1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/dec_modular.h"
#include <atomic>
#include <cstdint>
#include <vector>
#include "lib/jxl/frame_header.h"
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/dec_modular.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/base/rect.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/compressed_dc.h"
#include "lib/jxl/epf.h"
#include "lib/jxl/modular/encoding/encoding.h"
#include "lib/jxl/modular/modular_image.h"
#include "lib/jxl/modular/transform/transform.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::Rebind;
void MultiplySum(const size_t xsize,
const pixel_type* const JXL_RESTRICT row_in,
const pixel_type* const JXL_RESTRICT row_in_Y,
const float factor, float* const JXL_RESTRICT row_out) {
const HWY_FULL(float) df;
const Rebind<pixel_type, HWY_FULL(float)> di; // assumes pixel_type <= float
const auto factor_v = Set(df, factor);
for (size_t x = 0; x < xsize; x += Lanes(di)) {
const auto in = Add(Load(di, row_in + x), Load(di, row_in_Y + x));
const auto out = Mul(ConvertTo(df, in), factor_v);
Store(out, df, row_out + x);
}
}
void RgbFromSingle(const size_t xsize,
const pixel_type* const JXL_RESTRICT row_in,
const float factor, float* out_r, float* out_g,
float* out_b) {
const HWY_FULL(float) df;
const Rebind<pixel_type, HWY_FULL(float)> di; // assumes pixel_type <= float
const auto factor_v = Set(df, factor);
for (size_t x = 0; x < xsize; x += Lanes(di)) {
const auto in = Load(di, row_in + x);
const auto out = Mul(ConvertTo(df, in), factor_v);
Store(out, df, out_r + x);
Store(out, df, out_g + x);
Store(out, df, out_b + x);
}
}
void SingleFromSingle(const size_t xsize,
const pixel_type* const JXL_RESTRICT row_in,
const float factor, float* row_out) {
const HWY_FULL(float) df;
const Rebind<pixel_type, HWY_FULL(float)> di; // assumes pixel_type <= float
const auto factor_v = Set(df, factor);
for (size_t x = 0; x < xsize; x += Lanes(di)) {
const auto in = Load(di, row_in + x);
const auto out = Mul(ConvertTo(df, in), factor_v);
Store(out, df, row_out + x);
}
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(MultiplySum); // Local function
HWY_EXPORT(RgbFromSingle); // Local function
HWY_EXPORT(SingleFromSingle); // Local function
// Slow conversion using double precision multiplication, only
// needed when the bit depth is too high for single precision
void SingleFromSingleAccurate(const size_t xsize,
const pixel_type* const JXL_RESTRICT row_in,
const double factor, float* row_out) {
for (size_t x = 0; x < xsize; x++) {
row_out[x] = row_in[x] * factor;
}
}
// convert custom [bits]-bit float (with [exp_bits] exponent bits) stored as int
// back to binary32 float
void int_to_float(const pixel_type* const JXL_RESTRICT row_in,
float* const JXL_RESTRICT row_out, const size_t xsize,
const int bits, const int exp_bits) {
if (bits == 32) {
JXL_ASSERT(sizeof(pixel_type) == sizeof(float));
JXL_ASSERT(exp_bits == 8);
memcpy(row_out, row_in, xsize * sizeof(float));
return;
}
int exp_bias = (1 << (exp_bits - 1)) - 1;
int sign_shift = bits - 1;
int mant_bits = bits - exp_bits - 1;
int mant_shift = 23 - mant_bits;
for (size_t x = 0; x < xsize; ++x) {
uint32_t f;
memcpy(&f, &row_in[x], 4);
int signbit = (f >> sign_shift);
f &= (1 << sign_shift) - 1;
if (f == 0) {
row_out[x] = (signbit ? -0.f : 0.f);
continue;
}
int exp = (f >> mant_bits);
int mantissa = (f & ((1 << mant_bits) - 1));
mantissa <<= mant_shift;
// Try to normalize only if there is space for maneuver.
if (exp == 0 && exp_bits < 8) {
// subnormal number
while ((mantissa & 0x800000) == 0) {
mantissa <<= 1;
exp--;
}
exp++;
// remove leading 1 because it is implicit now
mantissa &= 0x7fffff;
}
exp -= exp_bias;
// broke up the arbitrary float into its parts, now reassemble into
// binary32
exp += 127;
JXL_ASSERT(exp >= 0);
f = (signbit ? 0x80000000 : 0);
f |= (exp << 23);
f |= mantissa;
memcpy(&row_out[x], &f, 4);
}
}
#if JXL_DEBUG_V_LEVEL >= 1
std::string ModularStreamId::DebugString() const {
std::ostringstream os;
os << (kind == kGlobalData ? "ModularGlobal"
: kind == kVarDCTDC ? "VarDCTDC"
: kind == kModularDC ? "ModularDC"
: kind == kACMetadata ? "ACMeta"
: kind == kQuantTable ? "QuantTable"
: kind == kModularAC ? "ModularAC"
: "");
if (kind == kVarDCTDC || kind == kModularDC || kind == kACMetadata ||
kind == kModularAC) {
os << " group " << group_id;
}
if (kind == kModularAC) {
os << " pass " << pass_id;
}
if (kind == kQuantTable) {
os << " " << quant_table_id;
}
return os.str();
}
#endif
Status ModularFrameDecoder::DecodeGlobalInfo(BitReader* reader,
const FrameHeader& frame_header,
bool allow_truncated_group) {
bool decode_color = frame_header.encoding == FrameEncoding::kModular;
const auto& metadata = frame_header.nonserialized_metadata->m;
bool is_gray = metadata.color_encoding.IsGray();
size_t nb_chans = 3;
if (is_gray && frame_header.color_transform == ColorTransform::kNone) {
nb_chans = 1;
}
do_color = decode_color;
size_t nb_extra = metadata.extra_channel_info.size();
bool has_tree = static_cast<bool>(reader->ReadBits(1));
if (!allow_truncated_group ||
reader->TotalBitsConsumed() < reader->TotalBytes() * kBitsPerByte) {
if (has_tree) {
size_t tree_size_limit =
std::min(static_cast<size_t>(1 << 22),
1024 + frame_dim.xsize * frame_dim.ysize *
(nb_chans + nb_extra) / 16);
JXL_RETURN_IF_ERROR(DecodeTree(reader, &tree, tree_size_limit));
JXL_RETURN_IF_ERROR(
DecodeHistograms(reader, (tree.size() + 1) / 2, &code, &context_map));
}
}
if (!do_color) nb_chans = 0;
bool fp = metadata.bit_depth.floating_point_sample;
// bits_per_sample is just metadata for XYB images.
if (metadata.bit_depth.bits_per_sample >= 32 && do_color &&
frame_header.color_transform != ColorTransform::kXYB) {
if (metadata.bit_depth.bits_per_sample == 32 && fp == false) {
return JXL_FAILURE("uint32_t not supported in dec_modular");
} else if (metadata.bit_depth.bits_per_sample > 32) {
return JXL_FAILURE("bits_per_sample > 32 not supported");
}
}
JXL_ASSIGN_OR_RETURN(
Image gi,
Image::Create(frame_dim.xsize, frame_dim.ysize,
metadata.bit_depth.bits_per_sample, nb_chans + nb_extra));
all_same_shift = true;
if (frame_header.color_transform == ColorTransform::kYCbCr) {
for (size_t c = 0; c < nb_chans; c++) {
gi.channel[c].hshift = frame_header.chroma_subsampling.HShift(c);
gi.channel[c].vshift = frame_header.chroma_subsampling.VShift(c);
size_t xsize_shifted =
DivCeil(frame_dim.xsize, 1 << gi.channel[c].hshift);
size_t ysize_shifted =
DivCeil(frame_dim.ysize, 1 << gi.channel[c].vshift);
JXL_RETURN_IF_ERROR(gi.channel[c].shrink(xsize_shifted, ysize_shifted));
if (gi.channel[c].hshift != gi.channel[0].hshift ||
gi.channel[c].vshift != gi.channel[0].vshift)
all_same_shift = false;
}
}
for (size_t ec = 0, c = nb_chans; ec < nb_extra; ec++, c++) {
size_t ecups = frame_header.extra_channel_upsampling[ec];
JXL_RETURN_IF_ERROR(
gi.channel[c].shrink(DivCeil(frame_dim.xsize_upsampled, ecups),
DivCeil(frame_dim.ysize_upsampled, ecups)));
gi.channel[c].hshift = gi.channel[c].vshift =
CeilLog2Nonzero(ecups) - CeilLog2Nonzero(frame_header.upsampling);
if (gi.channel[c].hshift != gi.channel[0].hshift ||
gi.channel[c].vshift != gi.channel[0].vshift)
all_same_shift = false;
}
JXL_DEBUG_V(6, "DecodeGlobalInfo: full_image (w/o transforms) %s",
gi.DebugString().c_str());
ModularOptions options;
options.max_chan_size = frame_dim.group_dim;
options.group_dim = frame_dim.group_dim;
Status dec_status = ModularGenericDecompress(
reader, gi, &global_header, ModularStreamId::Global().ID(frame_dim),
&options,
/*undo_transforms=*/false, &tree, &code, &context_map,
allow_truncated_group);
if (!allow_truncated_group) JXL_RETURN_IF_ERROR(dec_status);
if (dec_status.IsFatalError()) {
return JXL_FAILURE("Failed to decode global modular info");
}
// TODO(eustas): are we sure this can be done after partial decode?
have_something = false;
for (size_t c = 0; c < gi.channel.size(); c++) {
Channel& gic = gi.channel[c];
if (c >= gi.nb_meta_channels && gic.w <= frame_dim.group_dim &&
gic.h <= frame_dim.group_dim)
have_something = true;
}
// move global transforms to groups if possible
if (!have_something && all_same_shift) {
if (gi.transform.size() == 1 && gi.transform[0].id == TransformId::kRCT) {
global_transform = gi.transform;
gi.transform.clear();
// TODO(jon): also move no-delta-palette out (trickier though)
}
}
full_image = std::move(gi);
JXL_DEBUG_V(6, "DecodeGlobalInfo: full_image (with transforms) %s",
full_image.DebugString().c_str());
return dec_status;
}
void ModularFrameDecoder::MaybeDropFullImage() {
if (full_image.transform.empty() && !have_something && all_same_shift) {
use_full_image = false;
JXL_DEBUG_V(6, "Dropping full image");
for (auto& ch : full_image.channel) {
// keep metadata on channels around, but dealloc their planes
ch.plane = Plane<pixel_type>();
}
}
}
Status ModularFrameDecoder::DecodeGroup(
const FrameHeader& frame_header, const Rect& rect, BitReader* reader,
int minShift, int maxShift, const ModularStreamId& stream, bool zerofill,
PassesDecoderState* dec_state, RenderPipelineInput* render_pipeline_input,
bool allow_truncated, bool* should_run_pipeline) {
JXL_DEBUG_V(6, "Decoding %s with rect %s and shift bracket %d..%d %s",
stream.DebugString().c_str(), Description(rect).c_str(), minShift,
maxShift, zerofill ? "using zerofill" : "");
JXL_DASSERT(stream.kind == ModularStreamId::kModularDC ||
stream.kind == ModularStreamId::kModularAC);
const size_t xsize = rect.xsize();
const size_t ysize = rect.ysize();
JXL_ASSIGN_OR_RETURN(Image gi,
Image::Create(xsize, ysize, full_image.bitdepth, 0));
// start at the first bigger-than-groupsize non-metachannel
size_t c = full_image.nb_meta_channels;
for (; c < full_image.channel.size(); c++) {
Channel& fc = full_image.channel[c];
if (fc.w > frame_dim.group_dim || fc.h > frame_dim.group_dim) break;
}
size_t beginc = c;
for (; c < full_image.channel.size(); c++) {
Channel& fc = full_image.channel[c];
int shift = std::min(fc.hshift, fc.vshift);
if (shift > maxShift) continue;
if (shift < minShift) continue;
Rect r(rect.x0() >> fc.hshift, rect.y0() >> fc.vshift,
rect.xsize() >> fc.hshift, rect.ysize() >> fc.vshift, fc.w, fc.h);
if (r.xsize() == 0 || r.ysize() == 0) continue;
if (zerofill && use_full_image) {
for (size_t y = 0; y < r.ysize(); ++y) {
pixel_type* const JXL_RESTRICT row_out = r.Row(&fc.plane, y);
memset(row_out, 0, r.xsize() * sizeof(*row_out));
}
} else {
JXL_ASSIGN_OR_RETURN(Channel gc, Channel::Create(r.xsize(), r.ysize()));
if (zerofill) ZeroFillImage(&gc.plane);
gc.hshift = fc.hshift;
gc.vshift = fc.vshift;
gi.channel.emplace_back(std::move(gc));
}
}
if (zerofill && use_full_image) return true;
// Return early if there's nothing to decode. Otherwise there might be
// problems later (in ModularImageToDecodedRect).
if (gi.channel.empty()) {
if (dec_state && should_run_pipeline) {
const auto* metadata = frame_header.nonserialized_metadata;
if (do_color || metadata->m.num_extra_channels > 0) {
// Signal to FrameDecoder that we do not have some of the required input
// for the render pipeline.
*should_run_pipeline = false;
}
}
JXL_DEBUG_V(6, "Nothing to decode, returning early.");
return true;
}
ModularOptions options;
if (!zerofill) {
auto status = ModularGenericDecompress(
reader, gi, /*header=*/nullptr, stream.ID(frame_dim), &options,
/*undo_transforms=*/true, &tree, &code, &context_map, allow_truncated);
if (!allow_truncated) JXL_RETURN_IF_ERROR(status);
if (status.IsFatalError()) return status;
}
// Undo global transforms that have been pushed to the group level
if (!use_full_image) {
JXL_ASSERT(render_pipeline_input);
for (const auto& t : global_transform) {
JXL_RETURN_IF_ERROR(t.Inverse(gi, global_header.wp_header));
}
JXL_RETURN_IF_ERROR(ModularImageToDecodedRect(
frame_header, gi, dec_state, nullptr, *render_pipeline_input,
Rect(0, 0, gi.w, gi.h)));
return true;
}
int gic = 0;
for (c = beginc; c < full_image.channel.size(); c++) {
Channel& fc = full_image.channel[c];
int shift = std::min(fc.hshift, fc.vshift);
if (shift > maxShift) continue;
if (shift < minShift) continue;
Rect r(rect.x0() >> fc.hshift, rect.y0() >> fc.vshift,
rect.xsize() >> fc.hshift, rect.ysize() >> fc.vshift, fc.w, fc.h);
if (r.xsize() == 0 || r.ysize() == 0) continue;
JXL_ASSERT(use_full_image);
CopyImageTo(/*rect_from=*/Rect(0, 0, r.xsize(), r.ysize()),
/*from=*/gi.channel[gic].plane,
/*rect_to=*/r, /*to=*/&fc.plane);
gic++;
}
return true;
}
Status ModularFrameDecoder::DecodeVarDCTDC(const FrameHeader& frame_header,
size_t group_id, BitReader* reader,
PassesDecoderState* dec_state) {
const Rect r = dec_state->shared->frame_dim.DCGroupRect(group_id);
JXL_DEBUG_V(6, "Decoding VarDCT DC with rect %s", Description(r).c_str());
// TODO(eustas): investigate if we could reduce the impact of
// EvalRationalPolynomial; generally speaking, the limit is
// 2**(128/(3*magic)), where 128 comes from IEEE 754 exponent,
// 3 comes from XybToRgb that cubes the values, and "magic" is
// the sum of all other contributions. 2**18 is known to lead
// to NaN on input found by fuzzing (see commit message).
JXL_ASSIGN_OR_RETURN(
Image image, Image::Create(r.xsize(), r.ysize(), full_image.bitdepth, 3));
size_t stream_id = ModularStreamId::VarDCTDC(group_id).ID(frame_dim);
reader->Refill();
size_t extra_precision = reader->ReadFixedBits<2>();
float mul = 1.0f / (1 << extra_precision);
ModularOptions options;
for (size_t c = 0; c < 3; c++) {
Channel& ch = image.channel[c < 2 ? c ^ 1 : c];
ch.w >>= frame_header.chroma_subsampling.HShift(c);
ch.h >>= frame_header.chroma_subsampling.VShift(c);
JXL_RETURN_IF_ERROR(ch.shrink());
}
if (!ModularGenericDecompress(
reader, image, /*header=*/nullptr, stream_id, &options,
/*undo_transforms=*/true, &tree, &code, &context_map)) {
return JXL_FAILURE("Failed to decode VarDCT DC group (DC group id %d)",
static_cast<int>(group_id));
}
DequantDC(r, &dec_state->shared_storage.dc_storage,
&dec_state->shared_storage.quant_dc, image,
dec_state->shared->quantizer.MulDC(), mul,
dec_state->shared->cmap.DCFactors(),
frame_header.chroma_subsampling, dec_state->shared->block_ctx_map);
return true;
}
Status ModularFrameDecoder::DecodeAcMetadata(const FrameHeader& frame_header,
size_t group_id, BitReader* reader,
PassesDecoderState* dec_state) {
const Rect r = dec_state->shared->frame_dim.DCGroupRect(group_id);
JXL_DEBUG_V(6, "Decoding AcMetadata with rect %s", Description(r).c_str());
size_t upper_bound = r.xsize() * r.ysize();
reader->Refill();
size_t count = reader->ReadBits(CeilLog2Nonzero(upper_bound)) + 1;
size_t stream_id = ModularStreamId::ACMetadata(group_id).ID(frame_dim);
// YToX, YToB, ACS + QF, EPF
JXL_ASSIGN_OR_RETURN(
Image image, Image::Create(r.xsize(), r.ysize(), full_image.bitdepth, 4));
static_assert(kColorTileDimInBlocks == 8, "Color tile size changed");
Rect cr(r.x0() >> 3, r.y0() >> 3, (r.xsize() + 7) >> 3, (r.ysize() + 7) >> 3);
JXL_ASSIGN_OR_RETURN(image.channel[0],
Channel::Create(cr.xsize(), cr.ysize(), 3, 3));
JXL_ASSIGN_OR_RETURN(image.channel[1],
Channel::Create(cr.xsize(), cr.ysize(), 3, 3));
JXL_ASSIGN_OR_RETURN(image.channel[2], Channel::Create(count, 2, 0, 0));
ModularOptions options;
if (!ModularGenericDecompress(
reader, image, /*header=*/nullptr, stream_id, &options,
/*undo_transforms=*/true, &tree, &code, &context_map)) {
return JXL_FAILURE("Failed to decode AC metadata");
}
ConvertPlaneAndClamp(Rect(image.channel[0].plane), image.channel[0].plane, cr,
&dec_state->shared_storage.cmap.ytox_map);
ConvertPlaneAndClamp(Rect(image.channel[1].plane), image.channel[1].plane, cr,
&dec_state->shared_storage.cmap.ytob_map);
size_t num = 0;
bool is444 = frame_header.chroma_subsampling.Is444();
auto& ac_strategy = dec_state->shared_storage.ac_strategy;
size_t xlim = std::min(ac_strategy.xsize(), r.x0() + r.xsize());
size_t ylim = std::min(ac_strategy.ysize(), r.y0() + r.ysize());
uint32_t local_used_acs = 0;
for (size_t iy = 0; iy < r.ysize(); iy++) {
size_t y = r.y0() + iy;
int32_t* row_qf = r.Row(&dec_state->shared_storage.raw_quant_field, iy);
uint8_t* row_epf = r.Row(&dec_state->shared_storage.epf_sharpness, iy);
int32_t* row_in_1 = image.channel[2].plane.Row(0);
int32_t* row_in_2 = image.channel[2].plane.Row(1);
int32_t* row_in_3 = image.channel[3].plane.Row(iy);
for (size_t ix = 0; ix < r.xsize(); ix++) {
size_t x = r.x0() + ix;
int sharpness = row_in_3[ix];
if (sharpness < 0 || sharpness >= LoopFilter::kEpfSharpEntries) {
return JXL_FAILURE("Corrupted sharpness field");
}
row_epf[ix] = sharpness;
if (ac_strategy.IsValid(x, y)) {
continue;
}
if (num >= count) return JXL_FAILURE("Corrupted stream");
if (!AcStrategy::IsRawStrategyValid(row_in_1[num])) {
return JXL_FAILURE("Invalid AC strategy");
}
local_used_acs |= 1u << row_in_1[num];
AcStrategy acs = AcStrategy::FromRawStrategy(row_in_1[num]);
if ((acs.covered_blocks_x() > 1 || acs.covered_blocks_y() > 1) &&
!is444) {
return JXL_FAILURE(
"AC strategy not compatible with chroma subsampling");
}
// Ensure that blocks do not overflow *AC* groups.
size_t next_x_ac_block = (x / kGroupDimInBlocks + 1) * kGroupDimInBlocks;
size_t next_y_ac_block = (y / kGroupDimInBlocks + 1) * kGroupDimInBlocks;
size_t next_x_dct_block = x + acs.covered_blocks_x();
size_t next_y_dct_block = y + acs.covered_blocks_y();
if (next_x_dct_block > next_x_ac_block || next_x_dct_block > xlim) {
return JXL_FAILURE("Invalid AC strategy, x overflow");
}
if (next_y_dct_block > next_y_ac_block || next_y_dct_block > ylim) {
return JXL_FAILURE("Invalid AC strategy, y overflow");
}
JXL_RETURN_IF_ERROR(
ac_strategy.SetNoBoundsCheck(x, y, AcStrategy::Type(row_in_1[num])));
row_qf[ix] = 1 + std::max<int32_t>(0, std::min(Quantizer::kQuantMax - 1,
row_in_2[num]));
num++;
}
}
dec_state->used_acs |= local_used_acs;
if (frame_header.loop_filter.epf_iters > 0) {
ComputeSigma(frame_header.loop_filter, r, dec_state);
}
return true;
}
Status ModularFrameDecoder::ModularImageToDecodedRect(
const FrameHeader& frame_header, Image& gi, PassesDecoderState* dec_state,
jxl::ThreadPool* pool, RenderPipelineInput& render_pipeline_input,
Rect modular_rect) const {
const auto* metadata = frame_header.nonserialized_metadata;
JXL_CHECK(gi.transform.empty());
auto get_row = [&](size_t c, size_t y) {
const auto& buffer = render_pipeline_input.GetBuffer(c);
return buffer.second.Row(buffer.first, y);
};
size_t c = 0;
if (do_color) {
const bool rgb_from_gray =
metadata->m.color_encoding.IsGray() &&
frame_header.color_transform == ColorTransform::kNone;
const bool fp = metadata->m.bit_depth.floating_point_sample &&
frame_header.color_transform != ColorTransform::kXYB;
for (; c < 3; c++) {
double factor = full_image.bitdepth < 32
? 1.0 / ((1u << full_image.bitdepth) - 1)
: 0;
size_t c_in = c;
if (frame_header.color_transform == ColorTransform::kXYB) {
factor = dec_state->shared->matrices.DCQuants()[c];
// XYB is encoded as YX(B-Y)
if (c < 2) c_in = 1 - c;
} else if (rgb_from_gray) {
c_in = 0;
}
JXL_ASSERT(c_in < gi.channel.size());
Channel& ch_in = gi.channel[c_in];
// TODO(eustas): could we detect it on earlier stage?
if (ch_in.w == 0 || ch_in.h == 0) {
return JXL_FAILURE("Empty image");
}
JXL_CHECK(ch_in.hshift <= 3 && ch_in.vshift <= 3);
Rect r = render_pipeline_input.GetBuffer(c).second;
Rect mr(modular_rect.x0() >> ch_in.hshift,
modular_rect.y0() >> ch_in.vshift,
DivCeil(modular_rect.xsize(), 1 << ch_in.hshift),
DivCeil(modular_rect.ysize(), 1 << ch_in.vshift));
mr = mr.Crop(ch_in.plane);
size_t xsize_shifted = r.xsize();
size_t ysize_shifted = r.ysize();
if (r.ysize() != mr.ysize() || r.xsize() != mr.xsize()) {
return JXL_FAILURE("Dimension mismatch: trying to fit a %" PRIuS
"x%" PRIuS
" modular channel into "
"a %" PRIuS "x%" PRIuS " rect",
mr.xsize(), mr.ysize(), r.xsize(), r.ysize());
}
if (frame_header.color_transform == ColorTransform::kXYB && c == 2) {
JXL_ASSERT(!fp);
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, ysize_shifted, ThreadPool::NoInit,
[&](const uint32_t task, size_t /* thread */) {
const size_t y = task;
const pixel_type* const JXL_RESTRICT row_in =
mr.Row(&ch_in.plane, y);
const pixel_type* const JXL_RESTRICT row_in_Y =
mr.Row(&gi.channel[0].plane, y);
float* const JXL_RESTRICT row_out = get_row(c, y);
HWY_DYNAMIC_DISPATCH(MultiplySum)
(xsize_shifted, row_in, row_in_Y, factor, row_out);
},
"ModularIntToFloat"));
} else if (fp) {
int bits = metadata->m.bit_depth.bits_per_sample;
int exp_bits = metadata->m.bit_depth.exponent_bits_per_sample;
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, ysize_shifted, ThreadPool::NoInit,
[&](const uint32_t task, size_t /* thread */) {
const size_t y = task;
const pixel_type* const JXL_RESTRICT row_in =
mr.Row(&ch_in.plane, y);
if (rgb_from_gray) {
for (size_t cc = 0; cc < 3; cc++) {
float* const JXL_RESTRICT row_out = get_row(cc, y);
int_to_float(row_in, row_out, xsize_shifted, bits, exp_bits);
}
} else {
float* const JXL_RESTRICT row_out = get_row(c, y);
int_to_float(row_in, row_out, xsize_shifted, bits, exp_bits);
}
},
"ModularIntToFloat_losslessfloat"));
} else {
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, ysize_shifted, ThreadPool::NoInit,
[&](const uint32_t task, size_t /* thread */) {
const size_t y = task;
const pixel_type* const JXL_RESTRICT row_in =
mr.Row(&ch_in.plane, y);
if (rgb_from_gray) {
if (full_image.bitdepth < 23) {
HWY_DYNAMIC_DISPATCH(RgbFromSingle)
(xsize_shifted, row_in, factor, get_row(0, y), get_row(1, y),
get_row(2, y));
} else {
SingleFromSingleAccurate(xsize_shifted, row_in, factor,
get_row(0, y));
SingleFromSingleAccurate(xsize_shifted, row_in, factor,
get_row(1, y));
SingleFromSingleAccurate(xsize_shifted, row_in, factor,
get_row(2, y));
}
} else {
float* const JXL_RESTRICT row_out = get_row(c, y);
if (full_image.bitdepth < 23) {
HWY_DYNAMIC_DISPATCH(SingleFromSingle)
(xsize_shifted, row_in, factor, row_out);
} else {
SingleFromSingleAccurate(xsize_shifted, row_in, factor,
row_out);
}
}
},
"ModularIntToFloat"));
}
if (rgb_from_gray) {
break;
}
}
if (rgb_from_gray) {
c = 1;
}
}
size_t num_extra_channels = metadata->m.num_extra_channels;
for (size_t ec = 0; ec < num_extra_channels; ec++, c++) {
const ExtraChannelInfo& eci = metadata->m.extra_channel_info[ec];
int bits = eci.bit_depth.bits_per_sample;
int exp_bits = eci.bit_depth.exponent_bits_per_sample;
bool fp = eci.bit_depth.floating_point_sample;
JXL_ASSERT(fp || bits < 32);
const double factor = fp ? 0 : (1.0 / ((1u << bits) - 1));
JXL_ASSERT(c < gi.channel.size());
Channel& ch_in = gi.channel[c];
Rect r = render_pipeline_input.GetBuffer(3 + ec).second;
Rect mr(modular_rect.x0() >> ch_in.hshift,
modular_rect.y0() >> ch_in.vshift,
DivCeil(modular_rect.xsize(), 1 << ch_in.hshift),
DivCeil(modular_rect.ysize(), 1 << ch_in.vshift));
mr = mr.Crop(ch_in.plane);
if (r.ysize() != mr.ysize() || r.xsize() != mr.xsize()) {
return JXL_FAILURE("Dimension mismatch: trying to fit a %" PRIuS
"x%" PRIuS
" modular channel into "
"a %" PRIuS "x%" PRIuS " rect",
mr.xsize(), mr.ysize(), r.xsize(), r.ysize());
}
for (size_t y = 0; y < r.ysize(); ++y) {
float* const JXL_RESTRICT row_out =
r.Row(render_pipeline_input.GetBuffer(3 + ec).first, y);
const pixel_type* const JXL_RESTRICT row_in = mr.Row(&ch_in.plane, y);
if (fp) {
int_to_float(row_in, row_out, r.xsize(), bits, exp_bits);
} else {
if (full_image.bitdepth < 23) {
HWY_DYNAMIC_DISPATCH(SingleFromSingle)
(r.xsize(), row_in, factor, row_out);
} else {
SingleFromSingleAccurate(r.xsize(), row_in, factor, row_out);
}
}
}
}
return true;
}
Status ModularFrameDecoder::FinalizeDecoding(const FrameHeader& frame_header,
PassesDecoderState* dec_state,
jxl::ThreadPool* pool,
bool inplace) {
if (!use_full_image) return true;
Image gi;
if (inplace) {
gi = std::move(full_image);
} else {
JXL_ASSIGN_OR_RETURN(gi, Image::Clone(full_image));
}
size_t xsize = gi.w;
size_t ysize = gi.h;
JXL_DEBUG_V(3, "Finalizing decoding for modular image: %s",
gi.DebugString().c_str());
// Don't use threads if total image size is smaller than a group
if (xsize * ysize < frame_dim.group_dim * frame_dim.group_dim) pool = nullptr;
// Undo the global transforms
gi.undo_transforms(global_header.wp_header, pool);
JXL_DASSERT(global_transform.empty());
if (gi.error) return JXL_FAILURE("Undoing transforms failed");
for (size_t i = 0; i < dec_state->shared->frame_dim.num_groups; i++) {
dec_state->render_pipeline->ClearDone(i);
}
std::atomic<bool> has_error{false};
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, dec_state->shared->frame_dim.num_groups,
[&](size_t num_threads) {
bool use_group_ids = (frame_header.encoding == FrameEncoding::kVarDCT ||
(frame_header.flags & FrameHeader::kNoise));
return dec_state->render_pipeline->PrepareForThreads(num_threads,
use_group_ids);
},
[&](const uint32_t group, size_t thread_id) {
if (has_error) return;
RenderPipelineInput input =
dec_state->render_pipeline->GetInputBuffers(group, thread_id);
if (!ModularImageToDecodedRect(
frame_header, gi, dec_state, nullptr, input,
dec_state->shared->frame_dim.GroupRect(group))) {
has_error = true;
return;
}
if (!input.Done()) {
has_error = true;
return;
}
},
"ModularToRect"));
if (has_error) return JXL_FAILURE("Error producing input to render pipeline");
return true;
}
static constexpr const float kAlmostZero = 1e-8f;
Status ModularFrameDecoder::DecodeQuantTable(
size_t required_size_x, size_t required_size_y, BitReader* br,
QuantEncoding* encoding, size_t idx,
ModularFrameDecoder* modular_frame_decoder) {
JXL_RETURN_IF_ERROR(F16Coder::Read(br, &encoding->qraw.qtable_den));
if (encoding->qraw.qtable_den < kAlmostZero) {
// qtable[] values are already checked for <= 0 so the denominator may not
// be negative.
return JXL_FAILURE("Invalid qtable_den: value too small");
}
JXL_ASSIGN_OR_RETURN(Image image,
Image::Create(required_size_x, required_size_y, 8, 3));
ModularOptions options;
if (modular_frame_decoder) {
JXL_RETURN_IF_ERROR(ModularGenericDecompress(
br, image, /*header=*/nullptr,
ModularStreamId::QuantTable(idx).ID(modular_frame_decoder->frame_dim),
&options, /*undo_transforms=*/true, &modular_frame_decoder->tree,
&modular_frame_decoder->code, &modular_frame_decoder->context_map));
} else {
JXL_RETURN_IF_ERROR(ModularGenericDecompress(br, image, /*header=*/nullptr,
0, &options,
/*undo_transforms=*/true));
}
if (!encoding->qraw.qtable) {
encoding->qraw.qtable = new std::vector<int>();
}
encoding->qraw.qtable->resize(required_size_x * required_size_y * 3);
for (size_t c = 0; c < 3; c++) {
for (size_t y = 0; y < required_size_y; y++) {
int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
for (size_t x = 0; x < required_size_x; x++) {
(*encoding->qraw.qtable)[c * required_size_x * required_size_y +
y * required_size_x + x] = row[x];
if (row[x] <= 0) {
return JXL_FAILURE("Invalid raw quantization table");
}
}
}
}
return true;
}
} // namespace jxl
#endif // HWY_ONCE
|