1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// Author: Jyrki Alakuijala (jyrki.alakuijala@gmail.com)
//
// The physical architecture of butteraugli is based on the following naming
// convention:
// * Opsin - dynamics of the photosensitive chemicals in the retina
// with their immediate electrical processing
// * Xyb - hybrid opponent/trichromatic color space
// x is roughly red-subtract-green.
// y is yellow.
// b is blue.
// Xyb values are computed from Opsin mixing, not directly from rgb.
// * Mask - for visual masking
// * Hf - color modeling for spatially high-frequency features
// * Lf - color modeling for spatially low-frequency features
// * Diffmap - to cluster and build an image of error between the images
// * Blur - to hold the smoothing code
#include "lib/jxl/butteraugli/butteraugli.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <memory>
#include <vector>
#include "lib/jxl/image.h"
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/butteraugli/butteraugli.cc"
#include <hwy/foreach_target.h>
#include "lib/jxl/base/fast_math-inl.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/convolve.h"
#include "lib/jxl/image_ops.h"
#ifndef JXL_BUTTERAUGLI_ONCE
#define JXL_BUTTERAUGLI_ONCE
namespace jxl {
static const double wMfMalta = 37.0819870399;
static const double norm1Mf = 130262059.556;
static const double wMfMaltaX = 8246.75321353;
static const double norm1MfX = 1009002.70582;
static const double wHfMalta = 18.7237414387;
static const double norm1Hf = 4498534.45232;
static const double wHfMaltaX = 6923.99476109;
static const double norm1HfX = 8051.15833247;
static const double wUhfMalta = 1.10039032555;
static const double norm1Uhf = 71.7800275169;
static const double wUhfMaltaX = 173.5;
static const double norm1UhfX = 5.0;
static const double wmul[9] = {
400.0, 1.50815703118, 0,
2150.0, 10.6195433239, 16.2176043152,
29.2353797994, 0.844626970982, 0.703646627719,
};
std::vector<float> ComputeKernel(float sigma) {
const float m = 2.25; // Accuracy increases when m is increased.
const double scaler = -1.0 / (2.0 * sigma * sigma);
const int diff = std::max<int>(1, m * std::fabs(sigma));
std::vector<float> kernel(2 * diff + 1);
for (int i = -diff; i <= diff; ++i) {
kernel[i + diff] = std::exp(scaler * i * i);
}
return kernel;
}
void ConvolveBorderColumn(const ImageF& in, const std::vector<float>& kernel,
const size_t x, float* BUTTERAUGLI_RESTRICT row_out) {
const size_t offset = kernel.size() / 2;
int minx = x < offset ? 0 : x - offset;
int maxx = std::min<int>(in.xsize() - 1, x + offset);
float weight = 0.0f;
for (int j = minx; j <= maxx; ++j) {
weight += kernel[j - x + offset];
}
float scale = 1.0f / weight;
for (size_t y = 0; y < in.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y);
float sum = 0.0f;
for (int j = minx; j <= maxx; ++j) {
sum += row_in[j] * kernel[j - x + offset];
}
row_out[y] = sum * scale;
}
}
// Computes a horizontal convolution and transposes the result.
void ConvolutionWithTranspose(const ImageF& in,
const std::vector<float>& kernel,
ImageF* BUTTERAUGLI_RESTRICT out) {
JXL_CHECK(out->xsize() == in.ysize());
JXL_CHECK(out->ysize() == in.xsize());
const size_t len = kernel.size();
const size_t offset = len / 2;
float weight_no_border = 0.0f;
for (size_t j = 0; j < len; ++j) {
weight_no_border += kernel[j];
}
const float scale_no_border = 1.0f / weight_no_border;
const size_t border1 = std::min(in.xsize(), offset);
const size_t border2 = in.xsize() > offset ? in.xsize() - offset : 0;
std::vector<float> scaled_kernel(len / 2 + 1);
for (size_t i = 0; i <= len / 2; ++i) {
scaled_kernel[i] = kernel[i] * scale_no_border;
}
// middle
switch (len) {
case 7: {
const float sk0 = scaled_kernel[0];
const float sk1 = scaled_kernel[1];
const float sk2 = scaled_kernel[2];
const float sk3 = scaled_kernel[3];
for (size_t y = 0; y < in.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
for (size_t x = border1; x < border2; ++x, ++row_in) {
const float sum0 = (row_in[0] + row_in[6]) * sk0;
const float sum1 = (row_in[1] + row_in[5]) * sk1;
const float sum2 = (row_in[2] + row_in[4]) * sk2;
const float sum = (row_in[3]) * sk3 + sum0 + sum1 + sum2;
float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
row_out[y] = sum;
}
}
} break;
case 13: {
for (size_t y = 0; y < in.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
for (size_t x = border1; x < border2; ++x, ++row_in) {
float sum0 = (row_in[0] + row_in[12]) * scaled_kernel[0];
float sum1 = (row_in[1] + row_in[11]) * scaled_kernel[1];
float sum2 = (row_in[2] + row_in[10]) * scaled_kernel[2];
float sum3 = (row_in[3] + row_in[9]) * scaled_kernel[3];
sum0 += (row_in[4] + row_in[8]) * scaled_kernel[4];
sum1 += (row_in[5] + row_in[7]) * scaled_kernel[5];
const float sum = (row_in[6]) * scaled_kernel[6];
float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
row_out[y] = sum + sum0 + sum1 + sum2 + sum3;
}
}
break;
}
case 15: {
for (size_t y = 0; y < in.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
for (size_t x = border1; x < border2; ++x, ++row_in) {
float sum0 = (row_in[0] + row_in[14]) * scaled_kernel[0];
float sum1 = (row_in[1] + row_in[13]) * scaled_kernel[1];
float sum2 = (row_in[2] + row_in[12]) * scaled_kernel[2];
float sum3 = (row_in[3] + row_in[11]) * scaled_kernel[3];
sum0 += (row_in[4] + row_in[10]) * scaled_kernel[4];
sum1 += (row_in[5] + row_in[9]) * scaled_kernel[5];
sum2 += (row_in[6] + row_in[8]) * scaled_kernel[6];
const float sum = (row_in[7]) * scaled_kernel[7];
float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
row_out[y] = sum + sum0 + sum1 + sum2 + sum3;
}
}
break;
}
case 33: {
for (size_t y = 0; y < in.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
for (size_t x = border1; x < border2; ++x, ++row_in) {
float sum0 = (row_in[0] + row_in[32]) * scaled_kernel[0];
float sum1 = (row_in[1] + row_in[31]) * scaled_kernel[1];
float sum2 = (row_in[2] + row_in[30]) * scaled_kernel[2];
float sum3 = (row_in[3] + row_in[29]) * scaled_kernel[3];
sum0 += (row_in[4] + row_in[28]) * scaled_kernel[4];
sum1 += (row_in[5] + row_in[27]) * scaled_kernel[5];
sum2 += (row_in[6] + row_in[26]) * scaled_kernel[6];
sum3 += (row_in[7] + row_in[25]) * scaled_kernel[7];
sum0 += (row_in[8] + row_in[24]) * scaled_kernel[8];
sum1 += (row_in[9] + row_in[23]) * scaled_kernel[9];
sum2 += (row_in[10] + row_in[22]) * scaled_kernel[10];
sum3 += (row_in[11] + row_in[21]) * scaled_kernel[11];
sum0 += (row_in[12] + row_in[20]) * scaled_kernel[12];
sum1 += (row_in[13] + row_in[19]) * scaled_kernel[13];
sum2 += (row_in[14] + row_in[18]) * scaled_kernel[14];
sum3 += (row_in[15] + row_in[17]) * scaled_kernel[15];
const float sum = (row_in[16]) * scaled_kernel[16];
float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
row_out[y] = sum + sum0 + sum1 + sum2 + sum3;
}
}
break;
}
default:
JXL_UNREACHABLE("Kernel size %" PRIuS " not implemented", len);
}
// left border
for (size_t x = 0; x < border1; ++x) {
ConvolveBorderColumn(in, kernel, x, out->Row(x));
}
// right border
for (size_t x = border2; x < in.xsize(); ++x) {
ConvolveBorderColumn(in, kernel, x, out->Row(x));
}
}
// A blur somewhat similar to a 2D Gaussian blur.
// See: https://en.wikipedia.org/wiki/Gaussian_blur
//
// This is a bottleneck because the sigma can be quite large (>7). We can use
// gauss_blur.cc (runtime independent of sigma, closer to a 4*sigma truncated
// Gaussian and our 2.25 in ComputeKernel), but its boundary conditions are
// zero-valued. This leads to noticeable differences at the edges of diffmaps.
// We retain a special case for 5x5 kernels (even faster than gauss_blur),
// optionally use gauss_blur followed by fixup of the borders for large images,
// or fall back to the previous truncated FIR followed by a transpose.
Status Blur(const ImageF& in, float sigma, const ButteraugliParams& params,
BlurTemp* temp, ImageF* out) {
std::vector<float> kernel = ComputeKernel(sigma);
// Separable5 does an in-place convolution, so this fast path is not safe if
// in aliases out.
if (kernel.size() == 5 && &in != out) {
float sum_weights = 0.0f;
for (const float w : kernel) {
sum_weights += w;
}
const float scale = 1.0f / sum_weights;
const float w0 = kernel[2] * scale;
const float w1 = kernel[1] * scale;
const float w2 = kernel[0] * scale;
const WeightsSeparable5 weights = {
{HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)},
{HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)},
};
Separable5(in, Rect(in), weights, /*pool=*/nullptr, out);
return true;
}
ImageF* temp_t;
JXL_RETURN_IF_ERROR(temp->GetTransposed(in, &temp_t));
ConvolutionWithTranspose(in, kernel, temp_t);
ConvolutionWithTranspose(*temp_t, kernel, out);
return true;
}
// Allows PaddedMaltaUnit to call either function via overloading.
struct MaltaTagLF {};
struct MaltaTag {};
} // namespace jxl
#endif // JXL_BUTTERAUGLI_ONCE
#include <hwy/highway.h>
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Abs;
using hwy::HWY_NAMESPACE::Div;
using hwy::HWY_NAMESPACE::Gt;
using hwy::HWY_NAMESPACE::IfThenElse;
using hwy::HWY_NAMESPACE::IfThenElseZero;
using hwy::HWY_NAMESPACE::Lt;
using hwy::HWY_NAMESPACE::Max;
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::MulAdd;
using hwy::HWY_NAMESPACE::MulSub;
using hwy::HWY_NAMESPACE::Neg;
using hwy::HWY_NAMESPACE::Sub;
using hwy::HWY_NAMESPACE::Vec;
using hwy::HWY_NAMESPACE::ZeroIfNegative;
template <class D, class V>
HWY_INLINE V MaximumClamp(D d, V v, double kMaxVal) {
static const double kMul = 0.724216145665;
const V mul = Set(d, kMul);
const V maxval = Set(d, kMaxVal);
// If greater than maxval or less than -maxval, replace with if_*.
const V if_pos = MulAdd(Sub(v, maxval), mul, maxval);
const V if_neg = MulSub(Add(v, maxval), mul, maxval);
const V pos_or_v = IfThenElse(Ge(v, maxval), if_pos, v);
return IfThenElse(Lt(v, Neg(maxval)), if_neg, pos_or_v);
}
// Make area around zero less important (remove it).
template <class D, class V>
HWY_INLINE V RemoveRangeAroundZero(const D d, const double kw, const V x) {
const auto w = Set(d, kw);
return IfThenElse(Gt(x, w), Sub(x, w),
IfThenElseZero(Lt(x, Neg(w)), Add(x, w)));
}
// Make area around zero more important (2x it until the limit).
template <class D, class V>
HWY_INLINE V AmplifyRangeAroundZero(const D d, const double kw, const V x) {
const auto w = Set(d, kw);
return IfThenElse(Gt(x, w), Add(x, w),
IfThenElse(Lt(x, Neg(w)), Sub(x, w), Add(x, x)));
}
// XybLowFreqToVals converts from low-frequency XYB space to the 'vals' space.
// Vals space can be converted to L2-norm space (Euclidean and normalized)
// through visual masking.
template <class D, class V>
HWY_INLINE void XybLowFreqToVals(const D d, const V& x, const V& y,
const V& b_arg, V* HWY_RESTRICT valx,
V* HWY_RESTRICT valy, V* HWY_RESTRICT valb) {
static const double xmul_scalar = 33.832837186260;
static const double ymul_scalar = 14.458268100570;
static const double bmul_scalar = 49.87984651440;
static const double y_to_b_mul_scalar = -0.362267051518;
const V xmul = Set(d, xmul_scalar);
const V ymul = Set(d, ymul_scalar);
const V bmul = Set(d, bmul_scalar);
const V y_to_b_mul = Set(d, y_to_b_mul_scalar);
const V b = MulAdd(y_to_b_mul, y, b_arg);
*valb = Mul(b, bmul);
*valx = Mul(x, xmul);
*valy = Mul(y, ymul);
}
void XybLowFreqToVals(Image3F* xyb_lf) {
// Modify range around zero code only concerns the high frequency
// planes and only the X and Y channels.
// Convert low freq xyb to vals space so that we can do a simple squared sum
// diff on the low frequencies later.
const HWY_FULL(float) d;
for (size_t y = 0; y < xyb_lf->ysize(); ++y) {
float* BUTTERAUGLI_RESTRICT row_x = xyb_lf->PlaneRow(0, y);
float* BUTTERAUGLI_RESTRICT row_y = xyb_lf->PlaneRow(1, y);
float* BUTTERAUGLI_RESTRICT row_b = xyb_lf->PlaneRow(2, y);
for (size_t x = 0; x < xyb_lf->xsize(); x += Lanes(d)) {
auto valx = Undefined(d);
auto valy = Undefined(d);
auto valb = Undefined(d);
XybLowFreqToVals(d, Load(d, row_x + x), Load(d, row_y + x),
Load(d, row_b + x), &valx, &valy, &valb);
Store(valx, d, row_x + x);
Store(valy, d, row_y + x);
Store(valb, d, row_b + x);
}
}
}
void SuppressXByY(const ImageF& in_y, ImageF* HWY_RESTRICT inout_x) {
JXL_DASSERT(SameSize(*inout_x, in_y));
const size_t xsize = in_y.xsize();
const size_t ysize = in_y.ysize();
const HWY_FULL(float) d;
static const double suppress = 46.0;
static const double s = 0.653020556257;
const auto sv = Set(d, s);
const auto one_minus_s = Set(d, 1.0 - s);
const auto ywv = Set(d, suppress);
for (size_t y = 0; y < ysize; ++y) {
const float* HWY_RESTRICT row_y = in_y.ConstRow(y);
float* HWY_RESTRICT row_x = inout_x->Row(y);
for (size_t x = 0; x < xsize; x += Lanes(d)) {
const auto vx = Load(d, row_x + x);
const auto vy = Load(d, row_y + x);
const auto scaler =
MulAdd(Div(ywv, MulAdd(vy, vy, ywv)), one_minus_s, sv);
Store(Mul(scaler, vx), d, row_x + x);
}
}
}
void Subtract(const ImageF& a, const ImageF& b, ImageF* c) {
const HWY_FULL(float) d;
for (size_t y = 0; y < a.ysize(); ++y) {
const float* row_a = a.ConstRow(y);
const float* row_b = b.ConstRow(y);
float* row_c = c->Row(y);
for (size_t x = 0; x < a.xsize(); x += Lanes(d)) {
Store(Sub(Load(d, row_a + x), Load(d, row_b + x)), d, row_c + x);
}
}
}
Status SeparateLFAndMF(const ButteraugliParams& params, const Image3F& xyb,
Image3F* lf, Image3F* mf, BlurTemp* blur_temp) {
static const double kSigmaLf = 7.15593339443;
for (int i = 0; i < 3; ++i) {
// Extract lf ...
JXL_RETURN_IF_ERROR(
Blur(xyb.Plane(i), kSigmaLf, params, blur_temp, &lf->Plane(i)));
// ... and keep everything else in mf.
Subtract(xyb.Plane(i), lf->Plane(i), &mf->Plane(i));
}
XybLowFreqToVals(lf);
return true;
}
Status SeparateMFAndHF(const ButteraugliParams& params, Image3F* mf, ImageF* hf,
BlurTemp* blur_temp) {
const HWY_FULL(float) d;
static const double kSigmaHf = 3.22489901262;
const size_t xsize = mf->xsize();
const size_t ysize = mf->ysize();
JXL_ASSIGN_OR_RETURN(hf[0], ImageF::Create(xsize, ysize));
JXL_ASSIGN_OR_RETURN(hf[1], ImageF::Create(xsize, ysize));
for (int i = 0; i < 3; ++i) {
if (i == 2) {
JXL_RETURN_IF_ERROR(
Blur(mf->Plane(i), kSigmaHf, params, blur_temp, &mf->Plane(i)));
break;
}
for (size_t y = 0; y < ysize; ++y) {
float* BUTTERAUGLI_RESTRICT row_mf = mf->PlaneRow(i, y);
float* BUTTERAUGLI_RESTRICT row_hf = hf[i].Row(y);
for (size_t x = 0; x < xsize; x += Lanes(d)) {
Store(Load(d, row_mf + x), d, row_hf + x);
}
}
JXL_RETURN_IF_ERROR(
Blur(mf->Plane(i), kSigmaHf, params, blur_temp, &mf->Plane(i)));
static const double kRemoveMfRange = 0.29;
static const double kAddMfRange = 0.1;
if (i == 0) {
for (size_t y = 0; y < ysize; ++y) {
float* BUTTERAUGLI_RESTRICT row_mf = mf->PlaneRow(0, y);
float* BUTTERAUGLI_RESTRICT row_hf = hf[0].Row(y);
for (size_t x = 0; x < xsize; x += Lanes(d)) {
auto mf = Load(d, row_mf + x);
auto hf = Sub(Load(d, row_hf + x), mf);
mf = RemoveRangeAroundZero(d, kRemoveMfRange, mf);
Store(mf, d, row_mf + x);
Store(hf, d, row_hf + x);
}
}
} else {
for (size_t y = 0; y < ysize; ++y) {
float* BUTTERAUGLI_RESTRICT row_mf = mf->PlaneRow(1, y);
float* BUTTERAUGLI_RESTRICT row_hf = hf[1].Row(y);
for (size_t x = 0; x < xsize; x += Lanes(d)) {
auto mf = Load(d, row_mf + x);
auto hf = Sub(Load(d, row_hf + x), mf);
mf = AmplifyRangeAroundZero(d, kAddMfRange, mf);
Store(mf, d, row_mf + x);
Store(hf, d, row_hf + x);
}
}
}
}
// Suppress red-green by intensity change in the high freq channels.
SuppressXByY(hf[1], &hf[0]);
return true;
}
Status SeparateHFAndUHF(const ButteraugliParams& params, ImageF* hf,
ImageF* uhf, BlurTemp* blur_temp) {
const HWY_FULL(float) d;
const size_t xsize = hf[0].xsize();
const size_t ysize = hf[0].ysize();
static const double kSigmaUhf = 1.56416327805;
JXL_ASSIGN_OR_RETURN(uhf[0], ImageF::Create(xsize, ysize));
JXL_ASSIGN_OR_RETURN(uhf[1], ImageF::Create(xsize, ysize));
for (int i = 0; i < 2; ++i) {
// Divide hf into hf and uhf.
for (size_t y = 0; y < ysize; ++y) {
float* BUTTERAUGLI_RESTRICT row_uhf = uhf[i].Row(y);
float* BUTTERAUGLI_RESTRICT row_hf = hf[i].Row(y);
for (size_t x = 0; x < xsize; ++x) {
row_uhf[x] = row_hf[x];
}
}
JXL_RETURN_IF_ERROR(Blur(hf[i], kSigmaUhf, params, blur_temp, &hf[i]));
static const double kRemoveHfRange = 1.5;
static const double kAddHfRange = 0.132;
static const double kRemoveUhfRange = 0.04;
static const double kMaxclampHf = 28.4691806922;
static const double kMaxclampUhf = 5.19175294647;
static double kMulYHf = 2.155;
static double kMulYUhf = 2.69313763794;
if (i == 0) {
for (size_t y = 0; y < ysize; ++y) {
float* BUTTERAUGLI_RESTRICT row_uhf = uhf[0].Row(y);
float* BUTTERAUGLI_RESTRICT row_hf = hf[0].Row(y);
for (size_t x = 0; x < xsize; x += Lanes(d)) {
auto hf = Load(d, row_hf + x);
auto uhf = Sub(Load(d, row_uhf + x), hf);
hf = RemoveRangeAroundZero(d, kRemoveHfRange, hf);
uhf = RemoveRangeAroundZero(d, kRemoveUhfRange, uhf);
Store(hf, d, row_hf + x);
Store(uhf, d, row_uhf + x);
}
}
} else {
for (size_t y = 0; y < ysize; ++y) {
float* BUTTERAUGLI_RESTRICT row_uhf = uhf[1].Row(y);
float* BUTTERAUGLI_RESTRICT row_hf = hf[1].Row(y);
for (size_t x = 0; x < xsize; x += Lanes(d)) {
auto hf = Load(d, row_hf + x);
hf = MaximumClamp(d, hf, kMaxclampHf);
auto uhf = Sub(Load(d, row_uhf + x), hf);
uhf = MaximumClamp(d, uhf, kMaxclampUhf);
uhf = Mul(uhf, Set(d, kMulYUhf));
Store(uhf, d, row_uhf + x);
hf = Mul(hf, Set(d, kMulYHf));
hf = AmplifyRangeAroundZero(d, kAddHfRange, hf);
Store(hf, d, row_hf + x);
}
}
}
}
return true;
}
void DeallocateHFAndUHF(ImageF* hf, ImageF* uhf) {
for (int i = 0; i < 2; ++i) {
hf[i] = ImageF();
uhf[i] = ImageF();
}
}
Status SeparateFrequencies(size_t xsize, size_t ysize,
const ButteraugliParams& params, BlurTemp* blur_temp,
const Image3F& xyb, PsychoImage& ps) {
JXL_ASSIGN_OR_RETURN(ps.lf, Image3F::Create(xyb.xsize(), xyb.ysize()));
JXL_ASSIGN_OR_RETURN(ps.mf, Image3F::Create(xyb.xsize(), xyb.ysize()));
JXL_RETURN_IF_ERROR(SeparateLFAndMF(params, xyb, &ps.lf, &ps.mf, blur_temp));
JXL_RETURN_IF_ERROR(SeparateMFAndHF(params, &ps.mf, &ps.hf[0], blur_temp));
JXL_RETURN_IF_ERROR(
SeparateHFAndUHF(params, &ps.hf[0], &ps.uhf[0], blur_temp));
return true;
}
namespace {
template <typename V>
BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d) {
return Add(Add(a, b), Add(c, d));
}
template <typename V>
BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d, V e) {
return Sum(a, b, c, Add(d, e));
}
template <typename V>
BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d, V e, V f, V g) {
return Sum(a, b, c, Sum(d, e, f, g));
}
template <typename V>
BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d, V e, V f, V g, V h, V i) {
return Add(Add(Sum(a, b, c, d), Sum(e, f, g, h)), i);
}
} // namespace
template <class D>
Vec<D> MaltaUnit(MaltaTagLF /*tag*/, const D df,
const float* BUTTERAUGLI_RESTRICT d, const intptr_t xs) {
const intptr_t xs3 = 3 * xs;
const auto center = LoadU(df, d);
// x grows, y constant
const auto sum_yconst = Sum(LoadU(df, d - 4), LoadU(df, d - 2), center,
LoadU(df, d + 2), LoadU(df, d + 4));
// Will return this, sum of all line kernels
auto retval = Mul(sum_yconst, sum_yconst);
{
// y grows, x constant
auto sum = Sum(LoadU(df, d - xs3 - xs), LoadU(df, d - xs - xs), center,
LoadU(df, d + xs + xs), LoadU(df, d + xs3 + xs));
retval = MulAdd(sum, sum, retval);
}
{
// both grow
auto sum = Sum(LoadU(df, d - xs3 - 3), LoadU(df, d - xs - xs - 2), center,
LoadU(df, d + xs + xs + 2), LoadU(df, d + xs3 + 3));
retval = MulAdd(sum, sum, retval);
}
{
// y grows, x shrinks
auto sum = Sum(LoadU(df, d - xs3 + 3), LoadU(df, d - xs - xs + 2), center,
LoadU(df, d + xs + xs - 2), LoadU(df, d + xs3 - 3));
retval = MulAdd(sum, sum, retval);
}
{
// y grows -4 to 4, x shrinks 1 -> -1
auto sum =
Sum(LoadU(df, d - xs3 - xs + 1), LoadU(df, d - xs - xs + 1), center,
LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 + xs - 1));
retval = MulAdd(sum, sum, retval);
}
{
// y grows -4 to 4, x grows -1 -> 1
auto sum =
Sum(LoadU(df, d - xs3 - xs - 1), LoadU(df, d - xs - xs - 1), center,
LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + xs + 1));
retval = MulAdd(sum, sum, retval);
}
{
// x grows -4 to 4, y grows -1 to 1
auto sum = Sum(LoadU(df, d - 4 - xs), LoadU(df, d - 2 - xs), center,
LoadU(df, d + 2 + xs), LoadU(df, d + 4 + xs));
retval = MulAdd(sum, sum, retval);
}
{
// x grows -4 to 4, y shrinks 1 to -1
auto sum = Sum(LoadU(df, d - 4 + xs), LoadU(df, d - 2 + xs), center,
LoadU(df, d + 2 - xs), LoadU(df, d + 4 - xs));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1__*______
2___*_____
3_________
4____0____
5_________
6_____*___
7______*__
8_________ */
auto sum = Sum(LoadU(df, d - xs3 - 2), LoadU(df, d - xs - xs - 1), center,
LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + 2));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1______*__
2_____*___
3_________
4____0____
5_________
6___*_____
7__*______
8_________ */
auto sum = Sum(LoadU(df, d - xs3 + 2), LoadU(df, d - xs - xs + 1), center,
LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 - 2));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1_________
2_*_______
3__*______
4____0____
5______*__
6_______*_
7_________
8_________ */
auto sum = Sum(LoadU(df, d - xs - xs - 3), LoadU(df, d - xs - 2), center,
LoadU(df, d + xs + 2), LoadU(df, d + xs + xs + 3));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1_________
2_______*_
3______*__
4____0____
5__*______
6_*_______
7_________
8_________ */
auto sum = Sum(LoadU(df, d - xs - xs + 3), LoadU(df, d - xs + 2), center,
LoadU(df, d + xs - 2), LoadU(df, d + xs + xs - 3));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1_________
2________*
3______*__
4____0____
5__*______
6*________
7_________
8_________ */
auto sum = Sum(LoadU(df, d + xs + xs - 4), LoadU(df, d + xs - 2), center,
LoadU(df, d - xs + 2), LoadU(df, d - xs - xs + 4));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1_________
2*________
3__*______
4____0____
5______*__
6________*
7_________
8_________ */
auto sum = Sum(LoadU(df, d - xs - xs - 4), LoadU(df, d - xs - 2), center,
LoadU(df, d + xs + 2), LoadU(df, d + xs + xs + 4));
retval = MulAdd(sum, sum, retval);
}
{
/* 0__*______
1_________
2___*_____
3_________
4____0____
5_________
6_____*___
7_________
8______*__ */
auto sum =
Sum(LoadU(df, d - xs3 - xs - 2), LoadU(df, d - xs - xs - 1), center,
LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + xs + 2));
retval = MulAdd(sum, sum, retval);
}
{
/* 0______*__
1_________
2_____*___
3_________
4____0____
5_________
6___*_____
7_________
8__*______ */
auto sum =
Sum(LoadU(df, d - xs3 - xs + 2), LoadU(df, d - xs - xs + 1), center,
LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 + xs - 2));
retval = MulAdd(sum, sum, retval);
}
return retval;
}
template <class D>
Vec<D> MaltaUnit(MaltaTag /*tag*/, const D df,
const float* BUTTERAUGLI_RESTRICT d, const intptr_t xs) {
const intptr_t xs3 = 3 * xs;
const auto center = LoadU(df, d);
// x grows, y constant
const auto sum_yconst =
Sum(LoadU(df, d - 4), LoadU(df, d - 3), LoadU(df, d - 2),
LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + 2),
LoadU(df, d + 3), LoadU(df, d + 4));
// Will return this, sum of all line kernels
auto retval = Mul(sum_yconst, sum_yconst);
{
// y grows, x constant
auto sum = Sum(LoadU(df, d - xs3 - xs), LoadU(df, d - xs3),
LoadU(df, d - xs - xs), LoadU(df, d - xs), center,
LoadU(df, d + xs), LoadU(df, d + xs + xs),
LoadU(df, d + xs3), LoadU(df, d + xs3 + xs));
retval = MulAdd(sum, sum, retval);
}
{
// both grow
auto sum = Sum(LoadU(df, d - xs3 - 3), LoadU(df, d - xs - xs - 2),
LoadU(df, d - xs - 1), center, LoadU(df, d + xs + 1),
LoadU(df, d + xs + xs + 2), LoadU(df, d + xs3 + 3));
retval = MulAdd(sum, sum, retval);
}
{
// y grows, x shrinks
auto sum = Sum(LoadU(df, d - xs3 + 3), LoadU(df, d - xs - xs + 2),
LoadU(df, d - xs + 1), center, LoadU(df, d + xs - 1),
LoadU(df, d + xs + xs - 2), LoadU(df, d + xs3 - 3));
retval = MulAdd(sum, sum, retval);
}
{
// y grows -4 to 4, x shrinks 1 -> -1
auto sum = Sum(LoadU(df, d - xs3 - xs + 1), LoadU(df, d - xs3 + 1),
LoadU(df, d - xs - xs + 1), LoadU(df, d - xs), center,
LoadU(df, d + xs), LoadU(df, d + xs + xs - 1),
LoadU(df, d + xs3 - 1), LoadU(df, d + xs3 + xs - 1));
retval = MulAdd(sum, sum, retval);
}
{
// y grows -4 to 4, x grows -1 -> 1
auto sum = Sum(LoadU(df, d - xs3 - xs - 1), LoadU(df, d - xs3 - 1),
LoadU(df, d - xs - xs - 1), LoadU(df, d - xs), center,
LoadU(df, d + xs), LoadU(df, d + xs + xs + 1),
LoadU(df, d + xs3 + 1), LoadU(df, d + xs3 + xs + 1));
retval = MulAdd(sum, sum, retval);
}
{
// x grows -4 to 4, y grows -1 to 1
auto sum =
Sum(LoadU(df, d - 4 - xs), LoadU(df, d - 3 - xs), LoadU(df, d - 2 - xs),
LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + 2 + xs),
LoadU(df, d + 3 + xs), LoadU(df, d + 4 + xs));
retval = MulAdd(sum, sum, retval);
}
{
// x grows -4 to 4, y shrinks 1 to -1
auto sum =
Sum(LoadU(df, d - 4 + xs), LoadU(df, d - 3 + xs), LoadU(df, d - 2 + xs),
LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + 2 - xs),
LoadU(df, d + 3 - xs), LoadU(df, d + 4 - xs));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1__*______
2___*_____
3___*_____
4____0____
5_____*___
6_____*___
7______*__
8_________ */
auto sum = Sum(LoadU(df, d - xs3 - 2), LoadU(df, d - xs - xs - 1),
LoadU(df, d - xs - 1), center, LoadU(df, d + xs + 1),
LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + 2));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1______*__
2_____*___
3_____*___
4____0____
5___*_____
6___*_____
7__*______
8_________ */
auto sum = Sum(LoadU(df, d - xs3 + 2), LoadU(df, d - xs - xs + 1),
LoadU(df, d - xs + 1), center, LoadU(df, d + xs - 1),
LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 - 2));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1_________
2_*_______
3__**_____
4____0____
5_____**__
6_______*_
7_________
8_________ */
auto sum = Sum(LoadU(df, d - xs - xs - 3), LoadU(df, d - xs - 2),
LoadU(df, d - xs - 1), center, LoadU(df, d + xs + 1),
LoadU(df, d + xs + 2), LoadU(df, d + xs + xs + 3));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1_________
2_______*_
3_____**__
4____0____
5__**_____
6_*_______
7_________
8_________ */
auto sum = Sum(LoadU(df, d - xs - xs + 3), LoadU(df, d - xs + 2),
LoadU(df, d - xs + 1), center, LoadU(df, d + xs - 1),
LoadU(df, d + xs - 2), LoadU(df, d + xs + xs - 3));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1_________
2_________
3______***
4___*0*___
5***______
6_________
7_________
8_________ */
auto sum =
Sum(LoadU(df, d + xs - 4), LoadU(df, d + xs - 3), LoadU(df, d + xs - 2),
LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d - xs + 2),
LoadU(df, d - xs + 3), LoadU(df, d - xs + 4));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_________
1_________
2_________
3***______
4___*0*___
5______***
6_________
7_________
8_________ */
auto sum =
Sum(LoadU(df, d - xs - 4), LoadU(df, d - xs - 3), LoadU(df, d - xs - 2),
LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + xs + 2),
LoadU(df, d + xs + 3), LoadU(df, d + xs + 4));
retval = MulAdd(sum, sum, retval);
}
{
/* 0___*_____
1___*_____
2___*_____
3____*____
4____0____
5____*____
6_____*___
7_____*___
8_____*___ */
auto sum = Sum(LoadU(df, d - xs3 - xs - 1), LoadU(df, d - xs3 - 1),
LoadU(df, d - xs - xs - 1), LoadU(df, d - xs), center,
LoadU(df, d + xs), LoadU(df, d + xs + xs + 1),
LoadU(df, d + xs3 + 1), LoadU(df, d + xs3 + xs + 1));
retval = MulAdd(sum, sum, retval);
}
{
/* 0_____*___
1_____*___
2____ *___
3____*____
4____0____
5____*____
6___*_____
7___*_____
8___*_____ */
auto sum = Sum(LoadU(df, d - xs3 - xs + 1), LoadU(df, d - xs3 + 1),
LoadU(df, d - xs - xs + 1), LoadU(df, d - xs), center,
LoadU(df, d + xs), LoadU(df, d + xs + xs - 1),
LoadU(df, d + xs3 - 1), LoadU(df, d + xs3 + xs - 1));
retval = MulAdd(sum, sum, retval);
}
return retval;
}
// Returns MaltaUnit. Avoids bounds-checks when x0 and y0 are known
// to be far enough from the image borders. "diffs" is a packed image.
template <class Tag>
static BUTTERAUGLI_INLINE float PaddedMaltaUnit(const ImageF& diffs,
const size_t x0,
const size_t y0) {
const float* BUTTERAUGLI_RESTRICT d = diffs.ConstRow(y0) + x0;
const HWY_CAPPED(float, 1) df;
if ((x0 >= 4 && y0 >= 4 && x0 < (diffs.xsize() - 4) &&
y0 < (diffs.ysize() - 4))) {
return GetLane(MaltaUnit(Tag(), df, d, diffs.PixelsPerRow()));
}
float borderimage[12 * 9]; // round up to 4
for (int dy = 0; dy < 9; ++dy) {
int y = y0 + dy - 4;
if (y < 0 || static_cast<size_t>(y) >= diffs.ysize()) {
for (int dx = 0; dx < 12; ++dx) {
borderimage[dy * 12 + dx] = 0.0f;
}
continue;
}
const float* row_diffs = diffs.ConstRow(y);
for (int dx = 0; dx < 9; ++dx) {
int x = x0 + dx - 4;
if (x < 0 || static_cast<size_t>(x) >= diffs.xsize()) {
borderimage[dy * 12 + dx] = 0.0f;
} else {
borderimage[dy * 12 + dx] = row_diffs[x];
}
}
std::fill(borderimage + dy * 12 + 9, borderimage + dy * 12 + 12, 0.0f);
}
return GetLane(MaltaUnit(Tag(), df, &borderimage[4 * 12 + 4], 12));
}
template <class Tag>
static void MaltaDiffMapT(const Tag tag, const ImageF& lum0, const ImageF& lum1,
const double w_0gt1, const double w_0lt1,
const double norm1, const double len,
const double mulli, ImageF* HWY_RESTRICT diffs,
ImageF* HWY_RESTRICT block_diff_ac) {
JXL_DASSERT(SameSize(lum0, lum1) && SameSize(lum0, *diffs));
const size_t xsize_ = lum0.xsize();
const size_t ysize_ = lum0.ysize();
const float kWeight0 = 0.5;
const float kWeight1 = 0.33;
const double w_pre0gt1 = mulli * std::sqrt(kWeight0 * w_0gt1) / (len * 2 + 1);
const double w_pre0lt1 = mulli * std::sqrt(kWeight1 * w_0lt1) / (len * 2 + 1);
const float norm2_0gt1 = w_pre0gt1 * norm1;
const float norm2_0lt1 = w_pre0lt1 * norm1;
for (size_t y = 0; y < ysize_; ++y) {
const float* HWY_RESTRICT row0 = lum0.ConstRow(y);
const float* HWY_RESTRICT row1 = lum1.ConstRow(y);
float* HWY_RESTRICT row_diffs = diffs->Row(y);
for (size_t x = 0; x < xsize_; ++x) {
const float absval = 0.5f * (std::abs(row0[x]) + std::abs(row1[x]));
const float diff = row0[x] - row1[x];
const float scaler = norm2_0gt1 / (static_cast<float>(norm1) + absval);
// Primary symmetric quadratic objective.
row_diffs[x] = scaler * diff;
const float scaler2 = norm2_0lt1 / (static_cast<float>(norm1) + absval);
const double fabs0 = std::fabs(row0[x]);
// Secondary half-open quadratic objectives.
const double too_small = 0.55 * fabs0;
const double too_big = 1.05 * fabs0;
if (row0[x] < 0) {
if (row1[x] > -too_small) {
double impact = scaler2 * (row1[x] + too_small);
row_diffs[x] -= impact;
} else if (row1[x] < -too_big) {
double impact = scaler2 * (-row1[x] - too_big);
row_diffs[x] += impact;
}
} else {
if (row1[x] < too_small) {
double impact = scaler2 * (too_small - row1[x]);
row_diffs[x] += impact;
} else if (row1[x] > too_big) {
double impact = scaler2 * (row1[x] - too_big);
row_diffs[x] -= impact;
}
}
}
}
size_t y0 = 0;
// Top
for (; y0 < 4; ++y0) {
float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->Row(y0);
for (size_t x0 = 0; x0 < xsize_; ++x0) {
row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
}
}
const HWY_FULL(float) df;
const size_t aligned_x = std::max(static_cast<size_t>(4), Lanes(df));
const intptr_t stride = diffs->PixelsPerRow();
// Middle
for (; y0 < ysize_ - 4; ++y0) {
const float* BUTTERAUGLI_RESTRICT row_in = diffs->ConstRow(y0);
float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->Row(y0);
size_t x0 = 0;
for (; x0 < aligned_x; ++x0) {
row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
}
for (; x0 + Lanes(df) + 4 <= xsize_; x0 += Lanes(df)) {
auto diff = Load(df, row_diff + x0);
diff = Add(diff, MaltaUnit(Tag(), df, row_in + x0, stride));
Store(diff, df, row_diff + x0);
}
for (; x0 < xsize_; ++x0) {
row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
}
}
// Bottom
for (; y0 < ysize_; ++y0) {
float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->Row(y0);
for (size_t x0 = 0; x0 < xsize_; ++x0) {
row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
}
}
}
// Need non-template wrapper functions for HWY_EXPORT.
void MaltaDiffMap(const ImageF& lum0, const ImageF& lum1, const double w_0gt1,
const double w_0lt1, const double norm1,
ImageF* HWY_RESTRICT diffs,
ImageF* HWY_RESTRICT block_diff_ac) {
const double len = 3.75;
static const double mulli = 0.39905817637;
MaltaDiffMapT(MaltaTag(), lum0, lum1, w_0gt1, w_0lt1, norm1, len, mulli,
diffs, block_diff_ac);
}
void MaltaDiffMapLF(const ImageF& lum0, const ImageF& lum1, const double w_0gt1,
const double w_0lt1, const double norm1,
ImageF* HWY_RESTRICT diffs,
ImageF* HWY_RESTRICT block_diff_ac) {
const double len = 3.75;
static const double mulli = 0.611612573796;
MaltaDiffMapT(MaltaTagLF(), lum0, lum1, w_0gt1, w_0lt1, norm1, len, mulli,
diffs, block_diff_ac);
}
void CombineChannelsForMasking(const ImageF* hf, const ImageF* uhf,
ImageF* out) {
// Only X and Y components are involved in masking. B's influence
// is considered less important in the high frequency area, and we
// don't model masking from lower frequency signals.
static const float muls[3] = {
2.5f,
0.4f,
0.4f,
};
// Silly and unoptimized approach here. TODO(jyrki): rework this.
for (size_t y = 0; y < hf[0].ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row_y_hf = hf[1].Row(y);
const float* BUTTERAUGLI_RESTRICT row_y_uhf = uhf[1].Row(y);
const float* BUTTERAUGLI_RESTRICT row_x_hf = hf[0].Row(y);
const float* BUTTERAUGLI_RESTRICT row_x_uhf = uhf[0].Row(y);
float* BUTTERAUGLI_RESTRICT row = out->Row(y);
for (size_t x = 0; x < hf[0].xsize(); ++x) {
float xdiff = (row_x_uhf[x] + row_x_hf[x]) * muls[0];
float ydiff = row_y_uhf[x] * muls[1] + row_y_hf[x] * muls[2];
row[x] = xdiff * xdiff + ydiff * ydiff;
row[x] = std::sqrt(row[x]);
}
}
}
void DiffPrecompute(const ImageF& xyb, float mul, float bias_arg, ImageF* out) {
const size_t xsize = xyb.xsize();
const size_t ysize = xyb.ysize();
const float bias = mul * bias_arg;
const float sqrt_bias = std::sqrt(bias);
for (size_t y = 0; y < ysize; ++y) {
const float* BUTTERAUGLI_RESTRICT row_in = xyb.Row(y);
float* BUTTERAUGLI_RESTRICT row_out = out->Row(y);
for (size_t x = 0; x < xsize; ++x) {
// kBias makes sqrt behave more linearly.
row_out[x] = std::sqrt(mul * std::abs(row_in[x]) + bias) - sqrt_bias;
}
}
}
// std::log(80.0) / std::log(255.0);
constexpr float kIntensityTargetNormalizationHack = 0.79079917404f;
static const float kInternalGoodQualityThreshold =
17.83f * kIntensityTargetNormalizationHack;
static const float kGlobalScale = 1.0 / kInternalGoodQualityThreshold;
void StoreMin3(const float v, float& min0, float& min1, float& min2) {
if (v < min2) {
if (v < min0) {
min2 = min1;
min1 = min0;
min0 = v;
} else if (v < min1) {
min2 = min1;
min1 = v;
} else {
min2 = v;
}
}
}
// Look for smooth areas near the area of degradation.
// If the areas area generally smooth, don't do masking.
void FuzzyErosion(const ImageF& from, ImageF* to) {
const size_t xsize = from.xsize();
const size_t ysize = from.ysize();
static const int kStep = 3;
for (size_t y = 0; y < ysize; ++y) {
for (size_t x = 0; x < xsize; ++x) {
float min0 = from.Row(y)[x];
float min1 = 2 * min0;
float min2 = min1;
if (x >= kStep) {
float v = from.Row(y)[x - kStep];
StoreMin3(v, min0, min1, min2);
if (y >= kStep) {
float v = from.Row(y - kStep)[x - kStep];
StoreMin3(v, min0, min1, min2);
}
if (y < ysize - kStep) {
float v = from.Row(y + kStep)[x - kStep];
StoreMin3(v, min0, min1, min2);
}
}
if (x < xsize - kStep) {
float v = from.Row(y)[x + kStep];
StoreMin3(v, min0, min1, min2);
if (y >= kStep) {
float v = from.Row(y - kStep)[x + kStep];
StoreMin3(v, min0, min1, min2);
}
if (y < ysize - kStep) {
float v = from.Row(y + kStep)[x + kStep];
StoreMin3(v, min0, min1, min2);
}
}
if (y >= kStep) {
float v = from.Row(y - kStep)[x];
StoreMin3(v, min0, min1, min2);
}
if (y < ysize - kStep) {
float v = from.Row(y + kStep)[x];
StoreMin3(v, min0, min1, min2);
}
to->Row(y)[x] = (0.45f * min0 + 0.3f * min1 + 0.25f * min2);
}
}
}
// Compute values of local frequency and dc masking based on the activity
// in the two images. img_diff_ac may be null.
Status Mask(const ImageF& mask0, const ImageF& mask1,
const ButteraugliParams& params, BlurTemp* blur_temp,
ImageF* BUTTERAUGLI_RESTRICT mask,
ImageF* BUTTERAUGLI_RESTRICT diff_ac) {
const size_t xsize = mask0.xsize();
const size_t ysize = mask0.ysize();
JXL_ASSIGN_OR_RETURN(*mask, ImageF::Create(xsize, ysize));
static const float kMul = 6.19424080439;
static const float kBias = 12.61050594197;
static const float kRadius = 2.7;
JXL_ASSIGN_OR_RETURN(ImageF diff0, ImageF::Create(xsize, ysize));
JXL_ASSIGN_OR_RETURN(ImageF diff1, ImageF::Create(xsize, ysize));
JXL_ASSIGN_OR_RETURN(ImageF blurred0, ImageF::Create(xsize, ysize));
JXL_ASSIGN_OR_RETURN(ImageF blurred1, ImageF::Create(xsize, ysize));
DiffPrecompute(mask0, kMul, kBias, &diff0);
DiffPrecompute(mask1, kMul, kBias, &diff1);
JXL_RETURN_IF_ERROR(Blur(diff0, kRadius, params, blur_temp, &blurred0));
FuzzyErosion(blurred0, &diff0);
JXL_RETURN_IF_ERROR(Blur(diff1, kRadius, params, blur_temp, &blurred1));
for (size_t y = 0; y < ysize; ++y) {
for (size_t x = 0; x < xsize; ++x) {
mask->Row(y)[x] = diff0.Row(y)[x];
if (diff_ac != nullptr) {
static const float kMaskToErrorMul = 10.0;
float diff = blurred0.Row(y)[x] - blurred1.Row(y)[x];
diff_ac->Row(y)[x] += kMaskToErrorMul * diff * diff;
}
}
}
return true;
}
// `diff_ac` may be null.
Status MaskPsychoImage(const PsychoImage& pi0, const PsychoImage& pi1,
const size_t xsize, const size_t ysize,
const ButteraugliParams& params, BlurTemp* blur_temp,
ImageF* BUTTERAUGLI_RESTRICT mask,
ImageF* BUTTERAUGLI_RESTRICT diff_ac) {
JXL_ASSIGN_OR_RETURN(ImageF mask0, ImageF::Create(xsize, ysize));
JXL_ASSIGN_OR_RETURN(ImageF mask1, ImageF::Create(xsize, ysize));
CombineChannelsForMasking(&pi0.hf[0], &pi0.uhf[0], &mask0);
CombineChannelsForMasking(&pi1.hf[0], &pi1.uhf[0], &mask1);
JXL_RETURN_IF_ERROR(Mask(mask0, mask1, params, blur_temp, mask, diff_ac));
return true;
}
double MaskY(double delta) {
static const double offset = 0.829591754942;
static const double scaler = 0.451936922203;
static const double mul = 2.5485944793;
const double c = mul / ((scaler * delta) + offset);
const double retval = kGlobalScale * (1.0 + c);
return retval * retval;
}
double MaskDcY(double delta) {
static const double offset = 0.20025578522;
static const double scaler = 3.87449418804;
static const double mul = 0.505054525019;
const double c = mul / ((scaler * delta) + offset);
const double retval = kGlobalScale * (1.0 + c);
return retval * retval;
}
inline float MaskColor(const float color[3], const float mask) {
return color[0] * mask + color[1] * mask + color[2] * mask;
}
// Diffmap := sqrt of sum{diff images by multiplied by X and Y/B masks}
void CombineChannelsToDiffmap(const ImageF& mask, const Image3F& block_diff_dc,
const Image3F& block_diff_ac, float xmul,
ImageF* result) {
JXL_CHECK(SameSize(mask, *result));
size_t xsize = mask.xsize();
size_t ysize = mask.ysize();
for (size_t y = 0; y < ysize; ++y) {
float* BUTTERAUGLI_RESTRICT row_out = result->Row(y);
for (size_t x = 0; x < xsize; ++x) {
float val = mask.Row(y)[x];
float maskval = MaskY(val);
float dc_maskval = MaskDcY(val);
float diff_dc[3];
float diff_ac[3];
for (int i = 0; i < 3; ++i) {
diff_dc[i] = block_diff_dc.PlaneRow(i, y)[x];
diff_ac[i] = block_diff_ac.PlaneRow(i, y)[x];
}
diff_ac[0] *= xmul;
diff_dc[0] *= xmul;
row_out[x] = std::sqrt(MaskColor(diff_dc, dc_maskval) +
MaskColor(diff_ac, maskval));
}
}
}
// Adds weighted L2 difference between i0 and i1 to diffmap.
static void L2Diff(const ImageF& i0, const ImageF& i1, const float w,
ImageF* BUTTERAUGLI_RESTRICT diffmap) {
if (w == 0) return;
const HWY_FULL(float) d;
const auto weight = Set(d, w);
for (size_t y = 0; y < i0.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row0 = i0.ConstRow(y);
const float* BUTTERAUGLI_RESTRICT row1 = i1.ConstRow(y);
float* BUTTERAUGLI_RESTRICT row_diff = diffmap->Row(y);
for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) {
const auto diff = Sub(Load(d, row0 + x), Load(d, row1 + x));
const auto diff2 = Mul(diff, diff);
const auto prev = Load(d, row_diff + x);
Store(MulAdd(diff2, weight, prev), d, row_diff + x);
}
}
}
// Initializes diffmap to the weighted L2 difference between i0 and i1.
static void SetL2Diff(const ImageF& i0, const ImageF& i1, const float w,
ImageF* BUTTERAUGLI_RESTRICT diffmap) {
if (w == 0) return;
const HWY_FULL(float) d;
const auto weight = Set(d, w);
for (size_t y = 0; y < i0.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row0 = i0.ConstRow(y);
const float* BUTTERAUGLI_RESTRICT row1 = i1.ConstRow(y);
float* BUTTERAUGLI_RESTRICT row_diff = diffmap->Row(y);
for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) {
const auto diff = Sub(Load(d, row0 + x), Load(d, row1 + x));
const auto diff2 = Mul(diff, diff);
Store(Mul(diff2, weight), d, row_diff + x);
}
}
}
// i0 is the original image.
// i1 is the deformed copy.
static void L2DiffAsymmetric(const ImageF& i0, const ImageF& i1, float w_0gt1,
float w_0lt1,
ImageF* BUTTERAUGLI_RESTRICT diffmap) {
if (w_0gt1 == 0 && w_0lt1 == 0) {
return;
}
const HWY_FULL(float) d;
const auto vw_0gt1 = Set(d, w_0gt1 * 0.8);
const auto vw_0lt1 = Set(d, w_0lt1 * 0.8);
for (size_t y = 0; y < i0.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row0 = i0.Row(y);
const float* BUTTERAUGLI_RESTRICT row1 = i1.Row(y);
float* BUTTERAUGLI_RESTRICT row_diff = diffmap->Row(y);
for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) {
const auto val0 = Load(d, row0 + x);
const auto val1 = Load(d, row1 + x);
// Primary symmetric quadratic objective.
const auto diff = Sub(val0, val1);
auto total = MulAdd(Mul(diff, diff), vw_0gt1, Load(d, row_diff + x));
// Secondary half-open quadratic objectives.
const auto fabs0 = Abs(val0);
const auto too_small = Mul(Set(d, 0.4), fabs0);
const auto too_big = fabs0;
const auto if_neg = IfThenElse(
Gt(val1, Neg(too_small)), Add(val1, too_small),
IfThenElseZero(Lt(val1, Neg(too_big)), Sub(Neg(val1), too_big)));
const auto if_pos =
IfThenElse(Lt(val1, too_small), Sub(too_small, val1),
IfThenElseZero(Gt(val1, too_big), Sub(val1, too_big)));
const auto v = IfThenElse(Lt(val0, Zero(d)), if_neg, if_pos);
total = MulAdd(vw_0lt1, Mul(v, v), total);
Store(total, d, row_diff + x);
}
}
}
// A simple HDR compatible gamma function.
template <class DF, class V>
V Gamma(const DF df, V v) {
// ln(2) constant folded in because we want std::log but have FastLog2f.
const auto kRetMul = Set(df, 19.245013259874995f * 0.693147180559945f);
const auto kRetAdd = Set(df, -23.16046239805755);
// This should happen rarely, but may lead to a NaN in log, which is
// undesirable. Since negative photons don't exist we solve the NaNs by
// clamping here.
v = ZeroIfNegative(v);
const auto biased = Add(v, Set(df, 9.9710635769299145));
const auto log = FastLog2f(df, biased);
// We could fold this into a custom Log2 polynomial, but there would be
// relatively little gain.
return MulAdd(kRetMul, log, kRetAdd);
}
template <bool Clamp, class DF, class V>
BUTTERAUGLI_INLINE void OpsinAbsorbance(const DF df, const V& in0, const V& in1,
const V& in2, V* JXL_RESTRICT out0,
V* JXL_RESTRICT out1,
V* JXL_RESTRICT out2) {
// https://en.wikipedia.org/wiki/Photopsin absorbance modeling.
static const double mixi0 = 0.29956550340058319;
static const double mixi1 = 0.63373087833825936;
static const double mixi2 = 0.077705617820981968;
static const double mixi3 = 1.7557483643287353;
static const double mixi4 = 0.22158691104574774;
static const double mixi5 = 0.69391388044116142;
static const double mixi6 = 0.0987313588422;
static const double mixi7 = 1.7557483643287353;
static const double mixi8 = 0.02;
static const double mixi9 = 0.02;
static const double mixi10 = 0.20480129041026129;
static const double mixi11 = 12.226454707163354;
const V mix0 = Set(df, mixi0);
const V mix1 = Set(df, mixi1);
const V mix2 = Set(df, mixi2);
const V mix3 = Set(df, mixi3);
const V mix4 = Set(df, mixi4);
const V mix5 = Set(df, mixi5);
const V mix6 = Set(df, mixi6);
const V mix7 = Set(df, mixi7);
const V mix8 = Set(df, mixi8);
const V mix9 = Set(df, mixi9);
const V mix10 = Set(df, mixi10);
const V mix11 = Set(df, mixi11);
*out0 = MulAdd(mix0, in0, MulAdd(mix1, in1, MulAdd(mix2, in2, mix3)));
*out1 = MulAdd(mix4, in0, MulAdd(mix5, in1, MulAdd(mix6, in2, mix7)));
*out2 = MulAdd(mix8, in0, MulAdd(mix9, in1, MulAdd(mix10, in2, mix11)));
if (Clamp) {
*out0 = Max(*out0, mix3);
*out1 = Max(*out1, mix7);
*out2 = Max(*out2, mix11);
}
}
// `blurred` is a temporary image used inside this function and not returned.
Status OpsinDynamicsImage(const Image3F& rgb, const ButteraugliParams& params,
Image3F* blurred, BlurTemp* blur_temp, Image3F* xyb) {
const double kSigma = 1.2;
JXL_RETURN_IF_ERROR(
Blur(rgb.Plane(0), kSigma, params, blur_temp, &blurred->Plane(0)));
JXL_RETURN_IF_ERROR(
Blur(rgb.Plane(1), kSigma, params, blur_temp, &blurred->Plane(1)));
JXL_RETURN_IF_ERROR(
Blur(rgb.Plane(2), kSigma, params, blur_temp, &blurred->Plane(2)));
const HWY_FULL(float) df;
const auto intensity_target_multiplier = Set(df, params.intensity_target);
for (size_t y = 0; y < rgb.ysize(); ++y) {
const float* row_r = rgb.ConstPlaneRow(0, y);
const float* row_g = rgb.ConstPlaneRow(1, y);
const float* row_b = rgb.ConstPlaneRow(2, y);
const float* row_blurred_r = blurred->ConstPlaneRow(0, y);
const float* row_blurred_g = blurred->ConstPlaneRow(1, y);
const float* row_blurred_b = blurred->ConstPlaneRow(2, y);
float* row_out_x = xyb->PlaneRow(0, y);
float* row_out_y = xyb->PlaneRow(1, y);
float* row_out_b = xyb->PlaneRow(2, y);
const auto min = Set(df, 1e-4f);
for (size_t x = 0; x < rgb.xsize(); x += Lanes(df)) {
auto sensitivity0 = Undefined(df);
auto sensitivity1 = Undefined(df);
auto sensitivity2 = Undefined(df);
{
// Calculate sensitivity based on the smoothed image gamma derivative.
auto pre_mixed0 = Undefined(df);
auto pre_mixed1 = Undefined(df);
auto pre_mixed2 = Undefined(df);
OpsinAbsorbance<true>(
df, Mul(Load(df, row_blurred_r + x), intensity_target_multiplier),
Mul(Load(df, row_blurred_g + x), intensity_target_multiplier),
Mul(Load(df, row_blurred_b + x), intensity_target_multiplier),
&pre_mixed0, &pre_mixed1, &pre_mixed2);
pre_mixed0 = Max(pre_mixed0, min);
pre_mixed1 = Max(pre_mixed1, min);
pre_mixed2 = Max(pre_mixed2, min);
sensitivity0 = Div(Gamma(df, pre_mixed0), pre_mixed0);
sensitivity1 = Div(Gamma(df, pre_mixed1), pre_mixed1);
sensitivity2 = Div(Gamma(df, pre_mixed2), pre_mixed2);
sensitivity0 = Max(sensitivity0, min);
sensitivity1 = Max(sensitivity1, min);
sensitivity2 = Max(sensitivity2, min);
}
auto cur_mixed0 = Undefined(df);
auto cur_mixed1 = Undefined(df);
auto cur_mixed2 = Undefined(df);
OpsinAbsorbance<false>(
df, Mul(Load(df, row_r + x), intensity_target_multiplier),
Mul(Load(df, row_g + x), intensity_target_multiplier),
Mul(Load(df, row_b + x), intensity_target_multiplier), &cur_mixed0,
&cur_mixed1, &cur_mixed2);
cur_mixed0 = Mul(cur_mixed0, sensitivity0);
cur_mixed1 = Mul(cur_mixed1, sensitivity1);
cur_mixed2 = Mul(cur_mixed2, sensitivity2);
// This is a kludge. The negative values should be zeroed away before
// blurring. Ideally there would be no negative values in the first place.
const auto min01 = Set(df, 1.7557483643287353f);
const auto min2 = Set(df, 12.226454707163354f);
cur_mixed0 = Max(cur_mixed0, min01);
cur_mixed1 = Max(cur_mixed1, min01);
cur_mixed2 = Max(cur_mixed2, min2);
Store(Sub(cur_mixed0, cur_mixed1), df, row_out_x + x);
Store(Add(cur_mixed0, cur_mixed1), df, row_out_y + x);
Store(cur_mixed2, df, row_out_b + x);
}
}
return true;
}
Status ButteraugliDiffmapInPlace(Image3F& image0, Image3F& image1,
const ButteraugliParams& params,
ImageF& diffmap) {
// image0 and image1 are in linear sRGB color space
const size_t xsize = image0.xsize();
const size_t ysize = image0.ysize();
BlurTemp blur_temp;
{
// Convert image0 and image1 to XYB in-place
JXL_ASSIGN_OR_RETURN(Image3F temp, Image3F::Create(xsize, ysize));
JXL_RETURN_IF_ERROR(
OpsinDynamicsImage(image0, params, &temp, &blur_temp, &image0));
JXL_RETURN_IF_ERROR(
OpsinDynamicsImage(image1, params, &temp, &blur_temp, &image1));
}
// image0 and image1 are in XYB color space
JXL_ASSIGN_OR_RETURN(ImageF block_diff_dc, ImageF::Create(xsize, ysize));
ZeroFillImage(&block_diff_dc);
{
// separate out LF components from image0 and image1 and compute the dc
// diff image from them
JXL_ASSIGN_OR_RETURN(Image3F lf0, Image3F::Create(xsize, ysize));
JXL_ASSIGN_OR_RETURN(Image3F lf1, Image3F::Create(xsize, ysize));
JXL_RETURN_IF_ERROR(
SeparateLFAndMF(params, image0, &lf0, &image0, &blur_temp));
JXL_RETURN_IF_ERROR(
SeparateLFAndMF(params, image1, &lf1, &image1, &blur_temp));
for (size_t c = 0; c < 3; ++c) {
L2Diff(lf0.Plane(c), lf1.Plane(c), wmul[6 + c], &block_diff_dc);
}
}
// image0 and image1 are MF residuals (before blurring) in XYB color space
ImageF hf0[2];
ImageF hf1[2];
JXL_RETURN_IF_ERROR(SeparateMFAndHF(params, &image0, &hf0[0], &blur_temp));
JXL_RETURN_IF_ERROR(SeparateMFAndHF(params, &image1, &hf1[0], &blur_temp));
// image0 and image1 are MF-images in XYB color space
JXL_ASSIGN_OR_RETURN(ImageF block_diff_ac, ImageF::Create(xsize, ysize));
ZeroFillImage(&block_diff_ac);
// start accumulating ac diff image from MF images
{
JXL_ASSIGN_OR_RETURN(ImageF diffs, ImageF::Create(xsize, ysize));
MaltaDiffMapLF(image0.Plane(1), image1.Plane(1), wMfMalta, wMfMalta,
norm1Mf, &diffs, &block_diff_ac);
MaltaDiffMapLF(image0.Plane(0), image1.Plane(0), wMfMaltaX, wMfMaltaX,
norm1MfX, &diffs, &block_diff_ac);
}
for (size_t c = 0; c < 3; ++c) {
L2Diff(image0.Plane(c), image1.Plane(c), wmul[3 + c], &block_diff_ac);
}
// we will not need the MF-images and more, so we deallocate them to reduce
// peak memory usage
image0 = Image3F();
image1 = Image3F();
ImageF uhf0[2];
ImageF uhf1[2];
JXL_RETURN_IF_ERROR(SeparateHFAndUHF(params, &hf0[0], &uhf0[0], &blur_temp));
JXL_RETURN_IF_ERROR(SeparateHFAndUHF(params, &hf1[0], &uhf1[0], &blur_temp));
// continue accumulating ac diff image from HF and UHF images
const float hf_asymmetry = params.hf_asymmetry;
{
JXL_ASSIGN_OR_RETURN(ImageF diffs, ImageF::Create(xsize, ysize));
MaltaDiffMap(uhf0[1], uhf1[1], wUhfMalta * hf_asymmetry,
wUhfMalta / hf_asymmetry, norm1Uhf, &diffs, &block_diff_ac);
MaltaDiffMap(uhf0[0], uhf1[0], wUhfMaltaX * hf_asymmetry,
wUhfMaltaX / hf_asymmetry, norm1UhfX, &diffs, &block_diff_ac);
MaltaDiffMapLF(hf0[1], hf1[1], wHfMalta * std::sqrt(hf_asymmetry),
wHfMalta / std::sqrt(hf_asymmetry), norm1Hf, &diffs,
&block_diff_ac);
MaltaDiffMapLF(hf0[0], hf1[0], wHfMaltaX * std::sqrt(hf_asymmetry),
wHfMaltaX / std::sqrt(hf_asymmetry), norm1HfX, &diffs,
&block_diff_ac);
}
for (size_t c = 0; c < 2; ++c) {
L2DiffAsymmetric(hf0[c], hf1[c], wmul[c] * hf_asymmetry,
wmul[c] / hf_asymmetry, &block_diff_ac);
}
// compute mask image from HF and UHF X and Y images
JXL_ASSIGN_OR_RETURN(ImageF mask, ImageF::Create(xsize, ysize));
{
JXL_ASSIGN_OR_RETURN(ImageF mask0, ImageF::Create(xsize, ysize));
JXL_ASSIGN_OR_RETURN(ImageF mask1, ImageF::Create(xsize, ysize));
CombineChannelsForMasking(&hf0[0], &uhf0[0], &mask0);
CombineChannelsForMasking(&hf1[0], &uhf1[0], &mask1);
DeallocateHFAndUHF(&hf1[0], &uhf1[0]);
DeallocateHFAndUHF(&hf0[0], &uhf0[0]);
JXL_RETURN_IF_ERROR(
Mask(mask0, mask1, params, &blur_temp, &mask, &block_diff_ac));
}
// compute final diffmap from mask image and ac and dc diff images
JXL_ASSIGN_OR_RETURN(diffmap, ImageF::Create(xsize, ysize));
for (size_t y = 0; y < ysize; ++y) {
const float* row_dc = block_diff_dc.Row(y);
const float* row_ac = block_diff_ac.Row(y);
float* row_out = diffmap.Row(y);
for (size_t x = 0; x < xsize; ++x) {
const float val = mask.Row(y)[x];
row_out[x] = sqrt(row_dc[x] * MaskDcY(val) + row_ac[x] * MaskY(val));
}
}
return true;
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(SeparateFrequencies); // Local function.
HWY_EXPORT(MaskPsychoImage); // Local function.
HWY_EXPORT(L2DiffAsymmetric); // Local function.
HWY_EXPORT(L2Diff); // Local function.
HWY_EXPORT(SetL2Diff); // Local function.
HWY_EXPORT(CombineChannelsToDiffmap); // Local function.
HWY_EXPORT(MaltaDiffMap); // Local function.
HWY_EXPORT(MaltaDiffMapLF); // Local function.
HWY_EXPORT(OpsinDynamicsImage); // Local function.
HWY_EXPORT(ButteraugliDiffmapInPlace); // Local function.
#if BUTTERAUGLI_ENABLE_CHECKS
static inline bool IsNan(const float x) {
uint32_t bits;
memcpy(&bits, &x, sizeof(bits));
const uint32_t bitmask_exp = 0x7F800000;
return (bits & bitmask_exp) == bitmask_exp && (bits & 0x7FFFFF);
}
static inline bool IsNan(const double x) {
uint64_t bits;
memcpy(&bits, &x, sizeof(bits));
return (0x7ff0000000000001ULL <= bits && bits <= 0x7fffffffffffffffULL) ||
(0xfff0000000000001ULL <= bits && bits <= 0xffffffffffffffffULL);
}
static inline void CheckImage(const ImageF& image, const char* name) {
for (size_t y = 0; y < image.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row = image.Row(y);
for (size_t x = 0; x < image.xsize(); ++x) {
if (IsNan(row[x])) {
printf("NAN: Image %s @ %" PRIuS ",%" PRIuS " (of %" PRIuS ",%" PRIuS
")\n",
name, x, y, image.xsize(), image.ysize());
exit(1);
}
}
}
}
#define CHECK_NAN(x, str) \
do { \
if (IsNan(x)) { \
printf("%d: %s\n", __LINE__, str); \
abort(); \
} \
} while (0)
#define CHECK_IMAGE(image, name) CheckImage(image, name)
#else // BUTTERAUGLI_ENABLE_CHECKS
#define CHECK_NAN(x, str)
#define CHECK_IMAGE(image, name)
#endif // BUTTERAUGLI_ENABLE_CHECKS
// Calculate a 2x2 subsampled image for purposes of recursive butteraugli at
// multiresolution.
static StatusOr<Image3F> SubSample2x(const Image3F& in) {
size_t xs = (in.xsize() + 1) / 2;
size_t ys = (in.ysize() + 1) / 2;
JXL_ASSIGN_OR_RETURN(Image3F retval, Image3F::Create(xs, ys));
for (size_t c = 0; c < 3; ++c) {
for (size_t y = 0; y < ys; ++y) {
for (size_t x = 0; x < xs; ++x) {
retval.PlaneRow(c, y)[x] = 0;
}
}
}
for (size_t c = 0; c < 3; ++c) {
for (size_t y = 0; y < in.ysize(); ++y) {
for (size_t x = 0; x < in.xsize(); ++x) {
retval.PlaneRow(c, y / 2)[x / 2] += 0.25f * in.PlaneRow(c, y)[x];
}
}
if ((in.xsize() & 1) != 0) {
for (size_t y = 0; y < retval.ysize(); ++y) {
size_t last_column = retval.xsize() - 1;
retval.PlaneRow(c, y)[last_column] *= 2.0f;
}
}
if ((in.ysize() & 1) != 0) {
for (size_t x = 0; x < retval.xsize(); ++x) {
size_t last_row = retval.ysize() - 1;
retval.PlaneRow(c, last_row)[x] *= 2.0f;
}
}
}
return retval;
}
// Supersample src by 2x and add it to dest.
static void AddSupersampled2x(const ImageF& src, float w, ImageF& dest) {
for (size_t y = 0; y < dest.ysize(); ++y) {
for (size_t x = 0; x < dest.xsize(); ++x) {
// There will be less errors from the more averaged images.
// We take it into account to some extent using a scaler.
static const double kHeuristicMixingValue = 0.3;
dest.Row(y)[x] *= 1.0 - kHeuristicMixingValue * w;
dest.Row(y)[x] += w * src.Row(y / 2)[x / 2];
}
}
}
Image3F* ButteraugliComparator::Temp() const {
bool was_in_use = temp_in_use_.test_and_set(std::memory_order_acq_rel);
JXL_ASSERT(!was_in_use);
(void)was_in_use;
return &temp_;
}
void ButteraugliComparator::ReleaseTemp() const { temp_in_use_.clear(); }
ButteraugliComparator::ButteraugliComparator(size_t xsize, size_t ysize,
const ButteraugliParams& params)
: xsize_(xsize), ysize_(ysize), params_(params) {}
StatusOr<std::unique_ptr<ButteraugliComparator>> ButteraugliComparator::Make(
const Image3F& rgb0, const ButteraugliParams& params) {
size_t xsize = rgb0.xsize();
size_t ysize = rgb0.ysize();
std::unique_ptr<ButteraugliComparator> result =
std::unique_ptr<ButteraugliComparator>(
new ButteraugliComparator(xsize, ysize, params));
JXL_ASSIGN_OR_RETURN(result->temp_, Image3F::Create(xsize, ysize));
if (xsize < 8 || ysize < 8) {
return result;
}
JXL_ASSIGN_OR_RETURN(Image3F xyb0, Image3F::Create(xsize, ysize));
JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)(
rgb0, params, result->Temp(), &result->blur_temp_, &xyb0));
result->ReleaseTemp();
JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(SeparateFrequencies)(
xsize, ysize, params, &result->blur_temp_, xyb0, result->pi0_));
// Awful recursive construction of samples of different resolution.
// This is an after-thought and possibly somewhat parallel in
// functionality with the PsychoImage multi-resolution approach.
JXL_ASSIGN_OR_RETURN(Image3F subsampledRgb0, SubSample2x(rgb0));
StatusOr<std::unique_ptr<ButteraugliComparator>> sub =
ButteraugliComparator::Make(subsampledRgb0, params);
if (!sub.ok()) return sub.status();
result->sub_ = std::move(sub).value();
return result;
}
Status ButteraugliComparator::Mask(ImageF* BUTTERAUGLI_RESTRICT mask) const {
return HWY_DYNAMIC_DISPATCH(MaskPsychoImage)(
pi0_, pi0_, xsize_, ysize_, params_, &blur_temp_, mask, nullptr);
}
Status ButteraugliComparator::Diffmap(const Image3F& rgb1,
ImageF& result) const {
if (xsize_ < 8 || ysize_ < 8) {
ZeroFillImage(&result);
return true;
}
JXL_ASSIGN_OR_RETURN(Image3F xyb1, Image3F::Create(xsize_, ysize_));
JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)(
rgb1, params_, Temp(), &blur_temp_, &xyb1));
ReleaseTemp();
JXL_RETURN_IF_ERROR(DiffmapOpsinDynamicsImage(xyb1, result));
if (sub_) {
if (sub_->xsize_ < 8 || sub_->ysize_ < 8) {
return true;
}
JXL_ASSIGN_OR_RETURN(Image3F sub_xyb,
Image3F::Create(sub_->xsize_, sub_->ysize_));
JXL_ASSIGN_OR_RETURN(Image3F subsampledRgb1, SubSample2x(rgb1));
JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)(
subsampledRgb1, params_, sub_->Temp(), &sub_->blur_temp_, &sub_xyb));
sub_->ReleaseTemp();
ImageF subresult;
JXL_RETURN_IF_ERROR(sub_->DiffmapOpsinDynamicsImage(sub_xyb, subresult));
AddSupersampled2x(subresult, 0.5, result);
}
return true;
}
Status ButteraugliComparator::DiffmapOpsinDynamicsImage(const Image3F& xyb1,
ImageF& result) const {
if (xsize_ < 8 || ysize_ < 8) {
ZeroFillImage(&result);
return true;
}
PsychoImage pi1;
JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(SeparateFrequencies)(
xsize_, ysize_, params_, &blur_temp_, xyb1, pi1));
JXL_ASSIGN_OR_RETURN(result, ImageF::Create(xsize_, ysize_));
return DiffmapPsychoImage(pi1, result);
}
namespace {
void MaltaDiffMap(const ImageF& lum0, const ImageF& lum1, const double w_0gt1,
const double w_0lt1, const double norm1,
ImageF* HWY_RESTRICT diffs,
Image3F* HWY_RESTRICT block_diff_ac, size_t c) {
HWY_DYNAMIC_DISPATCH(MaltaDiffMap)
(lum0, lum1, w_0gt1, w_0lt1, norm1, diffs, &block_diff_ac->Plane(c));
}
void MaltaDiffMapLF(const ImageF& lum0, const ImageF& lum1, const double w_0gt1,
const double w_0lt1, const double norm1,
ImageF* HWY_RESTRICT diffs,
Image3F* HWY_RESTRICT block_diff_ac, size_t c) {
HWY_DYNAMIC_DISPATCH(MaltaDiffMapLF)
(lum0, lum1, w_0gt1, w_0lt1, norm1, diffs, &block_diff_ac->Plane(c));
}
} // namespace
Status ButteraugliComparator::DiffmapPsychoImage(const PsychoImage& pi1,
ImageF& diffmap) const {
if (xsize_ < 8 || ysize_ < 8) {
ZeroFillImage(&diffmap);
return true;
}
const float hf_asymmetry_ = params_.hf_asymmetry;
const float xmul_ = params_.xmul;
JXL_ASSIGN_OR_RETURN(ImageF diffs, ImageF::Create(xsize_, ysize_));
JXL_ASSIGN_OR_RETURN(Image3F block_diff_ac, Image3F::Create(xsize_, ysize_));
ZeroFillImage(&block_diff_ac);
MaltaDiffMap(pi0_.uhf[1], pi1.uhf[1], wUhfMalta * hf_asymmetry_,
wUhfMalta / hf_asymmetry_, norm1Uhf, &diffs, &block_diff_ac, 1);
MaltaDiffMap(pi0_.uhf[0], pi1.uhf[0], wUhfMaltaX * hf_asymmetry_,
wUhfMaltaX / hf_asymmetry_, norm1UhfX, &diffs, &block_diff_ac,
0);
MaltaDiffMapLF(pi0_.hf[1], pi1.hf[1], wHfMalta * std::sqrt(hf_asymmetry_),
wHfMalta / std::sqrt(hf_asymmetry_), norm1Hf, &diffs,
&block_diff_ac, 1);
MaltaDiffMapLF(pi0_.hf[0], pi1.hf[0], wHfMaltaX * std::sqrt(hf_asymmetry_),
wHfMaltaX / std::sqrt(hf_asymmetry_), norm1HfX, &diffs,
&block_diff_ac, 0);
MaltaDiffMapLF(pi0_.mf.Plane(1), pi1.mf.Plane(1), wMfMalta, wMfMalta, norm1Mf,
&diffs, &block_diff_ac, 1);
MaltaDiffMapLF(pi0_.mf.Plane(0), pi1.mf.Plane(0), wMfMaltaX, wMfMaltaX,
norm1MfX, &diffs, &block_diff_ac, 0);
JXL_ASSIGN_OR_RETURN(Image3F block_diff_dc, Image3F::Create(xsize_, ysize_));
for (size_t c = 0; c < 3; ++c) {
if (c < 2) { // No blue channel error accumulated at HF.
HWY_DYNAMIC_DISPATCH(L2DiffAsymmetric)
(pi0_.hf[c], pi1.hf[c], wmul[c] * hf_asymmetry_, wmul[c] / hf_asymmetry_,
&block_diff_ac.Plane(c));
}
HWY_DYNAMIC_DISPATCH(L2Diff)
(pi0_.mf.Plane(c), pi1.mf.Plane(c), wmul[3 + c], &block_diff_ac.Plane(c));
HWY_DYNAMIC_DISPATCH(SetL2Diff)
(pi0_.lf.Plane(c), pi1.lf.Plane(c), wmul[6 + c], &block_diff_dc.Plane(c));
}
ImageF mask;
JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(MaskPsychoImage)(
pi0_, pi1, xsize_, ysize_, params_, &blur_temp_, &mask,
&block_diff_ac.Plane(1)));
HWY_DYNAMIC_DISPATCH(CombineChannelsToDiffmap)
(mask, block_diff_dc, block_diff_ac, xmul_, &diffmap);
return true;
}
double ButteraugliScoreFromDiffmap(const ImageF& diffmap,
const ButteraugliParams* params) {
float retval = 0.0f;
for (size_t y = 0; y < diffmap.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row = diffmap.ConstRow(y);
for (size_t x = 0; x < diffmap.xsize(); ++x) {
retval = std::max(retval, row[x]);
}
}
return retval;
}
Status ButteraugliDiffmap(const Image3F& rgb0, const Image3F& rgb1,
double hf_asymmetry, double xmul, ImageF& diffmap) {
ButteraugliParams params;
params.hf_asymmetry = hf_asymmetry;
params.xmul = xmul;
return ButteraugliDiffmap(rgb0, rgb1, params, diffmap);
}
template <size_t kMax>
bool ButteraugliDiffmapSmall(const Image3F& rgb0, const Image3F& rgb1,
const ButteraugliParams& params, ImageF& diffmap) {
const size_t xsize = rgb0.xsize();
const size_t ysize = rgb0.ysize();
// Butteraugli values for small (where xsize or ysize is smaller
// than 8 pixels) images are non-sensical, but most likely it is
// less disruptive to try to compute something than just give up.
// Temporarily extend the borders of the image to fit 8 x 8 size.
size_t xborder = xsize < kMax ? (kMax - xsize) / 2 : 0;
size_t yborder = ysize < kMax ? (kMax - ysize) / 2 : 0;
size_t xscaled = std::max<size_t>(kMax, xsize);
size_t yscaled = std::max<size_t>(kMax, ysize);
JXL_ASSIGN_OR_RETURN(Image3F scaled0, Image3F::Create(xscaled, yscaled));
JXL_ASSIGN_OR_RETURN(Image3F scaled1, Image3F::Create(xscaled, yscaled));
for (int i = 0; i < 3; ++i) {
for (size_t y = 0; y < yscaled; ++y) {
for (size_t x = 0; x < xscaled; ++x) {
size_t x2 = std::min<size_t>(xsize - 1, x > xborder ? x - xborder : 0);
size_t y2 = std::min<size_t>(ysize - 1, y > yborder ? y - yborder : 0);
scaled0.PlaneRow(i, y)[x] = rgb0.PlaneRow(i, y2)[x2];
scaled1.PlaneRow(i, y)[x] = rgb1.PlaneRow(i, y2)[x2];
}
}
}
ImageF diffmap_scaled;
const bool ok = ButteraugliDiffmap(scaled0, scaled1, params, diffmap_scaled);
JXL_ASSIGN_OR_RETURN(diffmap, ImageF::Create(xsize, ysize));
for (size_t y = 0; y < ysize; ++y) {
for (size_t x = 0; x < xsize; ++x) {
diffmap.Row(y)[x] = diffmap_scaled.Row(y + yborder)[x + xborder];
}
}
return ok;
}
Status ButteraugliDiffmap(const Image3F& rgb0, const Image3F& rgb1,
const ButteraugliParams& params, ImageF& diffmap) {
const size_t xsize = rgb0.xsize();
const size_t ysize = rgb0.ysize();
if (xsize < 1 || ysize < 1) {
return JXL_FAILURE("Zero-sized image");
}
if (!SameSize(rgb0, rgb1)) {
return JXL_FAILURE("Size mismatch");
}
static const int kMax = 8;
if (xsize < kMax || ysize < kMax) {
return ButteraugliDiffmapSmall<kMax>(rgb0, rgb1, params, diffmap);
}
JXL_ASSIGN_OR_RETURN(std::unique_ptr<ButteraugliComparator> butteraugli,
ButteraugliComparator::Make(rgb0, params));
JXL_RETURN_IF_ERROR(butteraugli->Diffmap(rgb1, diffmap));
return true;
}
bool ButteraugliInterface(const Image3F& rgb0, const Image3F& rgb1,
float hf_asymmetry, float xmul, ImageF& diffmap,
double& diffvalue) {
ButteraugliParams params;
params.hf_asymmetry = hf_asymmetry;
params.xmul = xmul;
return ButteraugliInterface(rgb0, rgb1, params, diffmap, diffvalue);
}
bool ButteraugliInterface(const Image3F& rgb0, const Image3F& rgb1,
const ButteraugliParams& params, ImageF& diffmap,
double& diffvalue) {
if (!ButteraugliDiffmap(rgb0, rgb1, params, diffmap)) {
return false;
}
diffvalue = ButteraugliScoreFromDiffmap(diffmap, ¶ms);
return true;
}
Status ButteraugliInterfaceInPlace(Image3F&& rgb0, Image3F&& rgb1,
const ButteraugliParams& params,
ImageF& diffmap, double& diffvalue) {
const size_t xsize = rgb0.xsize();
const size_t ysize = rgb0.ysize();
if (xsize < 1 || ysize < 1) {
return JXL_FAILURE("Zero-sized image");
}
if (!SameSize(rgb0, rgb1)) {
return JXL_FAILURE("Size mismatch");
}
static const int kMax = 8;
if (xsize < kMax || ysize < kMax) {
bool ok = ButteraugliDiffmapSmall<kMax>(rgb0, rgb1, params, diffmap);
diffvalue = ButteraugliScoreFromDiffmap(diffmap, ¶ms);
return ok;
}
ImageF subdiffmap;
if (xsize >= 15 && ysize >= 15) {
JXL_ASSIGN_OR_RETURN(Image3F rgb0_sub, SubSample2x(rgb0));
JXL_ASSIGN_OR_RETURN(Image3F rgb1_sub, SubSample2x(rgb1));
JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(ButteraugliDiffmapInPlace)(
rgb0_sub, rgb1_sub, params, subdiffmap));
}
JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(ButteraugliDiffmapInPlace)(
rgb0, rgb1, params, diffmap));
if (xsize >= 15 && ysize >= 15) {
AddSupersampled2x(subdiffmap, 0.5, diffmap);
}
diffvalue = ButteraugliScoreFromDiffmap(diffmap, ¶ms);
return true;
}
double ButteraugliFuzzyClass(double score) {
static const double fuzzy_width_up = 4.8;
static const double fuzzy_width_down = 4.8;
static const double m0 = 2.0;
static const double scaler = 0.7777;
double val;
if (score < 1.0) {
// val in [scaler .. 2.0]
val = m0 / (1.0 + exp((score - 1.0) * fuzzy_width_down));
val -= 1.0; // from [1 .. 2] to [0 .. 1]
val *= 2.0 - scaler; // from [0 .. 1] to [0 .. 2.0 - scaler]
val += scaler; // from [0 .. 2.0 - scaler] to [scaler .. 2.0]
} else {
// val in [0 .. scaler]
val = m0 / (1.0 + exp((score - 1.0) * fuzzy_width_up));
val *= scaler;
}
return val;
}
// #define PRINT_OUT_NORMALIZATION
double ButteraugliFuzzyInverse(double seek) {
double pos = 0;
// NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter)
for (double range = 1.0; range >= 1e-10; range *= 0.5) {
double cur = ButteraugliFuzzyClass(pos);
if (cur < seek) {
pos -= range;
} else {
pos += range;
}
}
#ifdef PRINT_OUT_NORMALIZATION
if (seek == 1.0) {
fprintf(stderr, "Fuzzy inverse %g\n", pos);
}
#endif
return pos;
}
#ifdef PRINT_OUT_NORMALIZATION
static double print_out_normalization = ButteraugliFuzzyInverse(1.0);
#endif
namespace {
void ScoreToRgb(double score, double good_threshold, double bad_threshold,
float rgb[3]) {
double heatmap[12][3] = {
{0, 0, 0}, {0, 0, 1},
{0, 1, 1}, {0, 1, 0}, // Good level
{1, 1, 0}, {1, 0, 0}, // Bad level
{1, 0, 1}, {0.5, 0.5, 1.0},
{1.0, 0.5, 0.5}, // Pastel colors for the very bad quality range.
{1.0, 1.0, 0.5}, {1, 1, 1},
{1, 1, 1}, // Last color repeated to have a solid range of white.
};
if (score < good_threshold) {
score = (score / good_threshold) * 0.3;
} else if (score < bad_threshold) {
score = 0.3 +
(score - good_threshold) / (bad_threshold - good_threshold) * 0.15;
} else {
score = 0.45 + (score - bad_threshold) / (bad_threshold * 12) * 0.5;
}
static const int kTableSize = sizeof(heatmap) / sizeof(heatmap[0]);
score = std::min<double>(std::max<double>(score * (kTableSize - 1), 0.0),
kTableSize - 2);
int ix = static_cast<int>(score);
ix = std::min(std::max(0, ix), kTableSize - 2); // Handle NaN
double mix = score - ix;
for (int i = 0; i < 3; ++i) {
double v = mix * heatmap[ix + 1][i] + (1 - mix) * heatmap[ix][i];
rgb[i] = pow(v, 0.5);
}
}
} // namespace
StatusOr<Image3F> CreateHeatMapImage(const ImageF& distmap,
double good_threshold,
double bad_threshold) {
JXL_ASSIGN_OR_RETURN(Image3F heatmap,
Image3F::Create(distmap.xsize(), distmap.ysize()));
for (size_t y = 0; y < distmap.ysize(); ++y) {
const float* BUTTERAUGLI_RESTRICT row_distmap = distmap.ConstRow(y);
float* BUTTERAUGLI_RESTRICT row_h0 = heatmap.PlaneRow(0, y);
float* BUTTERAUGLI_RESTRICT row_h1 = heatmap.PlaneRow(1, y);
float* BUTTERAUGLI_RESTRICT row_h2 = heatmap.PlaneRow(2, y);
for (size_t x = 0; x < distmap.xsize(); ++x) {
const float d = row_distmap[x];
float rgb[3];
ScoreToRgb(d, good_threshold, bad_threshold, rgb);
row_h0[x] = rgb[0];
row_h1[x] = rgb[1];
row_h2[x] = rgb[2];
}
}
return heatmap;
}
} // namespace jxl
#endif // HWY_ONCE
|