1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <vector>
#include "lib/jxl/ans_params.h"
#include "lib/jxl/base/random.h"
#include "lib/jxl/base/span.h"
#include "lib/jxl/dec_ans.h"
#include "lib/jxl/dec_bit_reader.h"
#include "lib/jxl/enc_ans.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_bit_writer.h"
#include "lib/jxl/testing.h"
namespace jxl {
namespace {
void RoundtripTestcase(int n_histograms, int alphabet_size,
const std::vector<Token>& input_values) {
constexpr uint16_t kMagic1 = 0x9e33;
constexpr uint16_t kMagic2 = 0x8b04;
BitWriter writer;
// Space for magic bytes.
BitWriter::Allotment allotment_magic1(&writer, 16);
writer.Write(16, kMagic1);
allotment_magic1.ReclaimAndCharge(&writer, 0, nullptr);
std::vector<uint8_t> context_map;
EntropyEncodingData codes;
std::vector<std::vector<Token>> input_values_vec;
input_values_vec.push_back(input_values);
BuildAndEncodeHistograms(HistogramParams(), n_histograms, input_values_vec,
&codes, &context_map, &writer, 0, nullptr);
WriteTokens(input_values_vec[0], codes, context_map, 0, &writer, 0, nullptr);
// Magic bytes + padding
BitWriter::Allotment allotment_magic2(&writer, 24);
writer.Write(16, kMagic2);
writer.ZeroPadToByte();
allotment_magic2.ReclaimAndCharge(&writer, 0, nullptr);
// We do not truncate the output. Reading past the end reads out zeroes
// anyway.
BitReader br(writer.GetSpan());
ASSERT_EQ(br.ReadBits(16), kMagic1);
std::vector<uint8_t> dec_context_map;
ANSCode decoded_codes;
ASSERT_TRUE(
DecodeHistograms(&br, n_histograms, &decoded_codes, &dec_context_map));
ASSERT_EQ(dec_context_map, context_map);
ANSSymbolReader reader(&decoded_codes, &br);
for (const Token& symbol : input_values) {
uint32_t read_symbol =
reader.ReadHybridUint(symbol.context, &br, dec_context_map);
ASSERT_EQ(read_symbol, symbol.value);
}
ASSERT_TRUE(reader.CheckANSFinalState());
ASSERT_EQ(br.ReadBits(16), kMagic2);
EXPECT_TRUE(br.Close());
}
TEST(ANSTest, EmptyRoundtrip) {
RoundtripTestcase(2, ANS_MAX_ALPHABET_SIZE, std::vector<Token>());
}
TEST(ANSTest, SingleSymbolRoundtrip) {
for (uint32_t i = 0; i < ANS_MAX_ALPHABET_SIZE; i++) {
RoundtripTestcase(2, ANS_MAX_ALPHABET_SIZE, {{0, i}});
}
for (uint32_t i = 0; i < ANS_MAX_ALPHABET_SIZE; i++) {
RoundtripTestcase(2, ANS_MAX_ALPHABET_SIZE,
std::vector<Token>(1024, {0, i}));
}
}
#if defined(ADDRESS_SANITIZER) || defined(MEMORY_SANITIZER) || \
defined(THREAD_SANITIZER)
constexpr size_t kReps = 3;
#else
constexpr size_t kReps = 10;
#endif
void RoundtripRandomStream(int alphabet_size, size_t reps = kReps,
size_t num = 1 << 18) {
constexpr int kNumHistograms = 3;
Rng rng(0);
for (size_t i = 0; i < reps; i++) {
std::vector<Token> symbols;
for (size_t j = 0; j < num; j++) {
int context = rng.UniformI(0, kNumHistograms);
int value = rng.UniformU(0, alphabet_size);
symbols.emplace_back(context, value);
}
RoundtripTestcase(kNumHistograms, alphabet_size, symbols);
}
}
void RoundtripRandomUnbalancedStream(int alphabet_size) {
constexpr int kNumHistograms = 3;
constexpr int kPrecision = 1 << 10;
Rng rng(0);
for (size_t i = 0; i < kReps; i++) {
std::vector<int> distributions[kNumHistograms] = {};
for (auto& distr : distributions) {
distr.resize(kPrecision);
int symbol = 0;
int remaining = 1;
for (int k = 0; k < kPrecision; k++) {
if (remaining == 0) {
if (symbol < alphabet_size - 1) symbol++;
// There is no meaning behind this distribution: it's anything that
// will create a nonuniform distribution and won't have too few
// symbols usually. Also we want different distributions we get to be
// sufficiently dissimilar.
remaining = rng.UniformU(0, kPrecision - k + 1);
}
distr[k] = symbol;
remaining--;
}
}
std::vector<Token> symbols;
for (int j = 0; j < 1 << 18; j++) {
int context = rng.UniformI(0, kNumHistograms);
int value = rng.UniformU(0, kPrecision);
symbols.emplace_back(context, value);
}
RoundtripTestcase(kNumHistograms + 1, alphabet_size, symbols);
}
}
TEST(ANSTest, RandomStreamRoundtrip3Small) { RoundtripRandomStream(3, 1, 16); }
TEST(ANSTest, RandomStreamRoundtrip3) { RoundtripRandomStream(3); }
TEST(ANSTest, RandomStreamRoundtripBig) {
RoundtripRandomStream(ANS_MAX_ALPHABET_SIZE);
}
TEST(ANSTest, RandomUnbalancedStreamRoundtrip3) {
RoundtripRandomUnbalancedStream(3);
}
TEST(ANSTest, RandomUnbalancedStreamRoundtripBig) {
RoundtripRandomUnbalancedStream(ANS_MAX_ALPHABET_SIZE);
}
TEST(ANSTest, UintConfigRoundtrip) {
for (size_t log_alpha_size = 5; log_alpha_size <= 8; log_alpha_size++) {
std::vector<HybridUintConfig> uint_config;
std::vector<HybridUintConfig> uint_config_dec;
for (size_t i = 0; i < log_alpha_size; i++) {
for (size_t j = 0; j <= i; j++) {
for (size_t k = 0; k <= i - j; k++) {
uint_config.emplace_back(i, j, k);
}
}
}
uint_config.emplace_back(log_alpha_size, 0, 0);
uint_config_dec.resize(uint_config.size());
BitWriter writer;
BitWriter::Allotment allotment(&writer, 10 * uint_config.size());
EncodeUintConfigs(uint_config, &writer, log_alpha_size);
allotment.ReclaimAndCharge(&writer, 0, nullptr);
writer.ZeroPadToByte();
BitReader br(writer.GetSpan());
EXPECT_TRUE(DecodeUintConfigs(log_alpha_size, &uint_config_dec, &br));
EXPECT_TRUE(br.Close());
for (size_t i = 0; i < uint_config.size(); i++) {
EXPECT_EQ(uint_config[i].split_token, uint_config_dec[i].split_token);
EXPECT_EQ(uint_config[i].msb_in_token, uint_config_dec[i].msb_in_token);
EXPECT_EQ(uint_config[i].lsb_in_token, uint_config_dec[i].lsb_in_token);
}
}
}
void TestCheckpointing(bool ans, bool lz77) {
std::vector<std::vector<Token>> input_values(1);
for (size_t i = 0; i < 1024; i++) {
input_values[0].emplace_back(0, i % 4);
}
// up to lz77 window size.
for (size_t i = 0; i < (1 << 20) - 1022; i++) {
input_values[0].emplace_back(0, (i % 5) + 4);
}
// Ensure that when the window wraps around, new values are different.
input_values[0].emplace_back(0, 0);
for (size_t i = 0; i < 1024; i++) {
input_values[0].emplace_back(0, i % 4);
}
std::vector<uint8_t> context_map;
EntropyEncodingData codes;
HistogramParams params;
params.lz77_method = lz77 ? HistogramParams::LZ77Method::kLZ77
: HistogramParams::LZ77Method::kNone;
params.force_huffman = !ans;
BitWriter writer;
{
auto input_values_copy = input_values;
BuildAndEncodeHistograms(params, 1, input_values_copy, &codes, &context_map,
&writer, 0, nullptr);
WriteTokens(input_values_copy[0], codes, context_map, 0, &writer, 0,
nullptr);
writer.ZeroPadToByte();
}
// We do not truncate the output. Reading past the end reads out zeroes
// anyway.
BitReader br(writer.GetSpan());
Status status = true;
{
BitReaderScopedCloser bc(&br, &status);
std::vector<uint8_t> dec_context_map;
ANSCode decoded_codes;
ASSERT_TRUE(DecodeHistograms(&br, 1, &decoded_codes, &dec_context_map));
ASSERT_EQ(dec_context_map, context_map);
ANSSymbolReader reader(&decoded_codes, &br);
ANSSymbolReader::Checkpoint checkpoint;
size_t br_pos = 0;
constexpr size_t kInterval = ANSSymbolReader::kMaxCheckpointInterval - 2;
for (size_t i = 0; i < input_values[0].size(); i++) {
if (i % kInterval == 0 && i > 0) {
reader.Restore(checkpoint);
ASSERT_TRUE(br.Close());
br = BitReader(writer.GetSpan());
br.SkipBits(br_pos);
for (size_t j = i - kInterval; j < i; j++) {
Token symbol = input_values[0][j];
uint32_t read_symbol =
reader.ReadHybridUint(symbol.context, &br, dec_context_map);
ASSERT_EQ(read_symbol, symbol.value) << "j = " << j;
}
}
if (i % kInterval == 0) {
reader.Save(&checkpoint);
br_pos = br.TotalBitsConsumed();
}
Token symbol = input_values[0][i];
uint32_t read_symbol =
reader.ReadHybridUint(symbol.context, &br, dec_context_map);
ASSERT_EQ(read_symbol, symbol.value) << "i = " << i;
}
ASSERT_TRUE(reader.CheckANSFinalState());
}
EXPECT_TRUE(status);
}
TEST(ANSTest, TestCheckpointingANS) {
TestCheckpointing(/*ans=*/true, /*lz77=*/false);
}
TEST(ANSTest, TestCheckpointingPrefix) {
TestCheckpointing(/*ans=*/false, /*lz77=*/false);
}
TEST(ANSTest, TestCheckpointingANSLZ77) {
TestCheckpointing(/*ans=*/true, /*lz77=*/true);
}
TEST(ANSTest, TestCheckpointingPrefixLZ77) {
TestCheckpointing(/*ans=*/false, /*lz77=*/true);
}
} // namespace
} // namespace jxl
|