1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/enc_frame.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <array>
#include <atomic>
#include <cmath>
#include <limits>
#include <numeric>
#include <vector>
#include "lib/jxl/ac_context.h"
#include "lib/jxl/ac_strategy.h"
#include "lib/jxl/ans_params.h"
#include "lib/jxl/base/bits.h"
#include "lib/jxl/base/common.h"
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/data_parallel.h"
#include "lib/jxl/base/override.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/chroma_from_luma.h"
#include "lib/jxl/coeff_order.h"
#include "lib/jxl/coeff_order_fwd.h"
#include "lib/jxl/color_encoding_internal.h"
#include "lib/jxl/common.h" // kMaxNumPasses
#include "lib/jxl/compressed_dc.h"
#include "lib/jxl/dct_util.h"
#include "lib/jxl/dec_external_image.h"
#include "lib/jxl/enc_ac_strategy.h"
#include "lib/jxl/enc_adaptive_quantization.h"
#include "lib/jxl/enc_ans.h"
#include "lib/jxl/enc_ar_control_field.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_bit_writer.h"
#include "lib/jxl/enc_cache.h"
#include "lib/jxl/enc_chroma_from_luma.h"
#include "lib/jxl/enc_coeff_order.h"
#include "lib/jxl/enc_context_map.h"
#include "lib/jxl/enc_entropy_coder.h"
#include "lib/jxl/enc_external_image.h"
#include "lib/jxl/enc_fields.h"
#include "lib/jxl/enc_gaborish.h"
#include "lib/jxl/enc_group.h"
#include "lib/jxl/enc_heuristics.h"
#include "lib/jxl/enc_modular.h"
#include "lib/jxl/enc_noise.h"
#include "lib/jxl/enc_params.h"
#include "lib/jxl/enc_patch_dictionary.h"
#include "lib/jxl/enc_photon_noise.h"
#include "lib/jxl/enc_quant_weights.h"
#include "lib/jxl/enc_splines.h"
#include "lib/jxl/enc_toc.h"
#include "lib/jxl/enc_xyb.h"
#include "lib/jxl/fields.h"
#include "lib/jxl/frame_dimensions.h"
#include "lib/jxl/frame_header.h"
#include "lib/jxl/image.h"
#include "lib/jxl/image_bundle.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/jpeg/enc_jpeg_data.h"
#include "lib/jxl/loop_filter.h"
#include "lib/jxl/modular/options.h"
#include "lib/jxl/quant_weights.h"
#include "lib/jxl/quantizer.h"
#include "lib/jxl/splines.h"
#include "lib/jxl/toc.h"
namespace jxl {
Status ParamsPostInit(CompressParams* p) {
if (!p->manual_noise.empty() &&
p->manual_noise.size() != NoiseParams::kNumNoisePoints) {
return JXL_FAILURE("Invalid number of noise lut entries");
}
if (!p->manual_xyb_factors.empty() && p->manual_xyb_factors.size() != 3) {
return JXL_FAILURE("Invalid number of XYB quantization factors");
}
if (!p->modular_mode && p->butteraugli_distance == 0.0) {
p->butteraugli_distance = kMinButteraugliDistance;
}
if (p->original_butteraugli_distance == -1.0) {
p->original_butteraugli_distance = p->butteraugli_distance;
}
if (p->resampling <= 0) {
p->resampling = 1;
// For very low bit rates, using 2x2 resampling gives better results on
// most photographic images, with an adjusted butteraugli score chosen to
// give roughly the same amount of bits per pixel.
if (!p->already_downsampled && p->butteraugli_distance >= 20) {
p->resampling = 2;
p->butteraugli_distance = 6 + ((p->butteraugli_distance - 20) * 0.25);
}
}
if (p->ec_resampling <= 0) {
p->ec_resampling = p->resampling;
}
return true;
}
namespace {
template <typename T>
uint32_t GetBitDepth(JxlBitDepth bit_depth, const T& metadata,
JxlPixelFormat format) {
if (bit_depth.type == JXL_BIT_DEPTH_FROM_PIXEL_FORMAT) {
return BitsPerChannel(format.data_type);
} else if (bit_depth.type == JXL_BIT_DEPTH_FROM_CODESTREAM) {
return metadata.bit_depth.bits_per_sample;
} else if (bit_depth.type == JXL_BIT_DEPTH_CUSTOM) {
return bit_depth.bits_per_sample;
} else {
return 0;
}
}
Status CopyColorChannels(JxlChunkedFrameInputSource input, Rect rect,
const FrameInfo& frame_info,
const ImageMetadata& metadata, ThreadPool* pool,
Image3F* color, ImageF* alpha,
bool* has_interleaved_alpha) {
JxlPixelFormat format = {4, JXL_TYPE_UINT8, JXL_NATIVE_ENDIAN, 0};
input.get_color_channels_pixel_format(input.opaque, &format);
*has_interleaved_alpha = format.num_channels == 2 || format.num_channels == 4;
size_t bits_per_sample =
GetBitDepth(frame_info.image_bit_depth, metadata, format);
size_t row_offset;
auto buffer = GetColorBuffer(input, rect.x0(), rect.y0(), rect.xsize(),
rect.ysize(), &row_offset);
if (!buffer) {
return JXL_FAILURE("no buffer for color channels given");
}
size_t color_channels = frame_info.ib_needs_color_transform
? metadata.color_encoding.Channels()
: 3;
if (format.num_channels < color_channels) {
return JXL_FAILURE("Expected %" PRIuS
" color channels, received only %u channels",
color_channels, format.num_channels);
}
const uint8_t* data = reinterpret_cast<const uint8_t*>(buffer.get());
for (size_t c = 0; c < color_channels; ++c) {
JXL_RETURN_IF_ERROR(ConvertFromExternalNoSizeCheck(
data, rect.xsize(), rect.ysize(), row_offset, bits_per_sample, format,
c, pool, &color->Plane(c)));
}
if (color_channels == 1) {
CopyImageTo(color->Plane(0), &color->Plane(1));
CopyImageTo(color->Plane(0), &color->Plane(2));
}
if (alpha) {
if (*has_interleaved_alpha) {
JXL_RETURN_IF_ERROR(ConvertFromExternalNoSizeCheck(
data, rect.xsize(), rect.ysize(), row_offset, bits_per_sample, format,
format.num_channels - 1, pool, alpha));
} else {
// if alpha is not passed, but it is expected, then assume
// it is all-opaque
FillImage(1.0f, alpha);
}
}
return true;
}
Status CopyExtraChannels(JxlChunkedFrameInputSource input, Rect rect,
const FrameInfo& frame_info,
const ImageMetadata& metadata,
bool has_interleaved_alpha, ThreadPool* pool,
std::vector<ImageF>* extra_channels) {
for (size_t ec = 0; ec < metadata.num_extra_channels; ec++) {
if (has_interleaved_alpha &&
metadata.extra_channel_info[ec].type == ExtraChannel::kAlpha) {
// Skip this alpha channel, but still request additional alpha channels
// if they exist.
has_interleaved_alpha = false;
continue;
}
JxlPixelFormat ec_format = {1, JXL_TYPE_UINT8, JXL_NATIVE_ENDIAN, 0};
input.get_extra_channel_pixel_format(input.opaque, ec, &ec_format);
ec_format.num_channels = 1;
size_t row_offset;
auto buffer =
GetExtraChannelBuffer(input, ec, rect.x0(), rect.y0(), rect.xsize(),
rect.ysize(), &row_offset);
if (!buffer) {
return JXL_FAILURE("no buffer for extra channel given");
}
size_t bits_per_sample = GetBitDepth(
frame_info.image_bit_depth, metadata.extra_channel_info[ec], ec_format);
if (!ConvertFromExternalNoSizeCheck(
reinterpret_cast<const uint8_t*>(buffer.get()), rect.xsize(),
rect.ysize(), row_offset, bits_per_sample, ec_format, 0, pool,
&(*extra_channels)[ec])) {
return JXL_FAILURE("Failed to set buffer for extra channel");
}
}
return true;
}
void SetProgressiveMode(const CompressParams& cparams,
ProgressiveSplitter* progressive_splitter) {
constexpr PassDefinition progressive_passes_dc_vlf_lf_full_ac[] = {
{/*num_coefficients=*/2, /*shift=*/0,
/*suitable_for_downsampling_of_at_least=*/4},
{/*num_coefficients=*/3, /*shift=*/0,
/*suitable_for_downsampling_of_at_least=*/2},
{/*num_coefficients=*/8, /*shift=*/0,
/*suitable_for_downsampling_of_at_least=*/0},
};
constexpr PassDefinition progressive_passes_dc_quant_ac_full_ac[] = {
{/*num_coefficients=*/8, /*shift=*/1,
/*suitable_for_downsampling_of_at_least=*/2},
{/*num_coefficients=*/8, /*shift=*/0,
/*suitable_for_downsampling_of_at_least=*/0},
};
bool progressive_mode = ApplyOverride(cparams.progressive_mode, false);
bool qprogressive_mode = ApplyOverride(cparams.qprogressive_mode, false);
if (cparams.custom_progressive_mode) {
progressive_splitter->SetProgressiveMode(*cparams.custom_progressive_mode);
} else if (qprogressive_mode) {
progressive_splitter->SetProgressiveMode(
ProgressiveMode{progressive_passes_dc_quant_ac_full_ac});
} else if (progressive_mode) {
progressive_splitter->SetProgressiveMode(
ProgressiveMode{progressive_passes_dc_vlf_lf_full_ac});
}
}
uint64_t FrameFlagsFromParams(const CompressParams& cparams) {
uint64_t flags = 0;
const float dist = cparams.butteraugli_distance;
// We don't add noise at low butteraugli distances because the original
// noise is stored within the compressed image and adding noise makes things
// worse.
if (ApplyOverride(cparams.noise, dist >= kMinButteraugliForNoise) ||
cparams.photon_noise_iso > 0 ||
cparams.manual_noise.size() == NoiseParams::kNumNoisePoints) {
flags |= FrameHeader::kNoise;
}
if (cparams.progressive_dc > 0 && cparams.modular_mode == false) {
flags |= FrameHeader::kUseDcFrame;
}
return flags;
}
Status LoopFilterFromParams(const CompressParams& cparams, bool streaming_mode,
FrameHeader* JXL_RESTRICT frame_header) {
LoopFilter* loop_filter = &frame_header->loop_filter;
// Gaborish defaults to enabled in Hare or slower.
loop_filter->gab = ApplyOverride(
cparams.gaborish, cparams.speed_tier <= SpeedTier::kHare &&
frame_header->encoding == FrameEncoding::kVarDCT &&
cparams.decoding_speed_tier < 4);
if (cparams.epf != -1) {
loop_filter->epf_iters = cparams.epf;
} else {
if (frame_header->encoding == FrameEncoding::kModular) {
loop_filter->epf_iters = 0;
} else {
constexpr float kThresholds[3] = {0.7, 1.5, 4.0};
loop_filter->epf_iters = 0;
if (cparams.decoding_speed_tier < 3) {
for (size_t i = cparams.decoding_speed_tier == 2 ? 1 : 0; i < 3; i++) {
if (cparams.butteraugli_distance >= kThresholds[i]) {
loop_filter->epf_iters++;
}
}
}
}
}
// Strength of EPF in modular mode.
if (frame_header->encoding == FrameEncoding::kModular &&
!cparams.IsLossless()) {
// TODO(veluca): this formula is nonsense.
loop_filter->epf_sigma_for_modular = cparams.butteraugli_distance;
}
if (frame_header->encoding == FrameEncoding::kModular &&
cparams.lossy_palette) {
loop_filter->epf_sigma_for_modular = 1.0f;
}
return true;
}
Status MakeFrameHeader(size_t xsize, size_t ysize,
const CompressParams& cparams,
const ProgressiveSplitter& progressive_splitter,
const FrameInfo& frame_info,
const jpeg::JPEGData* jpeg_data, bool streaming_mode,
FrameHeader* JXL_RESTRICT frame_header) {
frame_header->nonserialized_is_preview = frame_info.is_preview;
frame_header->is_last = frame_info.is_last;
frame_header->save_before_color_transform =
frame_info.save_before_color_transform;
frame_header->frame_type = frame_info.frame_type;
frame_header->name = frame_info.name;
progressive_splitter.InitPasses(&frame_header->passes);
if (cparams.modular_mode) {
frame_header->encoding = FrameEncoding::kModular;
if (cparams.modular_group_size_shift == -1) {
frame_header->group_size_shift = 1;
// no point using groups when only one group is full and the others are
// less than half full: multithreading will not really help much, while
// compression does suffer
if (xsize <= 400 && ysize <= 400) {
frame_header->group_size_shift = 2;
}
} else {
frame_header->group_size_shift = cparams.modular_group_size_shift;
}
}
if (jpeg_data) {
// we are transcoding a JPEG, so we don't get to choose
frame_header->encoding = FrameEncoding::kVarDCT;
frame_header->x_qm_scale = 2;
frame_header->b_qm_scale = 2;
JXL_RETURN_IF_ERROR(SetChromaSubsamplingFromJpegData(
*jpeg_data, &frame_header->chroma_subsampling));
JXL_RETURN_IF_ERROR(SetColorTransformFromJpegData(
*jpeg_data, &frame_header->color_transform));
} else {
frame_header->color_transform = cparams.color_transform;
if (!cparams.modular_mode &&
(frame_header->chroma_subsampling.MaxHShift() != 0 ||
frame_header->chroma_subsampling.MaxVShift() != 0)) {
return JXL_FAILURE(
"Chroma subsampling is not supported in VarDCT mode when not "
"recompressing JPEGs");
}
}
if (frame_header->color_transform != ColorTransform::kYCbCr &&
(frame_header->chroma_subsampling.MaxHShift() != 0 ||
frame_header->chroma_subsampling.MaxVShift() != 0)) {
return JXL_FAILURE(
"Chroma subsampling is not supported when color transform is not "
"YCbCr");
}
frame_header->flags = FrameFlagsFromParams(cparams);
// Non-photon noise is not supported in the Modular encoder for now.
if (frame_header->encoding != FrameEncoding::kVarDCT &&
cparams.photon_noise_iso == 0 && cparams.manual_noise.empty()) {
frame_header->UpdateFlag(false, FrameHeader::Flags::kNoise);
}
JXL_RETURN_IF_ERROR(
LoopFilterFromParams(cparams, streaming_mode, frame_header));
frame_header->dc_level = frame_info.dc_level;
if (frame_header->dc_level > 2) {
// With 3 or more progressive_dc frames, the implementation does not yet
// work, see enc_cache.cc.
return JXL_FAILURE("progressive_dc > 2 is not yet supported");
}
if (cparams.progressive_dc > 0 &&
(cparams.ec_resampling != 1 || cparams.resampling != 1)) {
return JXL_FAILURE("Resampling not supported with DC frames");
}
if (cparams.resampling != 1 && cparams.resampling != 2 &&
cparams.resampling != 4 && cparams.resampling != 8) {
return JXL_FAILURE("Invalid resampling factor");
}
if (cparams.ec_resampling != 1 && cparams.ec_resampling != 2 &&
cparams.ec_resampling != 4 && cparams.ec_resampling != 8) {
return JXL_FAILURE("Invalid ec_resampling factor");
}
// Resized frames.
if (frame_info.frame_type != FrameType::kDCFrame) {
frame_header->frame_origin = frame_info.origin;
size_t ups = 1;
if (cparams.already_downsampled) ups = cparams.resampling;
// TODO(lode): this is not correct in case of odd original image sizes in
// combination with cparams.already_downsampled. Likely these values should
// be set to respectively frame_header->default_xsize() and
// frame_header->default_ysize() instead, the original (non downsampled)
// intended decoded image dimensions. But it may be more subtle than that
// if combined with crop. This issue causes custom_size_or_origin to be
// incorrectly set to true in case of already_downsampled with odd output
// image size when no cropping is used.
frame_header->frame_size.xsize = xsize * ups;
frame_header->frame_size.ysize = ysize * ups;
if (frame_info.origin.x0 != 0 || frame_info.origin.y0 != 0 ||
frame_header->frame_size.xsize != frame_header->default_xsize() ||
frame_header->frame_size.ysize != frame_header->default_ysize()) {
frame_header->custom_size_or_origin = true;
}
}
// Upsampling.
frame_header->upsampling = cparams.resampling;
const std::vector<ExtraChannelInfo>& extra_channels =
frame_header->nonserialized_metadata->m.extra_channel_info;
frame_header->extra_channel_upsampling.clear();
frame_header->extra_channel_upsampling.resize(extra_channels.size(),
cparams.ec_resampling);
frame_header->save_as_reference = frame_info.save_as_reference;
// Set blending-related information.
if (frame_info.blend || frame_header->custom_size_or_origin) {
// Set blend_channel to the first alpha channel. These values are only
// encoded in case a blend mode involving alpha is used and there are more
// than one extra channels.
size_t index = 0;
if (frame_info.alpha_channel == -1) {
if (extra_channels.size() > 1) {
for (size_t i = 0; i < extra_channels.size(); i++) {
if (extra_channels[i].type == ExtraChannel::kAlpha) {
index = i;
break;
}
}
}
} else {
index = static_cast<size_t>(frame_info.alpha_channel);
JXL_ASSERT(index == 0 || index < extra_channels.size());
}
frame_header->blending_info.alpha_channel = index;
frame_header->blending_info.mode =
frame_info.blend ? frame_info.blendmode : BlendMode::kReplace;
frame_header->blending_info.source = frame_info.source;
frame_header->blending_info.clamp = frame_info.clamp;
const auto& extra_channel_info = frame_info.extra_channel_blending_info;
for (size_t i = 0; i < extra_channels.size(); i++) {
if (i < extra_channel_info.size()) {
frame_header->extra_channel_blending_info[i] = extra_channel_info[i];
} else {
frame_header->extra_channel_blending_info[i].alpha_channel = index;
BlendMode default_blend = frame_info.blendmode;
if (extra_channels[i].type != ExtraChannel::kBlack && i != index) {
// K needs to be blended, spot colors and other stuff gets added
default_blend = BlendMode::kAdd;
}
frame_header->extra_channel_blending_info[i].mode =
frame_info.blend ? default_blend : BlendMode::kReplace;
frame_header->extra_channel_blending_info[i].source = 1;
}
}
}
frame_header->animation_frame.duration = frame_info.duration;
frame_header->animation_frame.timecode = frame_info.timecode;
if (jpeg_data) {
frame_header->UpdateFlag(false, FrameHeader::kUseDcFrame);
frame_header->UpdateFlag(true, FrameHeader::kSkipAdaptiveDCSmoothing);
}
return true;
}
// Invisible (alpha = 0) pixels tend to be a mess in optimized PNGs.
// Since they have no visual impact whatsoever, we can replace them with
// something that compresses better and reduces artifacts near the edges. This
// does some kind of smooth stuff that seems to work.
// Replace invisible pixels with a weighted average of the pixel to the left,
// the pixel to the topright, and non-invisible neighbours.
// Produces downward-blurry smears, with in the upwards direction only a 1px
// edge duplication but not more. It would probably be better to smear in all
// directions. That requires an alpha-weighed convolution with a large enough
// kernel though, which might be overkill...
void SimplifyInvisible(Image3F* image, const ImageF& alpha, bool lossless) {
for (size_t c = 0; c < 3; ++c) {
for (size_t y = 0; y < image->ysize(); ++y) {
float* JXL_RESTRICT row = image->PlaneRow(c, y);
const float* JXL_RESTRICT prow =
(y > 0 ? image->PlaneRow(c, y - 1) : nullptr);
const float* JXL_RESTRICT nrow =
(y + 1 < image->ysize() ? image->PlaneRow(c, y + 1) : nullptr);
const float* JXL_RESTRICT a = alpha.Row(y);
const float* JXL_RESTRICT pa = (y > 0 ? alpha.Row(y - 1) : nullptr);
const float* JXL_RESTRICT na =
(y + 1 < image->ysize() ? alpha.Row(y + 1) : nullptr);
for (size_t x = 0; x < image->xsize(); ++x) {
if (a[x] == 0) {
if (lossless) {
row[x] = 0;
continue;
}
float d = 0.f;
row[x] = 0;
if (x > 0) {
row[x] += row[x - 1];
d++;
if (a[x - 1] > 0.f) {
row[x] += row[x - 1];
d++;
}
}
if (x + 1 < image->xsize()) {
if (y > 0) {
row[x] += prow[x + 1];
d++;
}
if (a[x + 1] > 0.f) {
row[x] += 2.f * row[x + 1];
d += 2.f;
}
if (y > 0 && pa[x + 1] > 0.f) {
row[x] += 2.f * prow[x + 1];
d += 2.f;
}
if (y + 1 < image->ysize() && na[x + 1] > 0.f) {
row[x] += 2.f * nrow[x + 1];
d += 2.f;
}
}
if (y > 0 && pa[x] > 0.f) {
row[x] += 2.f * prow[x];
d += 2.f;
}
if (y + 1 < image->ysize() && na[x] > 0.f) {
row[x] += 2.f * nrow[x];
d += 2.f;
}
if (d > 1.f) row[x] /= d;
}
}
}
}
}
struct PixelStatsForChromacityAdjustment {
float dx = 0;
float db = 0;
float exposed_blue = 0;
float CalcPlane(const ImageF* JXL_RESTRICT plane, const Rect& rect) const {
float xmax = 0;
float ymax = 0;
for (size_t ty = 1; ty < rect.ysize(); ++ty) {
for (size_t tx = 1; tx < rect.xsize(); ++tx) {
float cur = rect.Row(plane, ty)[tx];
float prev_row = rect.Row(plane, ty - 1)[tx];
float prev = rect.Row(plane, ty)[tx - 1];
xmax = std::max(xmax, std::abs(cur - prev));
ymax = std::max(ymax, std::abs(cur - prev_row));
}
}
return std::max(xmax, ymax);
}
void CalcExposedBlue(const ImageF* JXL_RESTRICT plane_y,
const ImageF* JXL_RESTRICT plane_b, const Rect& rect) {
float eb = 0;
float xmax = 0;
float ymax = 0;
for (size_t ty = 1; ty < rect.ysize(); ++ty) {
for (size_t tx = 1; tx < rect.xsize(); ++tx) {
float cur_y = rect.Row(plane_y, ty)[tx];
float cur_b = rect.Row(plane_b, ty)[tx];
float exposed_b = cur_b - cur_y * 1.2;
float diff_b = cur_b - cur_y;
float prev_row = rect.Row(plane_b, ty - 1)[tx];
float prev = rect.Row(plane_b, ty)[tx - 1];
float diff_prev_row = prev_row - rect.Row(plane_y, ty - 1)[tx];
float diff_prev = prev - rect.Row(plane_y, ty)[tx - 1];
xmax = std::max(xmax, std::abs(diff_b - diff_prev));
ymax = std::max(ymax, std::abs(diff_b - diff_prev_row));
if (exposed_b >= 0) {
exposed_b *= fabs(cur_b - prev) + fabs(cur_b - prev_row);
eb = std::max(eb, exposed_b);
}
}
}
exposed_blue = eb;
db = std::max(xmax, ymax);
}
void Calc(const Image3F* JXL_RESTRICT opsin, const Rect& rect) {
dx = CalcPlane(&opsin->Plane(0), rect);
CalcExposedBlue(&opsin->Plane(1), &opsin->Plane(2), rect);
}
int HowMuchIsXChannelPixelized() {
if (dx >= 0.03) {
return 2;
}
if (dx >= 0.017) {
return 1;
}
return 0;
}
int HowMuchIsBChannelPixelized() {
int add = exposed_blue >= 0.13 ? 1 : 0;
if (db > 0.38) {
return 2 + add;
}
if (db > 0.33) {
return 1 + add;
}
if (db > 0.28) {
return add;
}
return 0;
}
};
void ComputeChromacityAdjustments(const CompressParams& cparams,
const Image3F& opsin, const Rect& rect,
FrameHeader* frame_header) {
if (frame_header->encoding != FrameEncoding::kVarDCT ||
cparams.max_error_mode) {
return;
}
// 1) Distance based approach for chromacity adjustment:
float x_qm_scale_steps[4] = {1.25f, 7.0f, 15.0f, 24.0f};
frame_header->x_qm_scale = 2;
for (float x_qm_scale_step : x_qm_scale_steps) {
if (cparams.original_butteraugli_distance > x_qm_scale_step) {
frame_header->x_qm_scale++;
}
}
if (cparams.butteraugli_distance < 0.299f) {
// Favor chromacity preservation for making images appear more
// faithful to original even with extreme (5-10x) zooming.
frame_header->x_qm_scale++;
}
// 2) Pixel-based approach for chromacity adjustment:
// look at the individual pixels and make a guess how difficult
// the image would be based on the worst case pixel.
PixelStatsForChromacityAdjustment pixel_stats;
if (cparams.speed_tier <= SpeedTier::kSquirrel) {
pixel_stats.Calc(&opsin, rect);
}
// For X take the most severe adjustment.
frame_header->x_qm_scale = std::max<int>(
frame_header->x_qm_scale, 2 + pixel_stats.HowMuchIsXChannelPixelized());
// B only adjusted by pixel-based approach.
frame_header->b_qm_scale = 2 + pixel_stats.HowMuchIsBChannelPixelized();
}
void ComputeNoiseParams(const CompressParams& cparams, bool streaming_mode,
bool color_is_jpeg, const Image3F& opsin,
const FrameDimensions& frame_dim,
FrameHeader* frame_header, NoiseParams* noise_params) {
if (cparams.photon_noise_iso > 0) {
*noise_params = SimulatePhotonNoise(frame_dim.xsize, frame_dim.ysize,
cparams.photon_noise_iso);
} else if (cparams.manual_noise.size() == NoiseParams::kNumNoisePoints) {
for (size_t i = 0; i < NoiseParams::kNumNoisePoints; i++) {
noise_params->lut[i] = cparams.manual_noise[i];
}
} else if (frame_header->encoding == FrameEncoding::kVarDCT &&
frame_header->flags & FrameHeader::kNoise && !color_is_jpeg &&
!streaming_mode) {
// Don't start at zero amplitude since adding noise is expensive -- it
// significantly slows down decoding, and this is unlikely to
// completely go away even with advanced optimizations. After the
// kNoiseModelingRampUpDistanceRange we have reached the full level,
// i.e. noise is no longer represented by the compressed image, so we
// can add full noise by the noise modeling itself.
static const float kNoiseModelingRampUpDistanceRange = 0.6;
static const float kNoiseLevelAtStartOfRampUp = 0.25;
static const float kNoiseRampupStart = 1.0;
// TODO(user) test and properly select quality_coef with smooth
// filter
float quality_coef = 1.0f;
const float rampup = (cparams.butteraugli_distance - kNoiseRampupStart) /
kNoiseModelingRampUpDistanceRange;
if (rampup < 1.0f) {
quality_coef = kNoiseLevelAtStartOfRampUp +
(1.0f - kNoiseLevelAtStartOfRampUp) * rampup;
}
if (rampup < 0.0f) {
quality_coef = kNoiseRampupStart;
}
if (!GetNoiseParameter(opsin, noise_params, quality_coef)) {
frame_header->flags &= ~FrameHeader::kNoise;
}
}
}
void DownsampleColorChannels(const CompressParams& cparams,
const FrameHeader& frame_header,
bool color_is_jpeg, Image3F* opsin) {
if (color_is_jpeg || frame_header.upsampling == 1 ||
cparams.already_downsampled) {
return;
}
if (frame_header.encoding == FrameEncoding::kVarDCT &&
frame_header.upsampling == 2) {
// TODO(lode): use the regular DownsampleImage, or adapt to the custom
// coefficients, if there is are custom upscaling coefficients in
// CustomTransformData
if (cparams.speed_tier <= SpeedTier::kSquirrel) {
// TODO(lode): DownsampleImage2_Iterative is currently too slow to
// be used for squirrel, make it faster, and / or enable it only for
// kitten.
DownsampleImage2_Iterative(opsin);
} else {
DownsampleImage2_Sharper(opsin);
}
} else {
DownsampleImage(opsin, frame_header.upsampling);
}
if (frame_header.encoding == FrameEncoding::kVarDCT) {
PadImageToBlockMultipleInPlace(opsin);
}
}
template <typename V, typename R>
void FindIndexOfSumMaximum(const V* array, const size_t len, R* idx, V* sum) {
JXL_ASSERT(len > 0);
V maxval = 0;
V val = 0;
R maxidx = 0;
for (size_t i = 0; i < len; ++i) {
val += array[i];
if (val > maxval) {
maxval = val;
maxidx = i;
}
}
*idx = maxidx;
*sum = maxval;
}
Status ComputeJPEGTranscodingData(const jpeg::JPEGData& jpeg_data,
const FrameHeader& frame_header,
ThreadPool* pool,
ModularFrameEncoder* enc_modular,
PassesEncoderState* enc_state) {
PassesSharedState& shared = enc_state->shared;
const FrameDimensions& frame_dim = shared.frame_dim;
const size_t xsize = frame_dim.xsize_padded;
const size_t ysize = frame_dim.ysize_padded;
const size_t xsize_blocks = frame_dim.xsize_blocks;
const size_t ysize_blocks = frame_dim.ysize_blocks;
// no-op chroma from luma
shared.cmap = ColorCorrelationMap(xsize, ysize, false);
shared.ac_strategy.FillDCT8();
FillImage(uint8_t(0), &shared.epf_sharpness);
enc_state->coeffs.clear();
while (enc_state->coeffs.size() < enc_state->passes.size()) {
enc_state->coeffs.emplace_back(make_unique<ACImageT<int32_t>>(
kGroupDim * kGroupDim, frame_dim.num_groups));
}
// convert JPEG quantization table to a Quantizer object
float dcquantization[3];
std::vector<QuantEncoding> qe(DequantMatrices::kNum,
QuantEncoding::Library(0));
auto jpeg_c_map =
JpegOrder(frame_header.color_transform, jpeg_data.components.size() == 1);
std::vector<int> qt(192);
for (size_t c = 0; c < 3; c++) {
size_t jpeg_c = jpeg_c_map[c];
const int32_t* quant =
jpeg_data.quant[jpeg_data.components[jpeg_c].quant_idx].values.data();
dcquantization[c] = 255 * 8.0f / quant[0];
for (size_t y = 0; y < 8; y++) {
for (size_t x = 0; x < 8; x++) {
// JPEG XL transposes the DCT, JPEG doesn't.
qt[c * 64 + 8 * x + y] = quant[8 * y + x];
}
}
}
DequantMatricesSetCustomDC(&shared.matrices, dcquantization);
float dcquantization_r[3] = {1.0f / dcquantization[0],
1.0f / dcquantization[1],
1.0f / dcquantization[2]};
qe[AcStrategy::Type::DCT] = QuantEncoding::RAW(qt);
DequantMatricesSetCustom(&shared.matrices, qe, enc_modular);
// Ensure that InvGlobalScale() is 1.
shared.quantizer = Quantizer(&shared.matrices, 1, kGlobalScaleDenom);
// Recompute MulDC() and InvMulDC().
shared.quantizer.RecomputeFromGlobalScale();
// Per-block dequant scaling should be 1.
FillImage(static_cast<int32_t>(shared.quantizer.InvGlobalScale()),
&shared.raw_quant_field);
std::vector<int32_t> scaled_qtable(192);
for (size_t c = 0; c < 3; c++) {
for (size_t i = 0; i < 64; i++) {
scaled_qtable[64 * c + i] =
(1 << kCFLFixedPointPrecision) * qt[64 + i] / qt[64 * c + i];
}
}
auto jpeg_row = [&](size_t c, size_t y) {
return jpeg_data.components[jpeg_c_map[c]].coeffs.data() +
jpeg_data.components[jpeg_c_map[c]].width_in_blocks * kDCTBlockSize *
y;
};
bool DCzero = (frame_header.color_transform == ColorTransform::kYCbCr);
// Compute chroma-from-luma for AC (doesn't seem to be useful for DC)
if (frame_header.chroma_subsampling.Is444() &&
enc_state->cparams.force_cfl_jpeg_recompression &&
jpeg_data.components.size() == 3) {
for (size_t c : {0, 2}) {
ImageSB* map = (c == 0 ? &shared.cmap.ytox_map : &shared.cmap.ytob_map);
const float kScale = kDefaultColorFactor;
const int kOffset = 127;
const float kBase =
c == 0 ? shared.cmap.YtoXRatio(0) : shared.cmap.YtoBRatio(0);
const float kZeroThresh =
kScale * kZeroBiasDefault[c] *
0.9999f; // just epsilon less for better rounding
auto process_row = [&](const uint32_t task, const size_t thread) {
size_t ty = task;
int8_t* JXL_RESTRICT row_out = map->Row(ty);
for (size_t tx = 0; tx < map->xsize(); ++tx) {
const size_t y0 = ty * kColorTileDimInBlocks;
const size_t x0 = tx * kColorTileDimInBlocks;
const size_t y1 = std::min(frame_dim.ysize_blocks,
(ty + 1) * kColorTileDimInBlocks);
const size_t x1 = std::min(frame_dim.xsize_blocks,
(tx + 1) * kColorTileDimInBlocks);
int32_t d_num_zeros[257] = {0};
// TODO(veluca): this needs SIMD + fixed point adaptation, and/or
// conversion to the new CfL algorithm.
for (size_t y = y0; y < y1; ++y) {
const int16_t* JXL_RESTRICT row_m = jpeg_row(1, y);
const int16_t* JXL_RESTRICT row_s = jpeg_row(c, y);
for (size_t x = x0; x < x1; ++x) {
for (size_t coeffpos = 1; coeffpos < kDCTBlockSize; coeffpos++) {
const float scaled_m = row_m[x * kDCTBlockSize + coeffpos] *
scaled_qtable[64 * c + coeffpos] *
(1.0f / (1 << kCFLFixedPointPrecision));
const float scaled_s =
kScale * row_s[x * kDCTBlockSize + coeffpos] +
(kOffset - kBase * kScale) * scaled_m;
if (std::abs(scaled_m) > 1e-8f) {
float from, to;
if (scaled_m > 0) {
from = (scaled_s - kZeroThresh) / scaled_m;
to = (scaled_s + kZeroThresh) / scaled_m;
} else {
from = (scaled_s + kZeroThresh) / scaled_m;
to = (scaled_s - kZeroThresh) / scaled_m;
}
if (from < 0.0f) {
from = 0.0f;
}
if (to > 255.0f) {
to = 255.0f;
}
// Instead of clamping the both values
// we just check that range is sane.
if (from <= to) {
d_num_zeros[static_cast<int>(std::ceil(from))]++;
d_num_zeros[static_cast<int>(std::floor(to + 1))]--;
}
}
}
}
}
int best = 0;
int32_t best_sum = 0;
FindIndexOfSumMaximum(d_num_zeros, 256, &best, &best_sum);
int32_t offset_sum = 0;
for (int i = 0; i < 256; ++i) {
if (i <= kOffset) {
offset_sum += d_num_zeros[i];
}
}
row_out[tx] = 0;
if (best_sum > offset_sum + 1) {
row_out[tx] = best - kOffset;
}
}
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, map->ysize(), ThreadPool::NoInit,
process_row, "FindCorrelation"));
}
}
Image3F dc = Image3F(xsize_blocks, ysize_blocks);
if (!frame_header.chroma_subsampling.Is444()) {
ZeroFillImage(&dc);
for (auto& coeff : enc_state->coeffs) {
coeff->ZeroFill();
}
}
// JPEG DC is from -1024 to 1023.
std::vector<size_t> dc_counts[3] = {};
dc_counts[0].resize(2048);
dc_counts[1].resize(2048);
dc_counts[2].resize(2048);
size_t total_dc[3] = {};
for (size_t c : {1, 0, 2}) {
if (jpeg_data.components.size() == 1 && c != 1) {
for (auto& coeff : enc_state->coeffs) {
coeff->ZeroFillPlane(c);
}
ZeroFillImage(&dc.Plane(c));
// Ensure no division by 0.
dc_counts[c][1024] = 1;
total_dc[c] = 1;
continue;
}
size_t hshift = frame_header.chroma_subsampling.HShift(c);
size_t vshift = frame_header.chroma_subsampling.VShift(c);
ImageSB& map = (c == 0 ? shared.cmap.ytox_map : shared.cmap.ytob_map);
for (size_t group_index = 0; group_index < frame_dim.num_groups;
group_index++) {
const size_t gx = group_index % frame_dim.xsize_groups;
const size_t gy = group_index / frame_dim.xsize_groups;
int32_t* coeffs[kMaxNumPasses];
for (size_t i = 0; i < enc_state->coeffs.size(); i++) {
coeffs[i] = enc_state->coeffs[i]->PlaneRow(c, group_index, 0).ptr32;
}
int32_t block[64];
for (size_t by = gy * kGroupDimInBlocks;
by < ysize_blocks && by < (gy + 1) * kGroupDimInBlocks; ++by) {
if ((by >> vshift) << vshift != by) continue;
const int16_t* JXL_RESTRICT inputjpeg = jpeg_row(c, by >> vshift);
const int16_t* JXL_RESTRICT inputjpegY = jpeg_row(1, by);
float* JXL_RESTRICT fdc = dc.PlaneRow(c, by >> vshift);
const int8_t* JXL_RESTRICT cm =
map.ConstRow(by / kColorTileDimInBlocks);
for (size_t bx = gx * kGroupDimInBlocks;
bx < xsize_blocks && bx < (gx + 1) * kGroupDimInBlocks; ++bx) {
if ((bx >> hshift) << hshift != bx) continue;
size_t base = (bx >> hshift) * kDCTBlockSize;
int idc;
if (DCzero) {
idc = inputjpeg[base];
} else {
idc = inputjpeg[base] + 1024 / qt[c * 64];
}
dc_counts[c][std::min(static_cast<uint32_t>(idc + 1024),
uint32_t(2047))]++;
total_dc[c]++;
fdc[bx >> hshift] = idc * dcquantization_r[c];
if (c == 1 || !enc_state->cparams.force_cfl_jpeg_recompression ||
!frame_header.chroma_subsampling.Is444()) {
for (size_t y = 0; y < 8; y++) {
for (size_t x = 0; x < 8; x++) {
block[y * 8 + x] = inputjpeg[base + x * 8 + y];
}
}
} else {
const int32_t scale =
shared.cmap.RatioJPEG(cm[bx / kColorTileDimInBlocks]);
for (size_t y = 0; y < 8; y++) {
for (size_t x = 0; x < 8; x++) {
int Y = inputjpegY[kDCTBlockSize * bx + x * 8 + y];
int QChroma = inputjpeg[kDCTBlockSize * bx + x * 8 + y];
// Fixed-point multiply of CfL scale with quant table ratio
// first, and Y value second.
int coeff_scale = (scale * scaled_qtable[64 * c + y * 8 + x] +
(1 << (kCFLFixedPointPrecision - 1))) >>
kCFLFixedPointPrecision;
int cfl_factor =
(Y * coeff_scale + (1 << (kCFLFixedPointPrecision - 1))) >>
kCFLFixedPointPrecision;
int QCR = QChroma - cfl_factor;
block[y * 8 + x] = QCR;
}
}
}
enc_state->progressive_splitter.SplitACCoefficients(
block, AcStrategy::FromRawStrategy(AcStrategy::Type::DCT), bx, by,
coeffs);
for (size_t i = 0; i < enc_state->coeffs.size(); i++) {
coeffs[i] += kDCTBlockSize;
}
}
}
}
}
auto& dct = enc_state->shared.block_ctx_map.dc_thresholds;
auto& num_dc_ctxs = enc_state->shared.block_ctx_map.num_dc_ctxs;
num_dc_ctxs = 1;
for (size_t i = 0; i < 3; i++) {
dct[i].clear();
int num_thresholds = (CeilLog2Nonzero(total_dc[i]) - 12) / 2;
// up to 3 buckets per channel:
// dark/medium/bright, yellow/unsat/blue, green/unsat/red
num_thresholds = std::min(std::max(num_thresholds, 0), 2);
size_t cumsum = 0;
size_t cut = total_dc[i] / (num_thresholds + 1);
for (int j = 0; j < 2048; j++) {
cumsum += dc_counts[i][j];
if (cumsum > cut) {
dct[i].push_back(j - 1025);
cut = total_dc[i] * (dct[i].size() + 1) / (num_thresholds + 1);
}
}
num_dc_ctxs *= dct[i].size() + 1;
}
auto& ctx_map = enc_state->shared.block_ctx_map.ctx_map;
ctx_map.clear();
ctx_map.resize(3 * kNumOrders * num_dc_ctxs, 0);
int lbuckets = (dct[1].size() + 1);
for (size_t i = 0; i < num_dc_ctxs; i++) {
// up to 9 contexts for luma
ctx_map[i] = i / lbuckets;
// up to 3 contexts for chroma
ctx_map[kNumOrders * num_dc_ctxs + i] =
ctx_map[2 * kNumOrders * num_dc_ctxs + i] =
num_dc_ctxs / lbuckets + (i % lbuckets);
}
enc_state->shared.block_ctx_map.num_ctxs =
*std::max_element(ctx_map.begin(), ctx_map.end()) + 1;
// disable DC frame for now
auto compute_dc_coeffs = [&](const uint32_t group_index,
size_t /* thread */) {
const Rect r = enc_state->shared.frame_dim.DCGroupRect(group_index);
enc_modular->AddVarDCTDC(frame_header, dc, r, group_index,
/*nl_dc=*/false, enc_state,
/*jpeg_transcode=*/true);
enc_modular->AddACMetadata(r, group_index, /*jpeg_transcode=*/true,
enc_state);
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, shared.frame_dim.num_dc_groups,
ThreadPool::NoInit, compute_dc_coeffs,
"Compute DC coeffs"));
return true;
}
Status ComputeVarDCTEncodingData(const FrameHeader& frame_header,
const Image3F* linear,
Image3F* JXL_RESTRICT opsin, const Rect& rect,
const JxlCmsInterface& cms, ThreadPool* pool,
ModularFrameEncoder* enc_modular,
PassesEncoderState* enc_state,
AuxOut* aux_out) {
JXL_ASSERT((rect.xsize() % kBlockDim) == 0 &&
(rect.ysize() % kBlockDim) == 0);
JXL_RETURN_IF_ERROR(LossyFrameHeuristics(frame_header, enc_state, enc_modular,
linear, opsin, rect, cms, pool,
aux_out));
JXL_RETURN_IF_ERROR(InitializePassesEncoder(
frame_header, *opsin, rect, cms, pool, enc_state, enc_modular, aux_out));
return true;
}
void ComputeAllCoeffOrders(PassesEncoderState& enc_state,
const FrameDimensions& frame_dim) {
auto used_orders_info = ComputeUsedOrders(
enc_state.cparams.speed_tier, enc_state.shared.ac_strategy,
Rect(enc_state.shared.raw_quant_field));
enc_state.used_orders.resize(enc_state.progressive_splitter.GetNumPasses());
for (size_t i = 0; i < enc_state.progressive_splitter.GetNumPasses(); i++) {
ComputeCoeffOrder(
enc_state.cparams.speed_tier, *enc_state.coeffs[i],
enc_state.shared.ac_strategy, frame_dim, enc_state.used_orders[i],
enc_state.used_acs, used_orders_info.first, used_orders_info.second,
&enc_state.shared.coeff_orders[i * enc_state.shared.coeff_order_size]);
}
enc_state.used_acs |= used_orders_info.first;
}
// Working area for TokenizeCoefficients (per-group!)
struct EncCache {
// Allocates memory when first called.
void InitOnce() {
if (num_nzeroes.xsize() == 0) {
num_nzeroes = Image3I(kGroupDimInBlocks, kGroupDimInBlocks);
}
}
// TokenizeCoefficients
Image3I num_nzeroes;
};
Status TokenizeAllCoefficients(const FrameHeader& frame_header,
ThreadPool* pool,
PassesEncoderState* enc_state) {
PassesSharedState& shared = enc_state->shared;
std::vector<EncCache> group_caches;
const auto tokenize_group_init = [&](const size_t num_threads) {
group_caches.resize(num_threads);
return true;
};
const auto tokenize_group = [&](const uint32_t group_index,
const size_t thread) {
// Tokenize coefficients.
const Rect rect = shared.frame_dim.BlockGroupRect(group_index);
for (size_t idx_pass = 0; idx_pass < enc_state->passes.size(); idx_pass++) {
JXL_ASSERT(enc_state->coeffs[idx_pass]->Type() == ACType::k32);
const int32_t* JXL_RESTRICT ac_rows[3] = {
enc_state->coeffs[idx_pass]->PlaneRow(0, group_index, 0).ptr32,
enc_state->coeffs[idx_pass]->PlaneRow(1, group_index, 0).ptr32,
enc_state->coeffs[idx_pass]->PlaneRow(2, group_index, 0).ptr32,
};
// Ensure group cache is initialized.
group_caches[thread].InitOnce();
TokenizeCoefficients(
&shared.coeff_orders[idx_pass * shared.coeff_order_size], rect,
ac_rows, shared.ac_strategy, frame_header.chroma_subsampling,
&group_caches[thread].num_nzeroes,
&enc_state->passes[idx_pass].ac_tokens[group_index], shared.quant_dc,
shared.raw_quant_field, shared.block_ctx_map);
}
};
return RunOnPool(pool, 0, shared.frame_dim.num_groups, tokenize_group_init,
tokenize_group, "TokenizeGroup");
}
Status EncodeGlobalDCInfo(const PassesSharedState& shared, BitWriter* writer,
AuxOut* aux_out) {
// Encode quantizer DC and global scale.
QuantizerParams params = shared.quantizer.GetParams();
JXL_RETURN_IF_ERROR(
WriteQuantizerParams(params, writer, kLayerQuant, aux_out));
EncodeBlockCtxMap(shared.block_ctx_map, writer, aux_out);
ColorCorrelationMapEncodeDC(shared.cmap, writer, kLayerDC, aux_out);
return true;
}
// In streaming mode, this function only performs the histogram clustering and
// saves the histogram bitstreams in enc_state, the actual AC global bitstream
// is written in OutputAcGlobal() function after all the groups are processed.
Status EncodeGlobalACInfo(PassesEncoderState* enc_state, BitWriter* writer,
ModularFrameEncoder* enc_modular, AuxOut* aux_out) {
PassesSharedState& shared = enc_state->shared;
JXL_RETURN_IF_ERROR(DequantMatricesEncode(shared.matrices, writer,
kLayerQuant, aux_out, enc_modular));
size_t num_histo_bits = CeilLog2Nonzero(shared.frame_dim.num_groups);
if (!enc_state->streaming_mode && num_histo_bits != 0) {
BitWriter::Allotment allotment(writer, num_histo_bits);
writer->Write(num_histo_bits, shared.num_histograms - 1);
allotment.ReclaimAndCharge(writer, kLayerAC, aux_out);
}
for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses(); i++) {
// Encode coefficient orders.
if (!enc_state->streaming_mode) {
size_t order_bits = 0;
JXL_RETURN_IF_ERROR(U32Coder::CanEncode(
kOrderEnc, enc_state->used_orders[i], &order_bits));
BitWriter::Allotment allotment(writer, order_bits);
JXL_CHECK(U32Coder::Write(kOrderEnc, enc_state->used_orders[i], writer));
allotment.ReclaimAndCharge(writer, kLayerOrder, aux_out);
EncodeCoeffOrders(enc_state->used_orders[i],
&shared.coeff_orders[i * shared.coeff_order_size],
writer, kLayerOrder, aux_out);
}
// Encode histograms.
HistogramParams hist_params(enc_state->cparams.speed_tier,
shared.block_ctx_map.NumACContexts());
if (enc_state->cparams.speed_tier > SpeedTier::kTortoise) {
hist_params.lz77_method = HistogramParams::LZ77Method::kNone;
}
if (enc_state->cparams.decoding_speed_tier >= 1) {
hist_params.max_histograms = 6;
}
size_t num_histogram_groups = shared.num_histograms;
if (enc_state->streaming_mode) {
size_t prev_num_histograms =
enc_state->passes[i].codes.encoding_info.size();
if (enc_state->initialize_global_state) {
prev_num_histograms += kNumFixedHistograms;
hist_params.add_fixed_histograms = true;
}
size_t remaining_histograms = kClustersLimit - prev_num_histograms;
// Heuristic to assign budget of new histograms to DC groups.
// TODO(szabadka) Tune this together with the DC group ordering.
size_t max_histograms = remaining_histograms < 20
? std::min<size_t>(remaining_histograms, 4)
: remaining_histograms / 4;
hist_params.max_histograms =
std::min(max_histograms, hist_params.max_histograms);
num_histogram_groups = 1;
}
hist_params.streaming_mode = enc_state->streaming_mode;
hist_params.initialize_global_state = enc_state->initialize_global_state;
BuildAndEncodeHistograms(
hist_params,
num_histogram_groups * shared.block_ctx_map.NumACContexts(),
enc_state->passes[i].ac_tokens, &enc_state->passes[i].codes,
&enc_state->passes[i].context_map, writer, kLayerAC, aux_out);
}
return true;
}
Status EncodeGroups(const FrameHeader& frame_header,
PassesEncoderState* enc_state,
ModularFrameEncoder* enc_modular, ThreadPool* pool,
std::vector<BitWriter>* group_codes, AuxOut* aux_out) {
const PassesSharedState& shared = enc_state->shared;
const FrameDimensions& frame_dim = shared.frame_dim;
const size_t num_groups = frame_dim.num_groups;
const size_t num_passes = enc_state->progressive_splitter.GetNumPasses();
const size_t global_ac_index = frame_dim.num_dc_groups + 1;
const bool is_small_image = frame_dim.num_groups == 1 && num_passes == 1;
group_codes->resize(
NumTocEntries(num_groups, frame_dim.num_dc_groups, num_passes));
const auto get_output = [&](const size_t index) {
return &(*group_codes)[is_small_image ? 0 : index];
};
auto ac_group_code = [&](size_t pass, size_t group) {
return get_output(AcGroupIndex(pass, group, frame_dim.num_groups,
frame_dim.num_dc_groups));
};
if (enc_state->initialize_global_state) {
if (frame_header.flags & FrameHeader::kPatches) {
PatchDictionaryEncoder::Encode(shared.image_features.patches,
get_output(0), kLayerDictionary, aux_out);
}
if (frame_header.flags & FrameHeader::kSplines) {
EncodeSplines(shared.image_features.splines, get_output(0), kLayerSplines,
HistogramParams(), aux_out);
}
if (frame_header.flags & FrameHeader::kNoise) {
EncodeNoise(shared.image_features.noise_params, get_output(0),
kLayerNoise, aux_out);
}
JXL_RETURN_IF_ERROR(DequantMatricesEncodeDC(shared.matrices, get_output(0),
kLayerQuant, aux_out));
if (frame_header.encoding == FrameEncoding::kVarDCT) {
JXL_RETURN_IF_ERROR(EncodeGlobalDCInfo(shared, get_output(0), aux_out));
}
JXL_RETURN_IF_ERROR(enc_modular->EncodeGlobalInfo(enc_state->streaming_mode,
get_output(0), aux_out));
JXL_RETURN_IF_ERROR(enc_modular->EncodeStream(get_output(0), aux_out,
kLayerModularGlobal,
ModularStreamId::Global()));
}
std::vector<std::unique_ptr<AuxOut>> aux_outs;
auto resize_aux_outs = [&aux_outs,
aux_out](const size_t num_threads) -> Status {
if (aux_out == nullptr) {
aux_outs.resize(num_threads);
} else {
while (aux_outs.size() > num_threads) {
aux_out->Assimilate(*aux_outs.back());
aux_outs.pop_back();
}
while (num_threads > aux_outs.size()) {
aux_outs.emplace_back(jxl::make_unique<AuxOut>());
}
}
return true;
};
const auto process_dc_group = [&](const uint32_t group_index,
const size_t thread) {
AuxOut* my_aux_out = aux_outs[thread].get();
BitWriter* output = get_output(group_index + 1);
int modular_group_index = group_index;
if (enc_state->streaming_mode) {
JXL_ASSERT(group_index == 0);
modular_group_index = enc_state->dc_group_index;
}
if (frame_header.encoding == FrameEncoding::kVarDCT &&
!(frame_header.flags & FrameHeader::kUseDcFrame)) {
BitWriter::Allotment allotment(output, 2);
output->Write(2, enc_modular->extra_dc_precision[modular_group_index]);
allotment.ReclaimAndCharge(output, kLayerDC, my_aux_out);
JXL_CHECK(enc_modular->EncodeStream(
output, my_aux_out, kLayerDC,
ModularStreamId::VarDCTDC(modular_group_index)));
}
JXL_CHECK(enc_modular->EncodeStream(
output, my_aux_out, kLayerModularDcGroup,
ModularStreamId::ModularDC(modular_group_index)));
if (frame_header.encoding == FrameEncoding::kVarDCT) {
const Rect& rect = enc_state->shared.frame_dim.DCGroupRect(group_index);
size_t nb_bits = CeilLog2Nonzero(rect.xsize() * rect.ysize());
if (nb_bits != 0) {
BitWriter::Allotment allotment(output, nb_bits);
output->Write(nb_bits,
enc_modular->ac_metadata_size[modular_group_index] - 1);
allotment.ReclaimAndCharge(output, kLayerControlFields, my_aux_out);
}
JXL_CHECK(enc_modular->EncodeStream(
output, my_aux_out, kLayerControlFields,
ModularStreamId::ACMetadata(modular_group_index)));
}
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, frame_dim.num_dc_groups,
resize_aux_outs, process_dc_group,
"EncodeDCGroup"));
if (frame_header.encoding == FrameEncoding::kVarDCT) {
JXL_RETURN_IF_ERROR(EncodeGlobalACInfo(
enc_state, get_output(global_ac_index), enc_modular, aux_out));
}
std::atomic<int> num_errors{0};
const auto process_group = [&](const uint32_t group_index,
const size_t thread) {
AuxOut* my_aux_out = aux_outs[thread].get();
for (size_t i = 0; i < num_passes; i++) {
if (frame_header.encoding == FrameEncoding::kVarDCT) {
if (!EncodeGroupTokenizedCoefficients(
group_index, i, enc_state->histogram_idx[group_index],
*enc_state, ac_group_code(i, group_index), my_aux_out)) {
num_errors.fetch_add(1, std::memory_order_relaxed);
return;
}
}
// Write all modular encoded data (color?, alpha, depth, extra channels)
if (!enc_modular->EncodeStream(
ac_group_code(i, group_index), my_aux_out, kLayerModularAcGroup,
ModularStreamId::ModularAC(group_index, i))) {
num_errors.fetch_add(1, std::memory_order_relaxed);
return;
}
}
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, num_groups, resize_aux_outs,
process_group, "EncodeGroupCoefficients"));
// Resizing aux_outs to 0 also Assimilates the array.
static_cast<void>(resize_aux_outs(0));
JXL_RETURN_IF_ERROR(num_errors.load(std::memory_order_relaxed) == 0);
for (BitWriter& bw : *group_codes) {
BitWriter::Allotment allotment(&bw, 8);
bw.ZeroPadToByte(); // end of group.
allotment.ReclaimAndCharge(&bw, kLayerAC, aux_out);
}
return true;
}
Status ComputeEncodingData(
const CompressParams& cparams, const FrameInfo& frame_info,
const CodecMetadata* metadata, JxlEncoderChunkedFrameAdapter& frame_data,
const jpeg::JPEGData* jpeg_data, size_t x0, size_t y0, size_t xsize,
size_t ysize, const JxlCmsInterface& cms, ThreadPool* pool,
FrameHeader& mutable_frame_header, ModularFrameEncoder& enc_modular,
PassesEncoderState& enc_state, std::vector<BitWriter>* group_codes,
AuxOut* aux_out) {
JXL_ASSERT(x0 + xsize <= frame_data.xsize);
JXL_ASSERT(y0 + ysize <= frame_data.ysize);
const FrameHeader& frame_header = mutable_frame_header;
PassesSharedState& shared = enc_state.shared;
shared.metadata = metadata;
if (enc_state.streaming_mode) {
shared.frame_dim.Set(xsize, ysize, /*group_size_shift=*/1,
/*maxhshift=*/0, /*maxvshift=*/0,
/*modular_mode=*/false, /*upsampling=*/1);
} else {
shared.frame_dim = frame_header.ToFrameDimensions();
}
shared.image_features.patches.SetPassesSharedState(&shared);
const FrameDimensions& frame_dim = shared.frame_dim;
shared.ac_strategy =
AcStrategyImage(frame_dim.xsize_blocks, frame_dim.ysize_blocks);
shared.raw_quant_field =
ImageI(frame_dim.xsize_blocks, frame_dim.ysize_blocks);
shared.epf_sharpness = ImageB(frame_dim.xsize_blocks, frame_dim.ysize_blocks);
shared.cmap = ColorCorrelationMap(frame_dim.xsize, frame_dim.ysize);
shared.coeff_order_size = kCoeffOrderMaxSize;
if (frame_header.encoding == FrameEncoding::kVarDCT) {
shared.coeff_orders.resize(frame_header.passes.num_passes *
kCoeffOrderMaxSize);
}
shared.quant_dc = ImageB(frame_dim.xsize_blocks, frame_dim.ysize_blocks);
shared.dc_storage = Image3F(frame_dim.xsize_blocks, frame_dim.ysize_blocks);
shared.dc = &shared.dc_storage;
const size_t num_extra_channels = metadata->m.num_extra_channels;
const ExtraChannelInfo* alpha_eci = metadata->m.Find(ExtraChannel::kAlpha);
const ExtraChannelInfo* black_eci = metadata->m.Find(ExtraChannel::kBlack);
const size_t alpha_idx = alpha_eci - metadata->m.extra_channel_info.data();
const size_t black_idx = black_eci - metadata->m.extra_channel_info.data();
const ColorEncoding c_enc = metadata->m.color_encoding;
// Make the image patch bigger than the currently processed group in streaming
// mode so that we can take into account border pixels around the group when
// computing inverse Gaborish and adaptive quantization map.
int max_border = enc_state.streaming_mode ? kBlockDim : 0;
Rect frame_rect(0, 0, frame_data.xsize, frame_data.ysize);
Rect patch_rect = Rect(x0, y0, xsize, ysize).Extend(max_border, frame_rect);
JXL_ASSERT(patch_rect.IsInside(frame_rect));
// Allocating a large enough image avoids a copy when padding.
Image3F color(RoundUpToBlockDim(patch_rect.xsize()),
RoundUpToBlockDim(patch_rect.ysize()));
color.ShrinkTo(patch_rect.xsize(), patch_rect.ysize());
std::vector<ImageF> extra_channels(num_extra_channels);
for (auto& extra_channel : extra_channels) {
extra_channel = jxl::ImageF(patch_rect.xsize(), patch_rect.ysize());
}
ImageF* alpha = alpha_eci ? &extra_channels[alpha_idx] : nullptr;
ImageF* black = black_eci ? &extra_channels[black_idx] : nullptr;
bool has_interleaved_alpha = false;
JxlChunkedFrameInputSource input = frame_data.GetInputSource();
if (!frame_data.IsJPEG()) {
JXL_RETURN_IF_ERROR(CopyColorChannels(input, patch_rect, frame_info,
metadata->m, pool, &color, alpha,
&has_interleaved_alpha));
}
JXL_RETURN_IF_ERROR(CopyExtraChannels(input, patch_rect, frame_info,
metadata->m, has_interleaved_alpha,
pool, &extra_channels));
shared.image_features.patches.SetPassesSharedState(&shared);
enc_state.cparams = cparams;
Image3F linear_storage;
Image3F* linear = nullptr;
if (!jpeg_data) {
if (frame_header.color_transform == ColorTransform::kXYB &&
frame_info.ib_needs_color_transform) {
if (frame_header.encoding == FrameEncoding::kVarDCT &&
cparams.speed_tier <= SpeedTier::kKitten) {
linear_storage = Image3F(patch_rect.xsize(), patch_rect.ysize());
linear = &linear_storage;
}
ToXYB(c_enc, metadata->m.IntensityTarget(), black, pool, &color, cms,
linear);
} else {
// Nothing to do.
// RGB or YCbCr: forward YCbCr is not implemented, this is only used when
// the input is already in YCbCr
// If encoding a special DC or reference frame: input is already in XYB.
}
bool lossless = cparams.IsLossless();
if (alpha && !alpha_eci->alpha_associated &&
frame_header.frame_type == FrameType::kRegularFrame &&
!ApplyOverride(cparams.keep_invisible, lossless) &&
cparams.ec_resampling == cparams.resampling) {
// simplify invisible pixels
SimplifyInvisible(&color, *alpha, lossless);
if (linear) {
SimplifyInvisible(linear, *alpha, lossless);
}
}
PadImageToBlockMultipleInPlace(&color);
}
// Rectangle within color that corresponds to the currently processed group in
// streaming mode.
Rect group_rect(x0 - patch_rect.x0(), y0 - patch_rect.y0(),
RoundUpToBlockDim(xsize), RoundUpToBlockDim(ysize));
if (enc_state.initialize_global_state && !jpeg_data) {
ComputeChromacityAdjustments(cparams, color, group_rect,
&mutable_frame_header);
}
ComputeNoiseParams(cparams, enc_state.streaming_mode, !!jpeg_data, color,
frame_dim, &mutable_frame_header,
&shared.image_features.noise_params);
DownsampleColorChannels(cparams, frame_header, !!jpeg_data, &color);
if (cparams.ec_resampling != 1 && !cparams.already_downsampled) {
for (ImageF& ec : extra_channels) {
DownsampleImage(&ec, cparams.ec_resampling);
}
}
if (!enc_state.streaming_mode) {
group_rect = Rect(color);
}
if (frame_header.encoding == FrameEncoding::kVarDCT) {
enc_state.passes.resize(enc_state.progressive_splitter.GetNumPasses());
for (PassesEncoderState::PassData& pass : enc_state.passes) {
pass.ac_tokens.resize(shared.frame_dim.num_groups);
}
if (jpeg_data) {
JXL_RETURN_IF_ERROR(ComputeJPEGTranscodingData(
*jpeg_data, frame_header, pool, &enc_modular, &enc_state));
} else {
JXL_RETURN_IF_ERROR(ComputeVarDCTEncodingData(
frame_header, linear, &color, group_rect, cms, pool, &enc_modular,
&enc_state, aux_out));
}
ComputeAllCoeffOrders(enc_state, frame_dim);
if (!enc_state.streaming_mode) {
shared.num_histograms = 1;
enc_state.histogram_idx.resize(frame_dim.num_groups);
}
JXL_RETURN_IF_ERROR(
TokenizeAllCoefficients(frame_header, pool, &enc_state));
}
if (!enc_state.streaming_mode) {
if (cparams.modular_mode || !extra_channels.empty()) {
JXL_RETURN_IF_ERROR(enc_modular.ComputeEncodingData(
frame_header, metadata->m, &color, extra_channels, &enc_state, cms,
pool, aux_out, /*do_color=*/cparams.modular_mode));
}
JXL_RETURN_IF_ERROR(enc_modular.ComputeTree(pool));
JXL_RETURN_IF_ERROR(enc_modular.ComputeTokens(pool));
mutable_frame_header.UpdateFlag(shared.image_features.patches.HasAny(),
FrameHeader::kPatches);
mutable_frame_header.UpdateFlag(shared.image_features.splines.HasAny(),
FrameHeader::kSplines);
}
JXL_RETURN_IF_ERROR(EncodeGroups(frame_header, &enc_state, &enc_modular, pool,
group_codes, aux_out));
if (enc_state.streaming_mode) {
const size_t group_index = enc_state.dc_group_index;
enc_modular.ClearStreamData(ModularStreamId::VarDCTDC(group_index));
enc_modular.ClearStreamData(ModularStreamId::ACMetadata(group_index));
}
return true;
}
Status PermuteGroups(const CompressParams& cparams,
const FrameDimensions& frame_dim, size_t num_passes,
std::vector<coeff_order_t>* permutation,
std::vector<BitWriter>* group_codes) {
const size_t num_groups = frame_dim.num_groups;
if (!cparams.centerfirst || (num_passes == 1 && num_groups == 1)) {
return true;
}
// Don't permute global DC/AC or DC.
permutation->resize(frame_dim.num_dc_groups + 2);
std::iota(permutation->begin(), permutation->end(), 0);
std::vector<coeff_order_t> ac_group_order(num_groups);
std::iota(ac_group_order.begin(), ac_group_order.end(), 0);
size_t group_dim = frame_dim.group_dim;
// The center of the image is either given by parameters or chosen
// to be the middle of the image by default if center_x, center_y resp.
// are not provided.
int64_t imag_cx;
if (cparams.center_x != static_cast<size_t>(-1)) {
JXL_RETURN_IF_ERROR(cparams.center_x < frame_dim.xsize);
imag_cx = cparams.center_x;
} else {
imag_cx = frame_dim.xsize / 2;
}
int64_t imag_cy;
if (cparams.center_y != static_cast<size_t>(-1)) {
JXL_RETURN_IF_ERROR(cparams.center_y < frame_dim.ysize);
imag_cy = cparams.center_y;
} else {
imag_cy = frame_dim.ysize / 2;
}
// The center of the group containing the center of the image.
int64_t cx = (imag_cx / group_dim) * group_dim + group_dim / 2;
int64_t cy = (imag_cy / group_dim) * group_dim + group_dim / 2;
// This identifies in what area of the central group the center of the image
// lies in.
double direction = -std::atan2(imag_cy - cy, imag_cx - cx);
// This identifies the side of the central group the center of the image
// lies closest to. This can take values 0, 1, 2, 3 corresponding to left,
// bottom, right, top.
int64_t side = std::fmod((direction + 5 * kPi / 4), 2 * kPi) * 2 / kPi;
auto get_distance_from_center = [&](size_t gid) {
Rect r = frame_dim.GroupRect(gid);
int64_t gcx = r.x0() + group_dim / 2;
int64_t gcy = r.y0() + group_dim / 2;
int64_t dx = gcx - cx;
int64_t dy = gcy - cy;
// The angle is determined by taking atan2 and adding an appropriate
// starting point depending on the side we want to start on.
double angle = std::remainder(
std::atan2(dy, dx) + kPi / 4 + side * (kPi / 2), 2 * kPi);
// Concentric squares in clockwise order.
return std::make_pair(std::max(std::abs(dx), std::abs(dy)), angle);
};
std::sort(ac_group_order.begin(), ac_group_order.end(),
[&](coeff_order_t a, coeff_order_t b) {
return get_distance_from_center(a) < get_distance_from_center(b);
});
std::vector<coeff_order_t> inv_ac_group_order(ac_group_order.size(), 0);
for (size_t i = 0; i < ac_group_order.size(); i++) {
inv_ac_group_order[ac_group_order[i]] = i;
}
for (size_t i = 0; i < num_passes; i++) {
size_t pass_start = permutation->size();
for (coeff_order_t v : inv_ac_group_order) {
permutation->push_back(pass_start + v);
}
}
std::vector<BitWriter> new_group_codes(group_codes->size());
for (size_t i = 0; i < permutation->size(); i++) {
new_group_codes[(*permutation)[i]] = std::move((*group_codes)[i]);
}
*group_codes = std::move(new_group_codes);
return true;
}
bool CanDoStreamingEncoding(const CompressParams& cparams,
const FrameInfo& frame_info,
const CodecMetadata& metadata,
const JxlEncoderChunkedFrameAdapter& frame_data) {
if (frame_data.IsJPEG()) {
return false;
}
if (cparams.noise == Override::kOn || cparams.patches == Override::kOn) {
return false;
}
if (cparams.progressive_dc != 0 || frame_info.dc_level != 0) {
return false;
}
if (cparams.resampling != 1 || cparams.ec_resampling != 1) {
return false;
}
if (cparams.max_error_mode) {
return false;
}
if (cparams.color_transform != ColorTransform::kXYB) {
return false;
}
if (cparams.modular_mode) {
return false;
}
if (metadata.m.num_extra_channels > 0) {
return false;
}
if (cparams.buffering == 0) {
return false;
}
if (cparams.buffering == 1 && frame_data.xsize <= 2048 &&
frame_data.ysize <= 2048) {
return false;
}
if (frame_data.xsize <= 256 && frame_data.ysize <= 256) {
return false;
}
return true;
}
void ComputePermutationForStreaming(size_t xsize, size_t ysize,
size_t num_passes,
std::vector<coeff_order_t>& permutation,
std::vector<size_t>& dc_group_order) {
// This is only valid in VarDCT mode, otherwise there can be group shift.
const size_t group_size = 256;
const size_t dc_group_size = group_size * kBlockDim;
const size_t group_xsize = DivCeil(xsize, group_size);
const size_t group_ysize = DivCeil(ysize, group_size);
const size_t dc_group_xsize = DivCeil(xsize, dc_group_size);
const size_t dc_group_ysize = DivCeil(ysize, dc_group_size);
const size_t num_groups = group_xsize * group_ysize;
const size_t num_dc_groups = dc_group_xsize * dc_group_ysize;
const size_t num_sections = 2 + num_dc_groups + num_passes * num_groups;
permutation.resize(num_sections);
size_t new_ix = 0;
// DC Global is first
permutation[0] = new_ix++;
// TODO(szabadka) Change the dc group order to center-first.
for (size_t dc_y = 0; dc_y < dc_group_ysize; ++dc_y) {
for (size_t dc_x = 0; dc_x < dc_group_xsize; ++dc_x) {
size_t dc_ix = dc_y * dc_group_xsize + dc_x;
dc_group_order.push_back(dc_ix);
permutation[1 + dc_ix] = new_ix++;
size_t ac_y0 = dc_y * kBlockDim;
size_t ac_x0 = dc_x * kBlockDim;
size_t ac_y1 = std::min<size_t>(group_ysize, ac_y0 + kBlockDim);
size_t ac_x1 = std::min<size_t>(group_xsize, ac_x0 + kBlockDim);
for (size_t pass = 0; pass < num_passes; ++pass) {
for (size_t ac_y = ac_y0; ac_y < ac_y1; ++ac_y) {
for (size_t ac_x = ac_x0; ac_x < ac_x1; ++ac_x) {
size_t group_ix = ac_y * group_xsize + ac_x;
size_t old_ix =
AcGroupIndex(pass, group_ix, num_groups, num_dc_groups);
permutation[old_ix] = new_ix++;
}
}
}
}
}
// AC Global is last
permutation[1 + num_dc_groups] = new_ix++;
JXL_ASSERT(new_ix == num_sections);
}
constexpr size_t kGroupSizeOffset[4] = {
static_cast<size_t>(0),
static_cast<size_t>(1024),
static_cast<size_t>(17408),
static_cast<size_t>(4211712),
};
constexpr size_t kTOCBits[4] = {12, 16, 24, 32};
size_t TOCBucket(size_t group_size) {
size_t bucket = 0;
while (bucket < 3 && group_size >= kGroupSizeOffset[bucket + 1]) ++bucket;
return bucket;
}
size_t TOCSize(const std::vector<size_t>& group_sizes) {
size_t toc_bits = 0;
for (size_t i = 0; i < group_sizes.size(); i++) {
toc_bits += kTOCBits[TOCBucket(group_sizes[i])];
}
return (toc_bits + 7) / 8;
}
PaddedBytes EncodeTOC(const std::vector<size_t>& group_sizes, AuxOut* aux_out) {
BitWriter writer;
BitWriter::Allotment allotment(&writer, 32 * group_sizes.size());
for (size_t i = 0; i < group_sizes.size(); i++) {
JXL_CHECK(U32Coder::Write(kTocDist, group_sizes[i], &writer));
}
writer.ZeroPadToByte(); // before first group
allotment.ReclaimAndCharge(&writer, kLayerTOC, aux_out);
return std::move(writer).TakeBytes();
}
void ComputeGroupDataOffset(size_t frame_header_size, size_t dc_global_size,
size_t num_sections, size_t& min_dc_global_size,
size_t& group_offset) {
size_t max_toc_bits = (num_sections - 1) * 32;
size_t min_toc_bits = (num_sections - 1) * 12;
size_t max_padding = (max_toc_bits - min_toc_bits + 7) / 8;
min_dc_global_size = dc_global_size;
size_t dc_global_bucket = TOCBucket(min_dc_global_size);
while (TOCBucket(min_dc_global_size + max_padding) > dc_global_bucket) {
dc_global_bucket = TOCBucket(min_dc_global_size + max_padding);
min_dc_global_size = kGroupSizeOffset[dc_global_bucket];
}
JXL_ASSERT(TOCBucket(min_dc_global_size) == dc_global_bucket);
JXL_ASSERT(TOCBucket(min_dc_global_size + max_padding) == dc_global_bucket);
max_toc_bits += kTOCBits[dc_global_bucket];
size_t max_toc_size = (max_toc_bits + 7) / 8;
group_offset = frame_header_size + max_toc_size + min_dc_global_size;
}
size_t ComputeDcGlobalPadding(const std::vector<size_t>& group_sizes,
size_t frame_header_size,
size_t group_data_offset,
size_t min_dc_global_size) {
std::vector<size_t> new_group_sizes = group_sizes;
new_group_sizes[0] = min_dc_global_size;
size_t toc_size = TOCSize(new_group_sizes);
size_t actual_offset = frame_header_size + toc_size + group_sizes[0];
return group_data_offset - actual_offset;
}
Status OutputGroups(std::vector<BitWriter>&& group_codes,
std::vector<size_t>* group_sizes,
JxlEncoderOutputProcessorWrapper* output_processor) {
JXL_ASSERT(group_codes.size() >= 4);
{
PaddedBytes dc_group = std::move(group_codes[1]).TakeBytes();
group_sizes->push_back(dc_group.size());
JXL_RETURN_IF_ERROR(AppendData(*output_processor, dc_group));
}
for (size_t i = 3; i < group_codes.size(); ++i) {
PaddedBytes ac_group = std::move(group_codes[i]).TakeBytes();
group_sizes->push_back(ac_group.size());
JXL_RETURN_IF_ERROR(AppendData(*output_processor, ac_group));
}
return true;
}
void RemoveUnusedHistograms(std::vector<uint8_t>& context_map,
EntropyEncodingData& codes) {
std::vector<int> remap(256, -1);
std::vector<uint8_t> inv_remap;
for (size_t i = 0; i < context_map.size(); ++i) {
const uint8_t histo_ix = context_map[i];
if (remap[histo_ix] == -1) {
remap[histo_ix] = inv_remap.size();
inv_remap.push_back(histo_ix);
}
context_map[i] = remap[histo_ix];
}
EntropyEncodingData new_codes;
new_codes.use_prefix_code = codes.use_prefix_code;
new_codes.lz77 = codes.lz77;
for (uint8_t histo_idx : inv_remap) {
new_codes.encoding_info.emplace_back(
std::move(codes.encoding_info[histo_idx]));
new_codes.uint_config.emplace_back(std::move(codes.uint_config[histo_idx]));
new_codes.encoded_histograms.emplace_back(
std::move(codes.encoded_histograms[histo_idx]));
}
codes = std::move(new_codes);
}
Status OutputAcGlobal(PassesEncoderState& enc_state,
const FrameDimensions& frame_dim,
std::vector<size_t>* group_sizes,
JxlEncoderOutputProcessorWrapper* output_processor,
AuxOut* aux_out) {
JXL_ASSERT(frame_dim.num_groups > 1);
BitWriter writer;
{
size_t num_histo_bits = CeilLog2Nonzero(frame_dim.num_groups);
BitWriter::Allotment allotment(&writer, num_histo_bits + 1);
writer.Write(1, 1); // default dequant matrices
writer.Write(num_histo_bits, frame_dim.num_dc_groups - 1);
allotment.ReclaimAndCharge(&writer, kLayerAC, aux_out);
}
const PassesSharedState& shared = enc_state.shared;
for (size_t i = 0; i < enc_state.progressive_splitter.GetNumPasses(); i++) {
// Encode coefficient orders.
size_t order_bits = 0;
JXL_RETURN_IF_ERROR(
U32Coder::CanEncode(kOrderEnc, enc_state.used_orders[i], &order_bits));
BitWriter::Allotment allotment(&writer, order_bits);
JXL_CHECK(U32Coder::Write(kOrderEnc, enc_state.used_orders[i], &writer));
allotment.ReclaimAndCharge(&writer, kLayerOrder, aux_out);
EncodeCoeffOrders(enc_state.used_orders[i],
&shared.coeff_orders[i * shared.coeff_order_size],
&writer, kLayerOrder, aux_out);
// Fix up context map and entropy codes to remove any fix histograms that
// were not selected by clustering.
RemoveUnusedHistograms(enc_state.passes[i].context_map,
enc_state.passes[i].codes);
EncodeHistograms(enc_state.passes[i].context_map, enc_state.passes[i].codes,
&writer, kLayerAC, aux_out);
}
{
BitWriter::Allotment allotment(&writer, 8);
writer.ZeroPadToByte(); // end of group.
allotment.ReclaimAndCharge(&writer, kLayerAC, aux_out);
}
PaddedBytes ac_global = std::move(writer).TakeBytes();
group_sizes->push_back(ac_global.size());
JXL_RETURN_IF_ERROR(AppendData(*output_processor, ac_global));
return true;
}
Status EncodeFrameStreaming(const CompressParams& cparams,
const FrameInfo& frame_info,
const CodecMetadata* metadata,
JxlEncoderChunkedFrameAdapter& frame_data,
const JxlCmsInterface& cms, ThreadPool* pool,
JxlEncoderOutputProcessorWrapper* output_processor,
AuxOut* aux_out) {
PassesEncoderState enc_state;
SetProgressiveMode(cparams, &enc_state.progressive_splitter);
FrameHeader frame_header(metadata);
std::unique_ptr<jpeg::JPEGData> jpeg_data;
if (frame_data.IsJPEG()) {
jpeg_data = make_unique<jpeg::JPEGData>(frame_data.TakeJPEGData());
}
JXL_RETURN_IF_ERROR(MakeFrameHeader(frame_data.xsize, frame_data.ysize,
cparams, enc_state.progressive_splitter,
frame_info, jpeg_data.get(), true,
&frame_header));
const size_t num_passes = enc_state.progressive_splitter.GetNumPasses();
ModularFrameEncoder enc_modular(frame_header, cparams);
std::vector<coeff_order_t> permutation;
std::vector<size_t> dc_group_order;
ComputePermutationForStreaming(frame_data.xsize, frame_data.ysize, num_passes,
permutation, dc_group_order);
enc_state.shared.num_histograms = dc_group_order.size();
// This is only valid in VarDCT mode, otherwise there can be group shift.
size_t group_size = 256;
size_t dc_group_size = group_size * kBlockDim;
size_t dc_group_xsize = DivCeil(frame_data.xsize, dc_group_size);
size_t min_dc_global_size = 0;
size_t group_data_offset = 0;
PaddedBytes frame_header_bytes;
PaddedBytes dc_global_bytes;
std::vector<size_t> group_sizes;
size_t start_pos = output_processor->CurrentPosition();
for (size_t i = 0; i < dc_group_order.size(); ++i) {
size_t dc_ix = dc_group_order[i];
size_t dc_y = dc_ix / dc_group_xsize;
size_t dc_x = dc_ix % dc_group_xsize;
size_t y0 = dc_y * dc_group_size;
size_t x0 = dc_x * dc_group_size;
size_t ysize = std::min<size_t>(dc_group_size, frame_data.ysize - y0);
size_t xsize = std::min<size_t>(dc_group_size, frame_data.xsize - x0);
size_t group_xsize = DivCeil(xsize, group_size);
size_t group_ysize = DivCeil(ysize, group_size);
JXL_DEBUG_V(2,
"Encoding DC group #%" PRIuS " dc_y = %" PRIuS " dc_x = %" PRIuS
" (x0, y0) = (%" PRIuS ", %" PRIuS ") (xsize, ysize) = (%" PRIuS
", %" PRIuS ")",
dc_ix, dc_y, dc_x, x0, y0, xsize, ysize);
enc_state.streaming_mode = true;
enc_state.initialize_global_state = (i == 0);
enc_state.dc_group_index = dc_ix;
enc_state.histogram_idx =
std::vector<uint8_t>(group_xsize * group_ysize, i);
std::vector<BitWriter> group_codes;
JXL_RETURN_IF_ERROR(ComputeEncodingData(
cparams, frame_info, metadata, frame_data, jpeg_data.get(), x0, y0,
xsize, ysize, cms, pool, frame_header, enc_modular, enc_state,
&group_codes, aux_out));
JXL_ASSERT(enc_state.special_frames.empty());
if (i == 0) {
BitWriter writer;
JXL_RETURN_IF_ERROR(WriteFrameHeader(frame_header, &writer, aux_out));
BitWriter::Allotment allotment(&writer, 8);
writer.Write(1, 1); // write permutation
EncodePermutation(permutation.data(), /*skip=*/0, permutation.size(),
&writer, kLayerHeader, aux_out);
writer.ZeroPadToByte();
allotment.ReclaimAndCharge(&writer, kLayerHeader, aux_out);
frame_header_bytes = std::move(writer).TakeBytes();
dc_global_bytes = std::move(group_codes[0]).TakeBytes();
ComputeGroupDataOffset(frame_header_bytes.size(), dc_global_bytes.size(),
permutation.size(), min_dc_global_size,
group_data_offset);
JXL_DEBUG_V(2, "Frame header size: %" PRIuS, frame_header_bytes.size());
JXL_DEBUG_V(2, "DC global size: %" PRIuS ", min size for TOC: %" PRIuS,
dc_global_bytes.size(), min_dc_global_size);
JXL_DEBUG_V(2, "Num groups: %" PRIuS " group data offset: %" PRIuS,
permutation.size(), group_data_offset);
group_sizes.push_back(dc_global_bytes.size());
output_processor->Seek(start_pos + group_data_offset);
}
JXL_RETURN_IF_ERROR(
OutputGroups(std::move(group_codes), &group_sizes, output_processor));
}
JXL_RETURN_IF_ERROR(OutputAcGlobal(enc_state,
frame_header.ToFrameDimensions(),
&group_sizes, output_processor, aux_out));
JXL_ASSERT(group_sizes.size() == permutation.size());
size_t end_pos = output_processor->CurrentPosition();
output_processor->Seek(start_pos);
size_t padding_size =
ComputeDcGlobalPadding(group_sizes, frame_header_bytes.size(),
group_data_offset, min_dc_global_size);
group_sizes[0] += padding_size;
PaddedBytes toc_bytes = EncodeTOC(group_sizes, aux_out);
std::vector<uint8_t> padding_bytes(padding_size);
JXL_RETURN_IF_ERROR(AppendData(*output_processor, frame_header_bytes));
JXL_RETURN_IF_ERROR(AppendData(*output_processor, toc_bytes));
JXL_RETURN_IF_ERROR(AppendData(*output_processor, dc_global_bytes));
JXL_RETURN_IF_ERROR(AppendData(*output_processor, padding_bytes));
JXL_DEBUG_V(2, "TOC size: %" PRIuS " padding bytes after DC global: %" PRIuS,
toc_bytes.size(), padding_size);
JXL_ASSERT(output_processor->CurrentPosition() ==
start_pos + group_data_offset);
output_processor->Seek(end_pos);
return true;
}
Status EncodeFrameOneShot(const CompressParams& cparams,
const FrameInfo& frame_info,
const CodecMetadata* metadata,
JxlEncoderChunkedFrameAdapter& frame_data,
const JxlCmsInterface& cms, ThreadPool* pool,
JxlEncoderOutputProcessorWrapper* output_processor,
AuxOut* aux_out) {
PassesEncoderState enc_state;
SetProgressiveMode(cparams, &enc_state.progressive_splitter);
std::vector<BitWriter> group_codes;
FrameHeader frame_header(metadata);
std::unique_ptr<jpeg::JPEGData> jpeg_data;
if (frame_data.IsJPEG()) {
jpeg_data = make_unique<jpeg::JPEGData>(frame_data.TakeJPEGData());
}
JXL_RETURN_IF_ERROR(MakeFrameHeader(frame_data.xsize, frame_data.ysize,
cparams, enc_state.progressive_splitter,
frame_info, jpeg_data.get(), false,
&frame_header));
const size_t num_passes = enc_state.progressive_splitter.GetNumPasses();
ModularFrameEncoder enc_modular(frame_header, cparams);
JXL_RETURN_IF_ERROR(ComputeEncodingData(
cparams, frame_info, metadata, frame_data, jpeg_data.get(), 0, 0,
frame_data.xsize, frame_data.ysize, cms, pool, frame_header, enc_modular,
enc_state, &group_codes, aux_out));
BitWriter writer;
writer.AppendByteAligned(enc_state.special_frames);
JXL_RETURN_IF_ERROR(WriteFrameHeader(frame_header, &writer, aux_out));
std::vector<coeff_order_t> permutation;
JXL_RETURN_IF_ERROR(PermuteGroups(cparams, enc_state.shared.frame_dim,
num_passes, &permutation, &group_codes));
JXL_RETURN_IF_ERROR(
WriteGroupOffsets(group_codes, permutation, &writer, aux_out));
writer.AppendByteAligned(group_codes);
PaddedBytes frame_bytes = std::move(writer).TakeBytes();
JXL_RETURN_IF_ERROR(AppendData(*output_processor, frame_bytes));
return true;
}
} // namespace
Status EncodeFrame(const CompressParams& cparams_orig,
const FrameInfo& frame_info, const CodecMetadata* metadata,
JxlEncoderChunkedFrameAdapter& frame_data,
const JxlCmsInterface& cms, ThreadPool* pool,
JxlEncoderOutputProcessorWrapper* output_processor,
AuxOut* aux_out) {
CompressParams cparams = cparams_orig;
if (cparams.speed_tier == SpeedTier::kGlacier && !cparams.IsLossless()) {
cparams.speed_tier = SpeedTier::kTortoise;
}
if (cparams.speed_tier == SpeedTier::kGlacier) {
std::vector<CompressParams> all_params;
std::vector<size_t> size;
CompressParams cparams_attempt = cparams_orig;
cparams_attempt.speed_tier = SpeedTier::kTortoise;
cparams_attempt.options.max_properties = 4;
for (float x : {0.0f, 80.f}) {
cparams_attempt.channel_colors_percent = x;
for (float y : {0.0f, 95.0f}) {
cparams_attempt.channel_colors_pre_transform_percent = y;
// 70000 ensures that the number of palette colors is representable in
// modular headers.
for (int K : {0, 1 << 10, 70000}) {
cparams_attempt.palette_colors = K;
for (int tree_mode : {-1, (int)ModularOptions::TreeMode::kNoWP,
(int)ModularOptions::TreeMode::kDefault}) {
if (tree_mode == -1) {
// LZ77 only
cparams_attempt.options.nb_repeats = 0;
} else {
cparams_attempt.options.nb_repeats = 1;
cparams_attempt.options.wp_tree_mode =
static_cast<ModularOptions::TreeMode>(tree_mode);
}
for (Predictor pred : {Predictor::Zero, Predictor::Variable}) {
cparams_attempt.options.predictor = pred;
for (int g : {0, -1, 3}) {
cparams_attempt.modular_group_size_shift = g;
for (Override patches : {Override::kDefault, Override::kOff}) {
cparams_attempt.patches = patches;
all_params.push_back(cparams_attempt);
}
}
}
}
}
}
}
size.resize(all_params.size());
std::atomic<int> num_errors{0};
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, all_params.size(), ThreadPool::NoInit,
[&](size_t task, size_t) {
std::vector<uint8_t> output(64);
uint8_t* next_out = output.data();
size_t avail_out = output.size();
JxlEncoderOutputProcessorWrapper local_output;
local_output.SetAvailOut(&next_out, &avail_out);
if (!EncodeFrame(all_params[task], frame_info, metadata, frame_data,
cms, nullptr, &local_output, aux_out)) {
num_errors.fetch_add(1, std::memory_order_relaxed);
return;
}
size[task] = local_output.CurrentPosition();
},
"Compress kGlacier"));
JXL_RETURN_IF_ERROR(num_errors.load(std::memory_order_relaxed) == 0);
size_t best_idx = 0;
for (size_t i = 1; i < all_params.size(); i++) {
if (size[best_idx] > size[i]) {
best_idx = i;
}
}
cparams = all_params[best_idx];
}
JXL_RETURN_IF_ERROR(ParamsPostInit(&cparams));
if (cparams.butteraugli_distance < 0) {
return JXL_FAILURE("Expected non-negative distance");
}
if (cparams.progressive_dc < 0) {
if (cparams.progressive_dc != -1) {
return JXL_FAILURE("Invalid progressive DC setting value (%d)",
cparams.progressive_dc);
}
cparams.progressive_dc = 0;
}
if (cparams.ec_resampling < cparams.resampling) {
cparams.ec_resampling = cparams.resampling;
}
if (cparams.resampling > 1 || frame_info.is_preview) {
cparams.progressive_dc = 0;
}
if (frame_info.dc_level + cparams.progressive_dc > 4) {
return JXL_FAILURE("Too many levels of progressive DC");
}
if (cparams.butteraugli_distance != 0 &&
cparams.butteraugli_distance < kMinButteraugliDistance) {
return JXL_FAILURE("Butteraugli distance is too low (%f)",
cparams.butteraugli_distance);
}
if (frame_data.IsJPEG()) {
cparams.gaborish = Override::kOff;
cparams.epf = 0;
cparams.modular_mode = false;
}
if (frame_data.xsize == 0 || frame_data.ysize == 0) {
return JXL_FAILURE("Empty image");
}
// Assert that this metadata is correctly set up for the compression params,
// this should have been done by enc_file.cc
JXL_ASSERT(metadata->m.xyb_encoded ==
(cparams.color_transform == ColorTransform::kXYB));
if (frame_data.IsJPEG() && cparams.color_transform == ColorTransform::kXYB) {
return JXL_FAILURE("Can't add JPEG frame to XYB codestream");
}
if (CanDoStreamingEncoding(cparams, frame_info, *metadata, frame_data)) {
return EncodeFrameStreaming(cparams, frame_info, metadata, frame_data, cms,
pool, output_processor, aux_out);
} else {
return EncodeFrameOneShot(cparams, frame_info, metadata, frame_data, cms,
pool, output_processor, aux_out);
}
}
Status EncodeFrame(const CompressParams& cparams_orig,
const FrameInfo& frame_info, const CodecMetadata* metadata,
const ImageBundle& ib, const JxlCmsInterface& cms,
ThreadPool* pool, BitWriter* writer, AuxOut* aux_out) {
JxlEncoderChunkedFrameAdapter frame_data(ib.xsize(), ib.ysize(),
ib.extra_channels().size());
std::vector<uint8_t> color;
if (ib.IsJPEG()) {
frame_data.SetJPEGData(*ib.jpeg_data);
} else {
uint32_t num_channels =
ib.IsGray() && frame_info.ib_needs_color_transform ? 1 : 3;
size_t stride = ib.xsize() * num_channels * 4;
color.resize(ib.ysize() * stride);
JXL_RETURN_IF_ERROR(ConvertToExternal(
ib, /*bites_per_sample=*/32, /*float_out=*/true, num_channels,
JXL_NATIVE_ENDIAN, stride, pool, color.data(), color.size(),
/*out_callback=*/{}, Orientation::kIdentity));
JxlPixelFormat format{num_channels, JXL_TYPE_FLOAT, JXL_NATIVE_ENDIAN, 0};
frame_data.SetFromBuffer(0, color.data(), color.size(), format);
}
for (size_t ec = 0; ec < ib.extra_channels().size(); ++ec) {
JxlPixelFormat ec_format{1, JXL_TYPE_FLOAT, JXL_NATIVE_ENDIAN, 0};
size_t ec_stride = ib.xsize() * 4;
std::vector<uint8_t> ec_data(ib.ysize() * ec_stride);
const ImageF* channel = &ib.extra_channels()[ec];
JXL_RETURN_IF_ERROR(ConvertChannelsToExternal(
&channel, 1,
/*bites_per_sample=*/32,
/*float_out=*/true, JXL_NATIVE_ENDIAN, ec_stride, pool, ec_data.data(),
ec_data.size(), /*out_callback=*/{}, Orientation::kIdentity));
frame_data.SetFromBuffer(1 + ec, ec_data.data(), ec_data.size(), ec_format);
}
FrameInfo fi = frame_info;
fi.origin = ib.origin;
fi.blend = ib.blend;
fi.blendmode = ib.blendmode;
fi.duration = ib.duration;
fi.timecode = ib.timecode;
fi.name = ib.name;
std::vector<uint8_t> output(64);
uint8_t* next_out = output.data();
size_t avail_out = output.size();
JxlEncoderOutputProcessorWrapper output_processor;
output_processor.SetAvailOut(&next_out, &avail_out);
JXL_RETURN_IF_ERROR(EncodeFrame(cparams_orig, fi, metadata, frame_data, cms,
pool, &output_processor, aux_out));
output_processor.SetFinalizedPosition();
output_processor.CopyOutput(output, next_out, avail_out);
writer->AppendByteAligned(Bytes(output));
return true;
}
} // namespace jxl
|