1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/enc_group.h"
#include <hwy/aligned_allocator.h>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/enc_group.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/ac_strategy.h"
#include "lib/jxl/base/bits.h"
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/rect.h"
#include "lib/jxl/common.h" // kMaxNumPasses
#include "lib/jxl/dct_util.h"
#include "lib/jxl/dec_transforms-inl.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_cache.h"
#include "lib/jxl/enc_params.h"
#include "lib/jxl/enc_transforms-inl.h"
#include "lib/jxl/image.h"
#include "lib/jxl/quantizer-inl.h"
#include "lib/jxl/quantizer.h"
#include "lib/jxl/simd_util.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Abs;
using hwy::HWY_NAMESPACE::Ge;
using hwy::HWY_NAMESPACE::IfThenElse;
using hwy::HWY_NAMESPACE::IfThenElseZero;
using hwy::HWY_NAMESPACE::MaskFromVec;
using hwy::HWY_NAMESPACE::Round;
// NOTE: caller takes care of extracting quant from rect of RawQuantField.
void QuantizeBlockAC(const Quantizer& quantizer, const bool error_diffusion,
size_t c, float qm_multiplier, size_t quant_kind,
size_t xsize, size_t ysize, float* thresholds,
const float* JXL_RESTRICT block_in, const int32_t* quant,
int32_t* JXL_RESTRICT block_out) {
const float* JXL_RESTRICT qm = quantizer.InvDequantMatrix(quant_kind, c);
float qac = quantizer.Scale() * (*quant);
// Not SIMD-ified for now.
if (c != 1 && xsize * ysize >= 4) {
for (int i = 0; i < 4; ++i) {
thresholds[i] -= 0.00744f * xsize * ysize;
if (thresholds[i] < 0.5) {
thresholds[i] = 0.5;
}
}
}
HWY_CAPPED(float, kBlockDim) df;
HWY_CAPPED(int32_t, kBlockDim) di;
HWY_CAPPED(uint32_t, kBlockDim) du;
const auto quantv = Set(df, qac * qm_multiplier);
for (size_t y = 0; y < ysize * kBlockDim; y++) {
size_t yfix = static_cast<size_t>(y >= ysize * kBlockDim / 2) * 2;
const size_t off = y * kBlockDim * xsize;
for (size_t x = 0; x < xsize * kBlockDim; x += Lanes(df)) {
auto thr = Zero(df);
if (xsize == 1) {
HWY_ALIGN uint32_t kMask[kBlockDim] = {0, 0, 0, 0, ~0u, ~0u, ~0u, ~0u};
const auto mask = MaskFromVec(BitCast(df, Load(du, kMask + x)));
thr = IfThenElse(mask, Set(df, thresholds[yfix + 1]),
Set(df, thresholds[yfix]));
} else {
// Same for all lanes in the vector.
thr = Set(
df,
thresholds[yfix + static_cast<size_t>(x >= xsize * kBlockDim / 2)]);
}
const auto q = Mul(Load(df, qm + off + x), quantv);
const auto in = Load(df, block_in + off + x);
const auto val = Mul(q, in);
const auto nzero_mask = Ge(Abs(val), thr);
const auto v = ConvertTo(di, IfThenElseZero(nzero_mask, Round(val)));
Store(v, di, block_out + off + x);
}
}
}
void AdjustQuantBlockAC(const Quantizer& quantizer, size_t c,
float qm_multiplier, size_t quant_kind, size_t xsize,
size_t ysize, float* thresholds,
const float* JXL_RESTRICT block_in, int32_t* quant) {
// No quantization adjusting for these small blocks.
// Quantization adjusting attempts to fix some known issues
// with larger blocks and on the 8x8 dct's emerging 8x8 blockiness
// when there are not many non-zeros.
constexpr size_t kPartialBlockKinds =
(1 << AcStrategy::Type::IDENTITY) | (1 << AcStrategy::Type::DCT2X2) |
(1 << AcStrategy::Type::DCT4X4) | (1 << AcStrategy::Type::DCT4X8) |
(1 << AcStrategy::Type::DCT8X4) | (1 << AcStrategy::Type::AFV0) |
(1 << AcStrategy::Type::AFV1) | (1 << AcStrategy::Type::AFV2) |
(1 << AcStrategy::Type::AFV3);
if ((1 << quant_kind) & kPartialBlockKinds) {
return;
}
const float* JXL_RESTRICT qm = quantizer.InvDequantMatrix(quant_kind, c);
float qac = quantizer.Scale() * (*quant);
if (xsize > 1 || ysize > 1) {
for (int i = 0; i < 4; ++i) {
thresholds[i] -= Clamp1(0.003f * xsize * ysize, 0.f, 0.08f);
if (thresholds[i] < 0.54) {
thresholds[i] = 0.54;
}
}
}
float sum_of_highest_freq_row_and_column = 0;
float sum_of_error = 0;
float sum_of_vals = 0;
float hfNonZeros[4] = {};
float hfMaxError[4] = {};
for (size_t y = 0; y < ysize * kBlockDim; y++) {
for (size_t x = 0; x < xsize * kBlockDim; x++) {
const size_t pos = y * kBlockDim * xsize + x;
if (x < xsize && y < ysize) {
continue;
}
const size_t hfix = (static_cast<size_t>(y >= ysize * kBlockDim / 2) * 2 +
static_cast<size_t>(x >= xsize * kBlockDim / 2));
const float val = block_in[pos] * (qm[pos] * qac * qm_multiplier);
const float v = (std::abs(val) < thresholds[hfix]) ? 0 : rintf(val);
const float error = std::abs(val - v);
sum_of_error += error;
sum_of_vals += std::abs(v);
if (c == 1 && v == 0) {
if (hfMaxError[hfix] < error) {
hfMaxError[hfix] = error;
}
}
if (v != 0.0f) {
hfNonZeros[hfix] += std::abs(v);
bool in_corner = y >= 7 * ysize && x >= 7 * xsize;
bool on_border =
y == ysize * kBlockDim - 1 || x == xsize * kBlockDim - 1;
bool in_larger_corner = x >= 4 * xsize && y >= 4 * ysize;
if (in_corner || (on_border && in_larger_corner)) {
sum_of_highest_freq_row_and_column += std::abs(val);
}
}
}
}
if (c == 1 && sum_of_vals * 8 < xsize * ysize) {
static const double kLimit[4] = {
0.46,
0.46,
0.46,
0.46,
};
static const double kMul[4] = {
0.9999,
0.9999,
0.9999,
0.9999,
};
const int32_t orig_quant = *quant;
int32_t new_quant = *quant;
for (int i = 1; i < 4; ++i) {
if (hfNonZeros[i] == 0.0 && hfMaxError[i] > kLimit[i]) {
new_quant = orig_quant + 1;
break;
}
}
*quant = new_quant;
if (hfNonZeros[3] == 0.0 && hfMaxError[3] > kLimit[3]) {
thresholds[3] = kMul[3] * hfMaxError[3] * new_quant / orig_quant;
} else if ((hfNonZeros[1] == 0.0 && hfMaxError[1] > kLimit[1]) ||
(hfNonZeros[2] == 0.0 && hfMaxError[2] > kLimit[2])) {
thresholds[1] = kMul[1] * std::max(hfMaxError[1], hfMaxError[2]) *
new_quant / orig_quant;
thresholds[2] = thresholds[1];
} else if (hfNonZeros[0] == 0.0 && hfMaxError[0] > kLimit[0]) {
thresholds[0] = kMul[0] * hfMaxError[0] * new_quant / orig_quant;
}
}
// Heuristic for improving accuracy of high-frequency patterns
// occurring in an environment with no medium-frequency masking
// patterns.
{
float all =
hfNonZeros[0] + hfNonZeros[1] + hfNonZeros[2] + hfNonZeros[3] + 1;
float mul[3] = {70, 30, 60};
if (mul[c] * sum_of_highest_freq_row_and_column >= all) {
*quant += mul[c] * sum_of_highest_freq_row_and_column / all;
if (*quant >= Quantizer::kQuantMax) {
*quant = Quantizer::kQuantMax - 1;
}
}
}
if (quant_kind == AcStrategy::Type::DCT) {
// If this 8x8 block is too flat, increase the adaptive quantization level
// a bit to reduce visible block boundaries and requantize the block.
if (hfNonZeros[0] + hfNonZeros[1] + hfNonZeros[2] + hfNonZeros[3] < 11) {
*quant += 1;
if (*quant >= Quantizer::kQuantMax) {
*quant = Quantizer::kQuantMax - 1;
}
}
}
{
static const double kMul1[4][3] = {
{
0.22080615753848404,
0.45797479824262011,
0.29859235095977965,
},
{
0.70109486510286834,
0.16185281305512639,
0.14387691730035473,
},
{
0.114985964456218638,
0.44656840441027695,
0.10587658215149048,
},
{
0.46849665264409396,
0.41239077937781954,
0.088667407767185444,
},
};
static const double kMul2[4][3] = {
{
0.27450281941822197,
1.1255766549984996,
0.98950459134128388,
},
{
0.4652168675598285,
0.40945807983455818,
0.36581899811751367,
},
{
0.28034972424715715,
0.9182653201929738,
1.5581531543057416,
},
{
0.26873118114033728,
0.68863712390392484,
1.2082185408666786,
},
};
static const double kQuantNormalizer = 2.2942708343284721;
sum_of_error *= kQuantNormalizer;
sum_of_vals *= kQuantNormalizer;
if (quant_kind >= AcStrategy::Type::DCT16X16) {
int ix = 3;
if (quant_kind == AcStrategy::Type::DCT32X16 ||
quant_kind == AcStrategy::Type::DCT16X32) {
ix = 1;
} else if (quant_kind == AcStrategy::Type::DCT16X16) {
ix = 0;
} else if (quant_kind == AcStrategy::Type::DCT32X32) {
ix = 2;
}
int step =
sum_of_error / (kMul1[ix][c] * xsize * ysize * kBlockDim * kBlockDim +
kMul2[ix][c] * sum_of_vals);
if (step >= 2) {
step = 2;
}
if (step < 0) {
step = 0;
}
if (sum_of_error > kMul1[ix][c] * xsize * ysize * kBlockDim * kBlockDim +
kMul2[ix][c] * sum_of_vals) {
*quant += step;
if (*quant >= Quantizer::kQuantMax) {
*quant = Quantizer::kQuantMax - 1;
}
}
}
}
{
// Reduce quant in highly active areas.
int32_t div = (xsize * ysize);
int32_t activity = (static_cast<int32_t>(hfNonZeros[0]) + div / 2) / div;
int32_t orig_qp_limit = std::max(4, *quant / 2);
for (int i = 1; i < 4; ++i) {
activity = std::min(
activity, (static_cast<int32_t>(hfNonZeros[i]) + div / 2) / div);
}
if (activity >= 15) {
activity = 15;
}
int32_t qp = *quant - activity;
if (c == 1) {
for (int i = 1; i < 4; ++i) {
thresholds[i] += 0.01 * activity;
}
}
if (qp < orig_qp_limit) {
qp = orig_qp_limit;
}
*quant = qp;
}
}
// NOTE: caller takes care of extracting quant from rect of RawQuantField.
void QuantizeRoundtripYBlockAC(PassesEncoderState* enc_state, const size_t size,
const Quantizer& quantizer,
const bool error_diffusion, size_t quant_kind,
size_t xsize, size_t ysize,
const float* JXL_RESTRICT biases, int32_t* quant,
float* JXL_RESTRICT inout,
int32_t* JXL_RESTRICT quantized) {
float thres_y[4] = {0.58f, 0.64f, 0.64f, 0.64f};
if (enc_state->cparams.speed_tier <= SpeedTier::kHare) {
int32_t max_quant = 0;
int quant_orig = *quant;
float val[3] = {enc_state->x_qm_multiplier, 1.0f,
enc_state->b_qm_multiplier};
for (int c : {1, 0, 2}) {
float thres[4] = {0.58f, 0.64f, 0.64f, 0.64f};
*quant = quant_orig;
AdjustQuantBlockAC(quantizer, c, val[c], quant_kind, xsize, ysize,
&thres[0], inout + c * size, quant);
// Dead zone adjustment
if (c == 1) {
for (int k = 0; k < 4; ++k) {
thres_y[k] = thres[k];
}
}
max_quant = std::max(*quant, max_quant);
}
*quant = max_quant;
} else {
thres_y[0] = 0.56;
thres_y[1] = 0.62;
thres_y[2] = 0.62;
thres_y[3] = 0.62;
}
QuantizeBlockAC(quantizer, error_diffusion, 1, 1.0f, quant_kind, xsize, ysize,
&thres_y[0], inout + size, quant, quantized + size);
const float* JXL_RESTRICT dequant_matrix =
quantizer.DequantMatrix(quant_kind, 1);
HWY_CAPPED(float, kDCTBlockSize) df;
HWY_CAPPED(int32_t, kDCTBlockSize) di;
const auto inv_qac = Set(df, quantizer.inv_quant_ac(*quant));
for (size_t k = 0; k < kDCTBlockSize * xsize * ysize; k += Lanes(df)) {
const auto quant = Load(di, quantized + size + k);
const auto adj_quant = AdjustQuantBias(di, 1, quant, biases);
const auto dequantm = Load(df, dequant_matrix + k);
Store(Mul(Mul(adj_quant, dequantm), inv_qac), df, inout + size + k);
}
}
void ComputeCoefficients(size_t group_idx, PassesEncoderState* enc_state,
const Image3F& opsin, const Rect& rect, Image3F* dc) {
const Rect block_group_rect =
enc_state->shared.frame_dim.BlockGroupRect(group_idx);
const Rect cmap_rect(
block_group_rect.x0() / kColorTileDimInBlocks,
block_group_rect.y0() / kColorTileDimInBlocks,
DivCeil(block_group_rect.xsize(), kColorTileDimInBlocks),
DivCeil(block_group_rect.ysize(), kColorTileDimInBlocks));
const Rect group_rect =
enc_state->shared.frame_dim.GroupRect(group_idx).Translate(rect.x0(),
rect.y0());
const size_t xsize_blocks = block_group_rect.xsize();
const size_t ysize_blocks = block_group_rect.ysize();
const size_t dc_stride = static_cast<size_t>(dc->PixelsPerRow());
const size_t opsin_stride = static_cast<size_t>(opsin.PixelsPerRow());
ImageI& full_quant_field = enc_state->shared.raw_quant_field;
const CompressParams& cparams = enc_state->cparams;
const size_t dct_scratch_size =
3 * (MaxVectorSize() / sizeof(float)) * AcStrategy::kMaxBlockDim;
// TODO(veluca): consider strategies to reduce this memory.
auto mem = hwy::AllocateAligned<int32_t>(3 * AcStrategy::kMaxCoeffArea);
auto fmem = hwy::AllocateAligned<float>(5 * AcStrategy::kMaxCoeffArea +
dct_scratch_size);
float* JXL_RESTRICT scratch_space =
fmem.get() + 3 * AcStrategy::kMaxCoeffArea;
{
// Only use error diffusion in Squirrel mode or slower.
const bool error_diffusion = cparams.speed_tier <= SpeedTier::kSquirrel;
constexpr HWY_CAPPED(float, kDCTBlockSize) d;
int32_t* JXL_RESTRICT coeffs[3][kMaxNumPasses] = {};
size_t num_passes = enc_state->progressive_splitter.GetNumPasses();
JXL_DASSERT(num_passes > 0);
for (size_t i = 0; i < num_passes; i++) {
// TODO(veluca): 16-bit quantized coeffs are not implemented yet.
JXL_ASSERT(enc_state->coeffs[i]->Type() == ACType::k32);
for (size_t c = 0; c < 3; c++) {
coeffs[c][i] = enc_state->coeffs[i]->PlaneRow(c, group_idx, 0).ptr32;
}
}
HWY_ALIGN float* coeffs_in = fmem.get();
HWY_ALIGN int32_t* quantized = mem.get();
for (size_t by = 0; by < ysize_blocks; ++by) {
int32_t* JXL_RESTRICT row_quant_ac =
block_group_rect.Row(&full_quant_field, by);
size_t ty = by / kColorTileDimInBlocks;
const int8_t* JXL_RESTRICT row_cmap[3] = {
cmap_rect.ConstRow(enc_state->shared.cmap.ytox_map, ty),
nullptr,
cmap_rect.ConstRow(enc_state->shared.cmap.ytob_map, ty),
};
const float* JXL_RESTRICT opsin_rows[3] = {
group_rect.ConstPlaneRow(opsin, 0, by * kBlockDim),
group_rect.ConstPlaneRow(opsin, 1, by * kBlockDim),
group_rect.ConstPlaneRow(opsin, 2, by * kBlockDim),
};
float* JXL_RESTRICT dc_rows[3] = {
block_group_rect.PlaneRow(dc, 0, by),
block_group_rect.PlaneRow(dc, 1, by),
block_group_rect.PlaneRow(dc, 2, by),
};
AcStrategyRow ac_strategy_row =
enc_state->shared.ac_strategy.ConstRow(block_group_rect, by);
for (size_t tx = 0; tx < DivCeil(xsize_blocks, kColorTileDimInBlocks);
tx++) {
const auto x_factor =
Set(d, enc_state->shared.cmap.YtoXRatio(row_cmap[0][tx]));
const auto b_factor =
Set(d, enc_state->shared.cmap.YtoBRatio(row_cmap[2][tx]));
for (size_t bx = tx * kColorTileDimInBlocks;
bx < xsize_blocks && bx < (tx + 1) * kColorTileDimInBlocks; ++bx) {
const AcStrategy acs = ac_strategy_row[bx];
if (!acs.IsFirstBlock()) continue;
size_t xblocks = acs.covered_blocks_x();
size_t yblocks = acs.covered_blocks_y();
CoefficientLayout(&yblocks, &xblocks);
size_t size = kDCTBlockSize * xblocks * yblocks;
// DCT Y channel, roundtrip-quantize it and set DC.
int32_t quant_ac = row_quant_ac[bx];
for (size_t c : {0, 1, 2}) {
TransformFromPixels(acs.Strategy(), opsin_rows[c] + bx * kBlockDim,
opsin_stride, coeffs_in + c * size,
scratch_space);
}
DCFromLowestFrequencies(acs.Strategy(), coeffs_in + size,
dc_rows[1] + bx, dc_stride);
QuantizeRoundtripYBlockAC(
enc_state, size, enc_state->shared.quantizer, error_diffusion,
acs.RawStrategy(), xblocks, yblocks, kDefaultQuantBias, &quant_ac,
coeffs_in, quantized);
// Unapply color correlation
for (size_t k = 0; k < size; k += Lanes(d)) {
const auto in_x = Load(d, coeffs_in + k);
const auto in_y = Load(d, coeffs_in + size + k);
const auto in_b = Load(d, coeffs_in + 2 * size + k);
const auto out_x = NegMulAdd(x_factor, in_y, in_x);
const auto out_b = NegMulAdd(b_factor, in_y, in_b);
Store(out_x, d, coeffs_in + k);
Store(out_b, d, coeffs_in + 2 * size + k);
}
// Quantize X and B channels and set DC.
for (size_t c : {0, 2}) {
float thres[4] = {0.58f, 0.62f, 0.62f, 0.62f};
QuantizeBlockAC(enc_state->shared.quantizer, error_diffusion, c,
c == 0 ? enc_state->x_qm_multiplier
: enc_state->b_qm_multiplier,
acs.RawStrategy(), xblocks, yblocks, &thres[0],
coeffs_in + c * size, &quant_ac,
quantized + c * size);
DCFromLowestFrequencies(acs.Strategy(), coeffs_in + c * size,
dc_rows[c] + bx, dc_stride);
}
row_quant_ac[bx] = quant_ac;
for (size_t c = 0; c < 3; c++) {
enc_state->progressive_splitter.SplitACCoefficients(
quantized + c * size, acs, bx, by, coeffs[c]);
for (size_t p = 0; p < num_passes; p++) {
coeffs[c][p] += size;
}
}
}
}
}
}
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(ComputeCoefficients);
void ComputeCoefficients(size_t group_idx, PassesEncoderState* enc_state,
const Image3F& opsin, const Rect& rect, Image3F* dc) {
HWY_DYNAMIC_DISPATCH(ComputeCoefficients)
(group_idx, enc_state, opsin, rect, dc);
}
Status EncodeGroupTokenizedCoefficients(size_t group_idx, size_t pass_idx,
size_t histogram_idx,
const PassesEncoderState& enc_state,
BitWriter* writer, AuxOut* aux_out) {
// Select which histogram to use among those of the current pass.
const size_t num_histograms = enc_state.shared.num_histograms;
// num_histograms is 0 only for lossless.
JXL_ASSERT(num_histograms == 0 || histogram_idx < num_histograms);
size_t histo_selector_bits = CeilLog2Nonzero(num_histograms);
if (histo_selector_bits != 0) {
BitWriter::Allotment allotment(writer, histo_selector_bits);
writer->Write(histo_selector_bits, histogram_idx);
allotment.ReclaimAndCharge(writer, kLayerAC, aux_out);
}
size_t context_offset =
histogram_idx * enc_state.shared.block_ctx_map.NumACContexts();
WriteTokens(enc_state.passes[pass_idx].ac_tokens[group_idx],
enc_state.passes[pass_idx].codes,
enc_state.passes[pass_idx].context_map, context_offset, writer,
kLayerACTokens, aux_out);
return true;
}
} // namespace jxl
#endif // HWY_ONCE
|