1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/dec_ans.h"
#include <stdint.h>
#include <vector>
#include "lib/jxl/ans_common.h"
#include "lib/jxl/ans_params.h"
#include "lib/jxl/base/bits.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/dec_context_map.h"
#include "lib/jxl/fields.h"
namespace jxl {
namespace {
// Decodes a number in the range [0..255], by reading 1 - 11 bits.
inline int DecodeVarLenUint8(BitReader* input) {
if (input->ReadFixedBits<1>()) {
int nbits = static_cast<int>(input->ReadFixedBits<3>());
if (nbits == 0) {
return 1;
} else {
return static_cast<int>(input->ReadBits(nbits)) + (1 << nbits);
}
}
return 0;
}
// Decodes a number in the range [0..65535], by reading 1 - 21 bits.
inline int DecodeVarLenUint16(BitReader* input) {
if (input->ReadFixedBits<1>()) {
int nbits = static_cast<int>(input->ReadFixedBits<4>());
if (nbits == 0) {
return 1;
} else {
return static_cast<int>(input->ReadBits(nbits)) + (1 << nbits);
}
}
return 0;
}
Status ReadHistogram(int precision_bits, std::vector<int32_t>* counts,
BitReader* input) {
int simple_code = input->ReadBits(1);
if (simple_code == 1) {
int i;
int symbols[2] = {0};
int max_symbol = 0;
const int num_symbols = input->ReadBits(1) + 1;
for (i = 0; i < num_symbols; ++i) {
symbols[i] = DecodeVarLenUint8(input);
if (symbols[i] > max_symbol) max_symbol = symbols[i];
}
counts->resize(max_symbol + 1);
if (num_symbols == 1) {
(*counts)[symbols[0]] = 1 << precision_bits;
} else {
if (symbols[0] == symbols[1]) { // corrupt data
return false;
}
(*counts)[symbols[0]] = input->ReadBits(precision_bits);
(*counts)[symbols[1]] = (1 << precision_bits) - (*counts)[symbols[0]];
}
} else {
int is_flat = input->ReadBits(1);
if (is_flat == 1) {
int alphabet_size = DecodeVarLenUint8(input) + 1;
*counts = CreateFlatHistogram(alphabet_size, 1 << precision_bits);
return true;
}
uint32_t shift;
{
// TODO(veluca): speed up reading with table lookups.
int upper_bound_log = FloorLog2Nonzero(ANS_LOG_TAB_SIZE + 1);
int log = 0;
for (; log < upper_bound_log; log++) {
if (input->ReadFixedBits<1>() == 0) break;
}
shift = (input->ReadBits(log) | (1 << log)) - 1;
if (shift > ANS_LOG_TAB_SIZE + 1) {
return JXL_FAILURE("Invalid shift value");
}
}
int length = DecodeVarLenUint8(input) + 3;
counts->resize(length);
int total_count = 0;
static const uint8_t huff[128][2] = {
{3, 10}, {7, 12}, {3, 7}, {4, 3}, {3, 6}, {3, 8}, {3, 9}, {4, 5},
{3, 10}, {4, 4}, {3, 7}, {4, 1}, {3, 6}, {3, 8}, {3, 9}, {4, 2},
{3, 10}, {5, 0}, {3, 7}, {4, 3}, {3, 6}, {3, 8}, {3, 9}, {4, 5},
{3, 10}, {4, 4}, {3, 7}, {4, 1}, {3, 6}, {3, 8}, {3, 9}, {4, 2},
{3, 10}, {6, 11}, {3, 7}, {4, 3}, {3, 6}, {3, 8}, {3, 9}, {4, 5},
{3, 10}, {4, 4}, {3, 7}, {4, 1}, {3, 6}, {3, 8}, {3, 9}, {4, 2},
{3, 10}, {5, 0}, {3, 7}, {4, 3}, {3, 6}, {3, 8}, {3, 9}, {4, 5},
{3, 10}, {4, 4}, {3, 7}, {4, 1}, {3, 6}, {3, 8}, {3, 9}, {4, 2},
{3, 10}, {7, 13}, {3, 7}, {4, 3}, {3, 6}, {3, 8}, {3, 9}, {4, 5},
{3, 10}, {4, 4}, {3, 7}, {4, 1}, {3, 6}, {3, 8}, {3, 9}, {4, 2},
{3, 10}, {5, 0}, {3, 7}, {4, 3}, {3, 6}, {3, 8}, {3, 9}, {4, 5},
{3, 10}, {4, 4}, {3, 7}, {4, 1}, {3, 6}, {3, 8}, {3, 9}, {4, 2},
{3, 10}, {6, 11}, {3, 7}, {4, 3}, {3, 6}, {3, 8}, {3, 9}, {4, 5},
{3, 10}, {4, 4}, {3, 7}, {4, 1}, {3, 6}, {3, 8}, {3, 9}, {4, 2},
{3, 10}, {5, 0}, {3, 7}, {4, 3}, {3, 6}, {3, 8}, {3, 9}, {4, 5},
{3, 10}, {4, 4}, {3, 7}, {4, 1}, {3, 6}, {3, 8}, {3, 9}, {4, 2},
};
std::vector<int> logcounts(counts->size());
int omit_log = -1;
int omit_pos = -1;
// This array remembers which symbols have an RLE length.
std::vector<int> same(counts->size(), 0);
for (size_t i = 0; i < logcounts.size(); ++i) {
input->Refill(); // for PeekFixedBits + Advance
int idx = input->PeekFixedBits<7>();
input->Consume(huff[idx][0]);
logcounts[i] = huff[idx][1];
// The RLE symbol.
if (logcounts[i] == ANS_LOG_TAB_SIZE + 1) {
int rle_length = DecodeVarLenUint8(input);
same[i] = rle_length + 5;
i += rle_length + 3;
continue;
}
if (logcounts[i] > omit_log) {
omit_log = logcounts[i];
omit_pos = i;
}
}
// Invalid input, e.g. due to invalid usage of RLE.
if (omit_pos < 0) return JXL_FAILURE("Invalid histogram.");
if (static_cast<size_t>(omit_pos) + 1 < logcounts.size() &&
logcounts[omit_pos + 1] == ANS_TAB_SIZE + 1) {
return JXL_FAILURE("Invalid histogram.");
}
int prev = 0;
int numsame = 0;
for (size_t i = 0; i < logcounts.size(); ++i) {
if (same[i]) {
// RLE sequence, let this loop output the same count for the next
// iterations.
numsame = same[i] - 1;
prev = i > 0 ? (*counts)[i - 1] : 0;
}
if (numsame > 0) {
(*counts)[i] = prev;
numsame--;
} else {
int code = logcounts[i];
// omit_pos may not be negative at this point (checked before).
if (i == static_cast<size_t>(omit_pos)) {
continue;
} else if (code == 0) {
continue;
} else if (code == 1) {
(*counts)[i] = 1;
} else {
int bitcount = GetPopulationCountPrecision(code - 1, shift);
(*counts)[i] = (1 << (code - 1)) +
(input->ReadBits(bitcount) << (code - 1 - bitcount));
}
}
total_count += (*counts)[i];
}
(*counts)[omit_pos] = (1 << precision_bits) - total_count;
if ((*counts)[omit_pos] <= 0) {
// The histogram we've read sums to more than total_count (including at
// least 1 for the omitted value).
return JXL_FAILURE("Invalid histogram count.");
}
}
return true;
}
} // namespace
Status DecodeANSCodes(const size_t num_histograms,
const size_t max_alphabet_size, BitReader* in,
ANSCode* result) {
result->degenerate_symbols.resize(num_histograms, -1);
if (result->use_prefix_code) {
JXL_ASSERT(max_alphabet_size <= 1 << PREFIX_MAX_BITS);
result->huffman_data.resize(num_histograms);
std::vector<uint16_t> alphabet_sizes(num_histograms);
for (size_t c = 0; c < num_histograms; c++) {
alphabet_sizes[c] = DecodeVarLenUint16(in) + 1;
if (alphabet_sizes[c] > max_alphabet_size) {
return JXL_FAILURE("Alphabet size is too long: %u", alphabet_sizes[c]);
}
}
for (size_t c = 0; c < num_histograms; c++) {
if (alphabet_sizes[c] > 1) {
if (!result->huffman_data[c].ReadFromBitStream(alphabet_sizes[c], in)) {
if (!in->AllReadsWithinBounds()) {
return JXL_STATUS(StatusCode::kNotEnoughBytes,
"Not enough bytes for huffman code");
}
return JXL_FAILURE("Invalid huffman tree number %" PRIuS
", alphabet size %u",
c, alphabet_sizes[c]);
}
} else {
// 0-bit codes does not require extension tables.
result->huffman_data[c].table_.clear();
result->huffman_data[c].table_.resize(1u << kHuffmanTableBits);
}
for (const auto& h : result->huffman_data[c].table_) {
if (h.bits <= kHuffmanTableBits) {
result->UpdateMaxNumBits(c, h.value);
}
}
}
} else {
JXL_ASSERT(max_alphabet_size <= ANS_MAX_ALPHABET_SIZE);
result->alias_tables =
AllocateArray(num_histograms * (1 << result->log_alpha_size) *
sizeof(AliasTable::Entry));
AliasTable::Entry* alias_tables =
reinterpret_cast<AliasTable::Entry*>(result->alias_tables.get());
for (size_t c = 0; c < num_histograms; ++c) {
std::vector<int32_t> counts;
if (!ReadHistogram(ANS_LOG_TAB_SIZE, &counts, in)) {
return JXL_FAILURE("Invalid histogram bitstream.");
}
if (counts.size() > max_alphabet_size) {
return JXL_FAILURE("Alphabet size is too long: %" PRIuS, counts.size());
}
while (!counts.empty() && counts.back() == 0) {
counts.pop_back();
}
for (size_t s = 0; s < counts.size(); s++) {
if (counts[s] != 0) {
result->UpdateMaxNumBits(c, s);
}
}
// InitAliasTable "fixes" empty counts to contain degenerate "0" symbol.
int degenerate_symbol = counts.empty() ? 0 : (counts.size() - 1);
for (int s = 0; s < degenerate_symbol; ++s) {
if (counts[s] != 0) {
degenerate_symbol = -1;
break;
}
}
result->degenerate_symbols[c] = degenerate_symbol;
InitAliasTable(counts, ANS_TAB_SIZE, result->log_alpha_size,
alias_tables + c * (1 << result->log_alpha_size));
}
}
return true;
}
Status DecodeUintConfig(size_t log_alpha_size, HybridUintConfig* uint_config,
BitReader* br) {
br->Refill();
size_t split_exponent = br->ReadBits(CeilLog2Nonzero(log_alpha_size + 1));
size_t msb_in_token = 0, lsb_in_token = 0;
if (split_exponent != log_alpha_size) {
// otherwise, msb/lsb don't matter.
size_t nbits = CeilLog2Nonzero(split_exponent + 1);
msb_in_token = br->ReadBits(nbits);
if (msb_in_token > split_exponent) {
// This could be invalid here already and we need to check this before
// we use its value to read more bits.
return JXL_FAILURE("Invalid HybridUintConfig");
}
nbits = CeilLog2Nonzero(split_exponent - msb_in_token + 1);
lsb_in_token = br->ReadBits(nbits);
}
if (lsb_in_token + msb_in_token > split_exponent) {
return JXL_FAILURE("Invalid HybridUintConfig");
}
*uint_config = HybridUintConfig(split_exponent, msb_in_token, lsb_in_token);
return true;
}
Status DecodeUintConfigs(size_t log_alpha_size,
std::vector<HybridUintConfig>* uint_config,
BitReader* br) {
// TODO(veluca): RLE?
for (size_t i = 0; i < uint_config->size(); i++) {
JXL_RETURN_IF_ERROR(
DecodeUintConfig(log_alpha_size, &(*uint_config)[i], br));
}
return true;
}
LZ77Params::LZ77Params() { Bundle::Init(this); }
Status LZ77Params::VisitFields(Visitor* JXL_RESTRICT visitor) {
JXL_QUIET_RETURN_IF_ERROR(visitor->Bool(false, &enabled));
if (!visitor->Conditional(enabled)) return true;
JXL_QUIET_RETURN_IF_ERROR(visitor->U32(Val(224), Val(512), Val(4096),
BitsOffset(15, 8), 224, &min_symbol));
JXL_QUIET_RETURN_IF_ERROR(visitor->U32(Val(3), Val(4), BitsOffset(2, 5),
BitsOffset(8, 9), 3, &min_length));
return true;
}
void ANSCode::UpdateMaxNumBits(size_t ctx, size_t symbol) {
HybridUintConfig* cfg = &uint_config[ctx];
// LZ77 symbols use a different uint config.
if (lz77.enabled && lz77.nonserialized_distance_context != ctx &&
symbol >= lz77.min_symbol) {
symbol -= lz77.min_symbol;
cfg = &lz77.length_uint_config;
}
size_t split_token = cfg->split_token;
size_t msb_in_token = cfg->msb_in_token;
size_t lsb_in_token = cfg->lsb_in_token;
size_t split_exponent = cfg->split_exponent;
if (symbol < split_token) {
max_num_bits = std::max(max_num_bits, split_exponent);
return;
}
uint32_t n_extra_bits =
split_exponent - (msb_in_token + lsb_in_token) +
((symbol - split_token) >> (msb_in_token + lsb_in_token));
size_t total_bits = msb_in_token + lsb_in_token + n_extra_bits + 1;
max_num_bits = std::max(max_num_bits, total_bits);
}
Status DecodeHistograms(BitReader* br, size_t num_contexts, ANSCode* code,
std::vector<uint8_t>* context_map, bool disallow_lz77) {
JXL_RETURN_IF_ERROR(Bundle::Read(br, &code->lz77));
if (code->lz77.enabled) {
num_contexts++;
JXL_RETURN_IF_ERROR(DecodeUintConfig(/*log_alpha_size=*/8,
&code->lz77.length_uint_config, br));
}
if (code->lz77.enabled && disallow_lz77) {
return JXL_FAILURE("Using LZ77 when explicitly disallowed");
}
size_t num_histograms = 1;
context_map->resize(num_contexts);
if (num_contexts > 1) {
JXL_RETURN_IF_ERROR(DecodeContextMap(context_map, &num_histograms, br));
}
JXL_DEBUG_V(
4, "Decoded context map of size %" PRIuS " and %" PRIuS " histograms",
num_contexts, num_histograms);
code->lz77.nonserialized_distance_context = context_map->back();
code->use_prefix_code = br->ReadFixedBits<1>();
if (code->use_prefix_code) {
code->log_alpha_size = PREFIX_MAX_BITS;
} else {
code->log_alpha_size = br->ReadFixedBits<2>() + 5;
}
code->uint_config.resize(num_histograms);
JXL_RETURN_IF_ERROR(
DecodeUintConfigs(code->log_alpha_size, &code->uint_config, br));
const size_t max_alphabet_size = 1 << code->log_alpha_size;
JXL_RETURN_IF_ERROR(
DecodeANSCodes(num_histograms, max_alphabet_size, br, code));
return true;
}
} // namespace jxl
|