1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/convolve.h"
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/convolve_separable5.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/base/rect.h"
#include "lib/jxl/convolve-inl.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::MulAdd;
using hwy::HWY_NAMESPACE::Vec;
// 5x5 convolution by separable kernel with a single scan through the input.
// This is more cache-efficient than separate horizontal/vertical passes, and
// possibly faster (given enough registers) than tiling and/or transposing.
//
// Overview: imagine a 5x5 window around a central pixel. First convolve the
// rows by multiplying the pixels with the corresponding weights from
// WeightsSeparable5.horz[abs(x_offset) * 4]. Then multiply each of these
// intermediate results by the corresponding vertical weight, i.e.
// vert[abs(y_offset) * 4]. Finally, store the sum of these values as the
// convolution result at the position of the central pixel in the output.
//
// Each of these operations uses SIMD vectors. The central pixel and most
// importantly the output are aligned, so neighnoring pixels (e.g. x_offset=1)
// require unaligned loads. Because weights are supplied in identical groups of
// 4, we can use LoadDup128 to load them (slightly faster).
//
// Uses mirrored boundary handling. Until x >= kRadius, the horizontal
// convolution uses Neighbors class to shuffle vectors as if each of its lanes
// had been loaded from the mirrored offset. Similarly, the last full vector to
// write uses mirroring. In the case of scalar vectors, Neighbors is not usable
// and the value is loaded directly. Otherwise, the number of valid pixels
// modulo the vector size enables a small optimization: for smaller offsets,
// a non-mirrored load is sufficient.
class Separable5Strategy {
using D = HWY_CAPPED(float, 16);
using V = Vec<D>;
public:
static constexpr int64_t kRadius = 2;
template <size_t kSizeModN, class WrapRow>
static JXL_MAYBE_INLINE void ConvolveRow(
const float* const JXL_RESTRICT row_m, const size_t xsize,
const int64_t stride, const WrapRow& wrap_row,
const WeightsSeparable5& weights, float* const JXL_RESTRICT row_out) {
const D d;
const int64_t neg_stride = -stride; // allows LEA addressing.
const float* const JXL_RESTRICT row_t2 =
wrap_row(row_m + 2 * neg_stride, stride);
const float* const JXL_RESTRICT row_t1 =
wrap_row(row_m + 1 * neg_stride, stride);
const float* const JXL_RESTRICT row_b1 =
wrap_row(row_m + 1 * stride, stride);
const float* const JXL_RESTRICT row_b2 =
wrap_row(row_m + 2 * stride, stride);
const V wh0 = LoadDup128(d, weights.horz + 0 * 4);
const V wh1 = LoadDup128(d, weights.horz + 1 * 4);
const V wh2 = LoadDup128(d, weights.horz + 2 * 4);
const V wv0 = LoadDup128(d, weights.vert + 0 * 4);
const V wv1 = LoadDup128(d, weights.vert + 1 * 4);
const V wv2 = LoadDup128(d, weights.vert + 2 * 4);
size_t x = 0;
// More than one iteration for scalars.
for (; x < kRadius; x += Lanes(d)) {
const V conv0 =
Mul(HorzConvolveFirst(row_m, x, xsize, wh0, wh1, wh2), wv0);
const V conv1t = HorzConvolveFirst(row_t1, x, xsize, wh0, wh1, wh2);
const V conv1b = HorzConvolveFirst(row_b1, x, xsize, wh0, wh1, wh2);
const V conv1 = MulAdd(Add(conv1t, conv1b), wv1, conv0);
const V conv2t = HorzConvolveFirst(row_t2, x, xsize, wh0, wh1, wh2);
const V conv2b = HorzConvolveFirst(row_b2, x, xsize, wh0, wh1, wh2);
const V conv2 = MulAdd(Add(conv2t, conv2b), wv2, conv1);
Store(conv2, d, row_out + x);
}
// Main loop: load inputs without padding
for (; x + Lanes(d) + kRadius <= xsize; x += Lanes(d)) {
const V conv0 = Mul(HorzConvolve(row_m + x, wh0, wh1, wh2), wv0);
const V conv1t = HorzConvolve(row_t1 + x, wh0, wh1, wh2);
const V conv1b = HorzConvolve(row_b1 + x, wh0, wh1, wh2);
const V conv1 = MulAdd(Add(conv1t, conv1b), wv1, conv0);
const V conv2t = HorzConvolve(row_t2 + x, wh0, wh1, wh2);
const V conv2b = HorzConvolve(row_b2 + x, wh0, wh1, wh2);
const V conv2 = MulAdd(Add(conv2t, conv2b), wv2, conv1);
Store(conv2, d, row_out + x);
}
// Last full vector to write (the above loop handled mod >= kRadius)
#if HWY_TARGET == HWY_SCALAR
while (x < xsize) {
#else
if (kSizeModN < kRadius) {
#endif
const V conv0 =
Mul(HorzConvolveLast<kSizeModN>(row_m, x, xsize, wh0, wh1, wh2), wv0);
const V conv1t =
HorzConvolveLast<kSizeModN>(row_t1, x, xsize, wh0, wh1, wh2);
const V conv1b =
HorzConvolveLast<kSizeModN>(row_b1, x, xsize, wh0, wh1, wh2);
const V conv1 = MulAdd(Add(conv1t, conv1b), wv1, conv0);
const V conv2t =
HorzConvolveLast<kSizeModN>(row_t2, x, xsize, wh0, wh1, wh2);
const V conv2b =
HorzConvolveLast<kSizeModN>(row_b2, x, xsize, wh0, wh1, wh2);
const V conv2 = MulAdd(Add(conv2t, conv2b), wv2, conv1);
Store(conv2, d, row_out + x);
x += Lanes(d);
}
// If mod = 0, the above vector was the last.
if (kSizeModN != 0) {
for (; x < xsize; ++x) {
float mul = 0.0f;
for (int64_t dy = -kRadius; dy <= kRadius; ++dy) {
const float wy = weights.vert[std::abs(dy) * 4];
const float* clamped_row = wrap_row(row_m + dy * stride, stride);
for (int64_t dx = -kRadius; dx <= kRadius; ++dx) {
const float wx = weights.horz[std::abs(dx) * 4];
const int64_t clamped_x = Mirror(x + dx, xsize);
mul += clamped_row[clamped_x] * wx * wy;
}
}
row_out[x] = mul;
}
}
}
private:
// Same as HorzConvolve for the first/last vector in a row.
static JXL_MAYBE_INLINE V HorzConvolveFirst(
const float* const JXL_RESTRICT row, const int64_t x, const int64_t xsize,
const V wh0, const V wh1, const V wh2) {
const D d;
const V c = LoadU(d, row + x);
const V mul0 = Mul(c, wh0);
#if HWY_TARGET == HWY_SCALAR
const V l1 = LoadU(d, row + Mirror(x - 1, xsize));
const V l2 = LoadU(d, row + Mirror(x - 2, xsize));
#else
(void)xsize;
const V l1 = Neighbors::FirstL1(c);
const V l2 = Neighbors::FirstL2(c);
#endif
const V r1 = LoadU(d, row + x + 1);
const V r2 = LoadU(d, row + x + 2);
const V mul1 = MulAdd(Add(l1, r1), wh1, mul0);
const V mul2 = MulAdd(Add(l2, r2), wh2, mul1);
return mul2;
}
template <size_t kSizeModN>
static JXL_MAYBE_INLINE V
HorzConvolveLast(const float* const JXL_RESTRICT row, const int64_t x,
const int64_t xsize, const V wh0, const V wh1, const V wh2) {
const D d;
const V c = LoadU(d, row + x);
const V mul0 = Mul(c, wh0);
const V l1 = LoadU(d, row + x - 1);
const V l2 = LoadU(d, row + x - 2);
V r1;
V r2;
#if HWY_TARGET == HWY_SCALAR
r1 = LoadU(d, row + Mirror(x + 1, xsize));
r2 = LoadU(d, row + Mirror(x + 2, xsize));
#else
const size_t N = Lanes(d);
if (kSizeModN == 0) {
r2 = TableLookupLanes(c, SetTableIndices(d, MirrorLanes(N - 2)));
r1 = TableLookupLanes(c, SetTableIndices(d, MirrorLanes(N - 1)));
} else { // == 1
const auto last = LoadU(d, row + xsize - N);
r2 = TableLookupLanes(last, SetTableIndices(d, MirrorLanes(N - 1)));
r1 = last;
}
#endif
// Sum of pixels with Manhattan distance i, multiplied by weights[i].
const V sum1 = Add(l1, r1);
const V mul1 = MulAdd(sum1, wh1, mul0);
const V sum2 = Add(l2, r2);
const V mul2 = MulAdd(sum2, wh2, mul1);
return mul2;
}
// Requires kRadius valid pixels before/after pos.
static JXL_MAYBE_INLINE V HorzConvolve(const float* const JXL_RESTRICT pos,
const V wh0, const V wh1,
const V wh2) {
const D d;
const V c = LoadU(d, pos);
const V mul0 = Mul(c, wh0);
// Loading anew is faster than combining vectors.
const V l1 = LoadU(d, pos - 1);
const V r1 = LoadU(d, pos + 1);
const V l2 = LoadU(d, pos - 2);
const V r2 = LoadU(d, pos + 2);
// Sum of pixels with Manhattan distance i, multiplied by weights[i].
const V sum1 = Add(l1, r1);
const V mul1 = MulAdd(sum1, wh1, mul0);
const V sum2 = Add(l2, r2);
const V mul2 = MulAdd(sum2, wh2, mul1);
return mul2;
}
};
void Separable5(const ImageF& in, const Rect& rect,
const WeightsSeparable5& weights, ThreadPool* pool,
ImageF* out) {
using Conv = ConvolveT<Separable5Strategy>;
if (rect.xsize() >= Conv::MinWidth()) {
Conv::Run(in, rect, weights, pool, out);
return;
}
SlowSeparable5(in, rect, weights, pool, out, Rect(*out));
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(Separable5);
void Separable5(const ImageF& in, const Rect& rect,
const WeightsSeparable5& weights, ThreadPool* pool,
ImageF* out) {
HWY_DYNAMIC_DISPATCH(Separable5)(in, rect, weights, pool, out);
}
} // namespace jxl
#endif // HWY_ONCE
|