, 1, 2, 2, 3, 3, 4, 5, 6, 6, 6, 6, 6, //
7, 8, 9, 9, 10, 11, 12, 13, 14, 14, 14, 14, 14, //
7, 8, 9, 9, 10, 11, 12, 13, 14, 14, 14, 14, 14, //
};
static_assert(3 * kNumOrders ==
sizeof(kDefaultCtxMap) / sizeof *kDefaultCtxMap,
"Update default context map");
size_t Context(int dc_idx, uint32_t qf, size_t ord, size_t c) const {
size_t qf_idx = 0;
for (uint32_t t : qf_thresholds) {
if (qf > t) qf_idx++;
}
size_t idx = c < 2 ? c ^ 1 : 2;
idx = idx * kNumOrders + ord;
idx = idx * (qf_thresholds.size() + 1) + qf_idx;
idx = idx * num_dc_ctxs + dc_idx;
return ctx_map[idx];
}
// Non-zero context is based on number of non-zeros and block context.
// For better clustering, contexts with same number of non-zeros are grouped.
constexpr uint32_t ZeroDensityContextsOffset(uint32_t block_ctx) const {
return num_ctxs * kNonZeroBuckets + kZeroDensityContextCount * block_ctx;
}
// Context map for AC coefficients consists of 2 blocks:
// |num_ctxs x : context for number of non-zeros in the block
// kNonZeroBuckets| computed from block context and predicted
// value (based top and left values)
// |num_ctxs x : context for AC coefficient symbols,
// kZeroDensityContextCount| computed from block context,
// number of non-zeros left and
// index in scan order
constexpr uint32_t NumACContexts() const {
return num_ctxs * (kNonZeroBuckets + kZeroDensityContextCount);
}
// Non-zero context is based on number of non-zeros and block context.
// For better clustering, contexts with same number of non-zeros are grouped.
inline uint32_t NonZeroContext(uint32_t non_zeros, uint32_t block_ctx) const {
uint32_t ctx;
if (non_zeros >= 64) non_zeros = 64;
if (non_zeros < 8) {
ctx = non_zeros;
} else {
ctx = 4 + non_zeros / 2;
}
return ctx * num_ctxs + block_ctx;
}
BlockCtxMap() {
ctx_map.assign(std::begin(kDefaultCtxMap), std::end(kDefaultCtxMap));
num_ctxs = *std::max_element(ctx_map.begin(), ctx_map.end()) + 1;
num_dc_ctxs = 1;
}
};
} // namespace jxl
#endif // LIB_JXL_AC_CONTEXT_H_
|