summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/enc_cluster.cc
blob: f7284331d97cf3244fba6f48f7fc2bd008c9c953 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jxl/enc_cluster.h"

#include <algorithm>
#include <cmath>
#include <limits>
#include <map>
#include <memory>
#include <numeric>
#include <queue>
#include <tuple>

#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/enc_cluster.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>

#include "lib/jxl/ac_context.h"
#include "lib/jxl/base/fast_math-inl.h"
#include "lib/jxl/enc_ans.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {

// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Eq;
using hwy::HWY_NAMESPACE::IfThenZeroElse;

template <class V>
V Entropy(V count, V inv_total, V total) {
  const HWY_CAPPED(float, Histogram::kRounding) d;
  const auto zero = Set(d, 0.0f);
  // TODO(eustas): why (0 - x) instead of Neg(x)?
  return IfThenZeroElse(
      Eq(count, total),
      Sub(zero, Mul(count, FastLog2f(d, Mul(inv_total, count)))));
}

void HistogramEntropy(const Histogram& a) {
  a.entropy_ = 0.0f;
  if (a.total_count_ == 0) return;

  const HWY_CAPPED(float, Histogram::kRounding) df;
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;

  const auto inv_tot = Set(df, 1.0f / a.total_count_);
  auto entropy_lanes = Zero(df);
  auto total = Set(df, a.total_count_);

  for (size_t i = 0; i < a.data_.size(); i += Lanes(di)) {
    const auto counts = LoadU(di, &a.data_[i]);
    entropy_lanes =
        Add(entropy_lanes, Entropy(ConvertTo(df, counts), inv_tot, total));
  }
  a.entropy_ += GetLane(SumOfLanes(df, entropy_lanes));
}

float HistogramDistance(const Histogram& a, const Histogram& b) {
  if (a.total_count_ == 0 || b.total_count_ == 0) return 0;

  const HWY_CAPPED(float, Histogram::kRounding) df;
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;

  const auto inv_tot = Set(df, 1.0f / (a.total_count_ + b.total_count_));
  auto distance_lanes = Zero(df);
  auto total = Set(df, a.total_count_ + b.total_count_);

  for (size_t i = 0; i < std::max(a.data_.size(), b.data_.size());
       i += Lanes(di)) {
    const auto a_counts =
        a.data_.size() > i ? LoadU(di, &a.data_[i]) : Zero(di);
    const auto b_counts =
        b.data_.size() > i ? LoadU(di, &b.data_[i]) : Zero(di);
    const auto counts = ConvertTo(df, Add(a_counts, b_counts));
    distance_lanes = Add(distance_lanes, Entropy(counts, inv_tot, total));
  }
  const float total_distance = GetLane(SumOfLanes(df, distance_lanes));
  return total_distance - a.entropy_ - b.entropy_;
}

constexpr const float kInfinity = std::numeric_limits<float>::infinity();

float HistogramKLDivergence(const Histogram& actual, const Histogram& coding) {
  if (actual.total_count_ == 0) return 0;
  if (coding.total_count_ == 0) return kInfinity;

  const HWY_CAPPED(float, Histogram::kRounding) df;
  const HWY_CAPPED(int32_t, Histogram::kRounding) di;

  const auto coding_inv = Set(df, 1.0f / coding.total_count_);
  auto cost_lanes = Zero(df);

  for (size_t i = 0; i < actual.data_.size(); i += Lanes(di)) {
    const auto counts = LoadU(di, &actual.data_[i]);
    const auto coding_counts =
        coding.data_.size() > i ? LoadU(di, &coding.data_[i]) : Zero(di);
    const auto coding_probs = Mul(ConvertTo(df, coding_counts), coding_inv);
    const auto neg_coding_cost = BitCast(
        df,
        IfThenZeroElse(Eq(counts, Zero(di)),
                       IfThenElse(Eq(coding_counts, Zero(di)),
                                  BitCast(di, Set(df, -kInfinity)),
                                  BitCast(di, FastLog2f(df, coding_probs)))));
    cost_lanes = NegMulAdd(ConvertTo(df, counts), neg_coding_cost, cost_lanes);
  }
  const float total_cost = GetLane(SumOfLanes(df, cost_lanes));
  return total_cost - actual.entropy_;
}

// First step of a k-means clustering with a fancy distance metric.
void FastClusterHistograms(const std::vector<Histogram>& in,
                           size_t max_histograms, std::vector<Histogram>* out,
                           std::vector<uint32_t>* histogram_symbols) {
  const size_t prev_histograms = out->size();
  out->reserve(max_histograms);
  histogram_symbols->clear();
  histogram_symbols->resize(in.size(), max_histograms);

  std::vector<float> dists(in.size(), std::numeric_limits<float>::max());
  size_t largest_idx = 0;
  for (size_t i = 0; i < in.size(); i++) {
    if (in[i].total_count_ == 0) {
      (*histogram_symbols)[i] = 0;
      dists[i] = 0.0f;
      continue;
    }
    HistogramEntropy(in[i]);
    if (in[i].total_count_ > in[largest_idx].total_count_) {
      largest_idx = i;
    }
  }

  if (prev_histograms > 0) {
    for (size_t j = 0; j < prev_histograms; ++j) {
      HistogramEntropy((*out)[j]);
    }
    for (size_t i = 0; i < in.size(); i++) {
      if (dists[i] == 0.0f) continue;
      for (size_t j = 0; j < prev_histograms; ++j) {
        dists[i] = std::min(HistogramKLDivergence(in[i], (*out)[j]), dists[i]);
      }
    }
    auto max_dist = std::max_element(dists.begin(), dists.end());
    if (*max_dist > 0.0f) {
      largest_idx = max_dist - dists.begin();
    }
  }

  constexpr float kMinDistanceForDistinct = 48.0f;
  while (out->size() < max_histograms) {
    (*histogram_symbols)[largest_idx] = out->size();
    out->push_back(in[largest_idx]);
    dists[largest_idx] = 0.0f;
    largest_idx = 0;
    for (size_t i = 0; i < in.size(); i++) {
      if (dists[i] == 0.0f) continue;
      dists[i] = std::min(HistogramDistance(in[i], out->back()), dists[i]);
      if (dists[i] > dists[largest_idx]) largest_idx = i;
    }
    if (dists[largest_idx] < kMinDistanceForDistinct) break;
  }

  for (size_t i = 0; i < in.size(); i++) {
    if ((*histogram_symbols)[i] != max_histograms) continue;
    size_t best = 0;
    float best_dist = std::numeric_limits<float>::max();
    for (size_t j = 0; j < out->size(); j++) {
      float dist = j < prev_histograms ? HistogramKLDivergence(in[i], (*out)[j])
                                       : HistogramDistance(in[i], (*out)[j]);
      if (dist < best_dist) {
        best = j;
        best_dist = dist;
      }
    }
    JXL_ASSERT(best_dist < std::numeric_limits<float>::max());
    if (best >= prev_histograms) {
      (*out)[best].AddHistogram(in[i]);
      HistogramEntropy((*out)[best]);
    }
    (*histogram_symbols)[i] = best;
  }
}

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace jxl
HWY_AFTER_NAMESPACE();

#if HWY_ONCE
namespace jxl {
HWY_EXPORT(FastClusterHistograms);  // Local function
HWY_EXPORT(HistogramEntropy);       // Local function

float Histogram::PopulationCost() const {
  return ANSPopulationCost(data_.data(), data_.size());
}

float Histogram::ShannonEntropy() const {
  HWY_DYNAMIC_DISPATCH(HistogramEntropy)(*this);
  return entropy_;
}

namespace {
// -----------------------------------------------------------------------------
// Histogram refinement

// Reorder histograms in *out so that the new symbols in *symbols come in
// increasing order.
void HistogramReindex(std::vector<Histogram>* out, size_t prev_histograms,
                      std::vector<uint32_t>* symbols) {
  std::vector<Histogram> tmp(*out);
  std::map<int, int> new_index;
  for (size_t i = 0; i < prev_histograms; ++i) {
    new_index[i] = i;
  }
  int next_index = prev_histograms;
  for (uint32_t symbol : *symbols) {
    if (new_index.find(symbol) == new_index.end()) {
      new_index[symbol] = next_index;
      (*out)[next_index] = tmp[symbol];
      ++next_index;
    }
  }
  out->resize(next_index);
  for (uint32_t& symbol : *symbols) {
    symbol = new_index[symbol];
  }
}

}  // namespace

// Clusters similar histograms in 'in' together, the selected histograms are
// placed in 'out', and for each index in 'in', *histogram_symbols will
// indicate which of the 'out' histograms is the best approximation.
void ClusterHistograms(const HistogramParams& params,
                       const std::vector<Histogram>& in, size_t max_histograms,
                       std::vector<Histogram>* out,
                       std::vector<uint32_t>* histogram_symbols) {
  size_t prev_histograms = out->size();
  max_histograms = std::min(max_histograms, params.max_histograms);
  max_histograms = std::min(max_histograms, in.size());
  if (params.clustering == HistogramParams::ClusteringType::kFastest) {
    max_histograms = std::min(max_histograms, static_cast<size_t>(4));
  }

  HWY_DYNAMIC_DISPATCH(FastClusterHistograms)
  (in, prev_histograms + max_histograms, out, histogram_symbols);

  if (prev_histograms == 0 &&
      params.clustering == HistogramParams::ClusteringType::kBest) {
    for (auto& histo : *out) {
      histo.entropy_ =
          ANSPopulationCost(histo.data_.data(), histo.data_.size());
    }
    uint32_t next_version = 2;
    std::vector<uint32_t> version(out->size(), 1);
    std::vector<uint32_t> renumbering(out->size());
    std::iota(renumbering.begin(), renumbering.end(), 0);

    // Try to pair up clusters if doing so reduces the total cost.

    struct HistogramPair {
      // validity of a pair: p.version == max(version[i], version[j])
      float cost;
      uint32_t first;
      uint32_t second;
      uint32_t version;
      // We use > because priority queues sort in *decreasing* order, but we
      // want lower cost elements to appear first.
      bool operator<(const HistogramPair& other) const {
        return std::make_tuple(cost, first, second, version) >
               std::make_tuple(other.cost, other.first, other.second,
                               other.version);
      }
    };

    // Create list of all pairs by increasing merging cost.
    std::priority_queue<HistogramPair> pairs_to_merge;
    for (uint32_t i = 0; i < out->size(); i++) {
      for (uint32_t j = i + 1; j < out->size(); j++) {
        Histogram histo;
        histo.AddHistogram((*out)[i]);
        histo.AddHistogram((*out)[j]);
        float cost = ANSPopulationCost(histo.data_.data(), histo.data_.size()) -
                     (*out)[i].entropy_ - (*out)[j].entropy_;
        // Avoid enqueueing pairs that are not advantageous to merge.
        if (cost >= 0) continue;
        pairs_to_merge.push(
            HistogramPair{cost, i, j, std::max(version[i], version[j])});
      }
    }

    // Merge the best pair to merge, add new pairs that get formed as a
    // consequence.
    while (!pairs_to_merge.empty()) {
      uint32_t first = pairs_to_merge.top().first;
      uint32_t second = pairs_to_merge.top().second;
      uint32_t ver = pairs_to_merge.top().version;
      pairs_to_merge.pop();
      if (ver != std::max(version[first], version[second]) ||
          version[first] == 0 || version[second] == 0) {
        continue;
      }
      (*out)[first].AddHistogram((*out)[second]);
      (*out)[first].entropy_ = ANSPopulationCost((*out)[first].data_.data(),
                                                 (*out)[first].data_.size());
      for (uint32_t& item : renumbering) {
        if (item == second) {
          item = first;
        }
      }
      version[second] = 0;
      version[first] = next_version++;
      for (uint32_t j = 0; j < out->size(); j++) {
        if (j == first) continue;
        if (version[j] == 0) continue;
        Histogram histo;
        histo.AddHistogram((*out)[first]);
        histo.AddHistogram((*out)[j]);
        float cost = ANSPopulationCost(histo.data_.data(), histo.data_.size()) -
                     (*out)[first].entropy_ - (*out)[j].entropy_;
        // Avoid enqueueing pairs that are not advantageous to merge.
        if (cost >= 0) continue;
        pairs_to_merge.push(
            HistogramPair{cost, std::min(first, j), std::max(first, j),
                          std::max(version[first], version[j])});
      }
    }
    std::vector<uint32_t> reverse_renumbering(out->size(), -1);
    size_t num_alive = 0;
    for (size_t i = 0; i < out->size(); i++) {
      if (version[i] == 0) continue;
      (*out)[num_alive++] = (*out)[i];
      reverse_renumbering[i] = num_alive - 1;
    }
    out->resize(num_alive);
    for (uint32_t& item : *histogram_symbols) {
      item = reverse_renumbering[renumbering[item]];
    }
  }

  // Convert the context map to a canonical form.
  HistogramReindex(out, prev_histograms, histogram_symbols);
}

}  // namespace jxl
#endif  // HWY_ONCE