1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/enc_heuristics.h"
#include <jxl/cms_interface.h>
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <memory>
#include <numeric>
#include <string>
#include <utility>
#include <vector>
#include "lib/jxl/ac_context.h"
#include "lib/jxl/ac_strategy.h"
#include "lib/jxl/base/common.h"
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/data_parallel.h"
#include "lib/jxl/base/override.h"
#include "lib/jxl/base/rect.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/butteraugli/butteraugli.h"
#include "lib/jxl/chroma_from_luma.h"
#include "lib/jxl/coeff_order.h"
#include "lib/jxl/coeff_order_fwd.h"
#include "lib/jxl/dec_xyb.h"
#include "lib/jxl/enc_ac_strategy.h"
#include "lib/jxl/enc_adaptive_quantization.h"
#include "lib/jxl/enc_ar_control_field.h"
#include "lib/jxl/enc_cache.h"
#include "lib/jxl/enc_chroma_from_luma.h"
#include "lib/jxl/enc_gaborish.h"
#include "lib/jxl/enc_modular.h"
#include "lib/jxl/enc_noise.h"
#include "lib/jxl/enc_params.h"
#include "lib/jxl/enc_patch_dictionary.h"
#include "lib/jxl/enc_quant_weights.h"
#include "lib/jxl/enc_splines.h"
#include "lib/jxl/frame_dimensions.h"
#include "lib/jxl/frame_header.h"
#include "lib/jxl/image.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/passes_state.h"
#include "lib/jxl/quant_weights.h"
namespace jxl {
struct AuxOut;
void FindBestBlockEntropyModel(const CompressParams& cparams, const ImageI& rqf,
const AcStrategyImage& ac_strategy,
BlockCtxMap* block_ctx_map) {
if (cparams.decoding_speed_tier >= 1) {
static constexpr uint8_t kSimpleCtxMap[] = {
// Cluster all blocks together
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, //
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, //
};
static_assert(
3 * kNumOrders == sizeof(kSimpleCtxMap) / sizeof *kSimpleCtxMap,
"Update simple context map");
auto bcm = *block_ctx_map;
bcm.ctx_map.assign(std::begin(kSimpleCtxMap), std::end(kSimpleCtxMap));
bcm.num_ctxs = 2;
bcm.num_dc_ctxs = 1;
return;
}
if (cparams.speed_tier >= SpeedTier::kFalcon) {
return;
}
// No need to change context modeling for small images.
size_t tot = rqf.xsize() * rqf.ysize();
size_t size_for_ctx_model = (1 << 10) * cparams.butteraugli_distance;
if (tot < size_for_ctx_model) return;
struct OccCounters {
// count the occurrences of each qf value and each strategy type.
OccCounters(const ImageI& rqf, const AcStrategyImage& ac_strategy) {
for (size_t y = 0; y < rqf.ysize(); y++) {
const int32_t* qf_row = rqf.Row(y);
AcStrategyRow acs_row = ac_strategy.ConstRow(y);
for (size_t x = 0; x < rqf.xsize(); x++) {
int ord = kStrategyOrder[acs_row[x].RawStrategy()];
int qf = qf_row[x] - 1;
qf_counts[qf]++;
qf_ord_counts[ord][qf]++;
ord_counts[ord]++;
}
}
}
size_t qf_counts[256] = {};
size_t qf_ord_counts[kNumOrders][256] = {};
size_t ord_counts[kNumOrders] = {};
};
// The OccCounters struct is too big to allocate on the stack.
std::unique_ptr<OccCounters> counters(new OccCounters(rqf, ac_strategy));
// Splitting the context model according to the quantization field seems to
// mostly benefit only large images.
size_t size_for_qf_split = (1 << 13) * cparams.butteraugli_distance;
size_t num_qf_segments = tot < size_for_qf_split ? 1 : 2;
std::vector<uint32_t>& qft = block_ctx_map->qf_thresholds;
qft.clear();
// Divide the quant field in up to num_qf_segments segments.
size_t cumsum = 0;
size_t next = 1;
size_t last_cut = 256;
size_t cut = tot * next / num_qf_segments;
for (uint32_t j = 0; j < 256; j++) {
cumsum += counters->qf_counts[j];
if (cumsum > cut) {
if (j != 0) {
qft.push_back(j);
}
last_cut = j;
while (cumsum > cut) {
next++;
cut = tot * next / num_qf_segments;
}
} else if (next > qft.size() + 1) {
if (j - 1 == last_cut && j != 0) {
qft.push_back(j);
}
}
}
// Count the occurrences of each segment.
std::vector<size_t> counts(kNumOrders * (qft.size() + 1));
size_t qft_pos = 0;
for (size_t j = 0; j < 256; j++) {
if (qft_pos < qft.size() && j == qft[qft_pos]) {
qft_pos++;
}
for (size_t i = 0; i < kNumOrders; i++) {
counts[qft_pos + i * (qft.size() + 1)] += counters->qf_ord_counts[i][j];
}
}
// Repeatedly merge the lowest-count pair.
std::vector<uint8_t> remap((qft.size() + 1) * kNumOrders);
std::iota(remap.begin(), remap.end(), 0);
std::vector<uint8_t> clusters(remap);
size_t nb_clusters =
Clamp1(static_cast<int>(tot / size_for_ctx_model / 2), 2, 9);
size_t nb_clusters_chroma =
Clamp1(static_cast<int>(tot / size_for_ctx_model / 3), 1, 5);
// This is O(n^2 log n), but n is small.
while (clusters.size() > nb_clusters) {
std::sort(clusters.begin(), clusters.end(),
[&](int a, int b) { return counts[a] > counts[b]; });
counts[clusters[clusters.size() - 2]] += counts[clusters.back()];
counts[clusters.back()] = 0;
remap[clusters.back()] = clusters[clusters.size() - 2];
clusters.pop_back();
}
for (size_t i = 0; i < remap.size(); i++) {
while (remap[remap[i]] != remap[i]) {
remap[i] = remap[remap[i]];
}
}
// Relabel starting from 0.
std::vector<uint8_t> remap_remap(remap.size(), remap.size());
size_t num = 0;
for (size_t i = 0; i < remap.size(); i++) {
if (remap_remap[remap[i]] == remap.size()) {
remap_remap[remap[i]] = num++;
}
remap[i] = remap_remap[remap[i]];
}
// Write the block context map.
auto& ctx_map = block_ctx_map->ctx_map;
ctx_map = remap;
ctx_map.resize(remap.size() * 3);
// for chroma, only use up to nb_clusters_chroma separate block contexts
// (those for the biggest clusters)
for (size_t i = remap.size(); i < remap.size() * 3; i++) {
ctx_map[i] = num + Clamp1(static_cast<int>(remap[i % remap.size()]), 0,
static_cast<int>(nb_clusters_chroma) - 1);
}
block_ctx_map->num_ctxs =
*std::max_element(ctx_map.begin(), ctx_map.end()) + 1;
}
namespace {
Status FindBestDequantMatrices(const CompressParams& cparams,
ModularFrameEncoder* modular_frame_encoder,
DequantMatrices* dequant_matrices) {
// TODO(veluca): quant matrices for no-gaborish.
// TODO(veluca): heuristics for in-bitstream quant tables.
*dequant_matrices = DequantMatrices();
if (cparams.max_error_mode) {
// Set numerators of all quantization matrices to constant values.
float weights[3][1] = {{1.0f / cparams.max_error[0]},
{1.0f / cparams.max_error[1]},
{1.0f / cparams.max_error[2]}};
DctQuantWeightParams dct_params(weights);
std::vector<QuantEncoding> encodings(DequantMatrices::kNum,
QuantEncoding::DCT(dct_params));
JXL_RETURN_IF_ERROR(DequantMatricesSetCustom(dequant_matrices, encodings,
modular_frame_encoder));
float dc_weights[3] = {1.0f / cparams.max_error[0],
1.0f / cparams.max_error[1],
1.0f / cparams.max_error[2]};
DequantMatricesSetCustomDC(dequant_matrices, dc_weights);
}
return true;
}
void StoreMin2(const float v, float& min1, float& min2) {
if (v < min2) {
if (v < min1) {
min2 = min1;
min1 = v;
} else {
min2 = v;
}
}
}
void CreateMask(const ImageF& image, ImageF& mask) {
for (size_t y = 0; y < image.ysize(); y++) {
const auto* row_n = y > 0 ? image.Row(y - 1) : image.Row(y);
const auto* row_in = image.Row(y);
const auto* row_s = y + 1 < image.ysize() ? image.Row(y + 1) : image.Row(y);
auto* row_out = mask.Row(y);
for (size_t x = 0; x < image.xsize(); x++) {
// Center, west, east, north, south values and their absolute difference
float c = row_in[x];
float w = x > 0 ? row_in[x - 1] : row_in[x];
float e = x + 1 < image.xsize() ? row_in[x + 1] : row_in[x];
float n = row_n[x];
float s = row_s[x];
float dw = std::abs(c - w);
float de = std::abs(c - e);
float dn = std::abs(c - n);
float ds = std::abs(c - s);
float min = std::numeric_limits<float>::max();
float min2 = std::numeric_limits<float>::max();
StoreMin2(dw, min, min2);
StoreMin2(de, min, min2);
StoreMin2(dn, min, min2);
StoreMin2(ds, min, min2);
row_out[x] = min2;
}
}
}
// Downsamples the image by a factor of 2 with a kernel that's sharper than
// the standard 2x2 box kernel used by DownsampleImage.
// The kernel is optimized against the result of the 2x2 upsampling kernel used
// by the decoder. Ringing is slightly reduced by clamping the values of the
// resulting pixels within certain bounds of a small region in the original
// image.
Status DownsampleImage2_Sharper(const ImageF& input, ImageF* output) {
const int64_t kernelx = 12;
const int64_t kernely = 12;
static const float kernel[144] = {
-0.000314256996835, -0.000314256996835, -0.000897597057705,
-0.000562751488849, -0.000176807273646, 0.001864627368902,
0.001864627368902, -0.000176807273646, -0.000562751488849,
-0.000897597057705, -0.000314256996835, -0.000314256996835,
-0.000314256996835, -0.001527942804748, -0.000121760530512,
0.000191123989093, 0.010193185932466, 0.058637519197110,
0.058637519197110, 0.010193185932466, 0.000191123989093,
-0.000121760530512, -0.001527942804748, -0.000314256996835,
-0.000897597057705, -0.000121760530512, 0.000946363683751,
0.007113577630288, 0.000437956841058, -0.000372823835211,
-0.000372823835211, 0.000437956841058, 0.007113577630288,
0.000946363683751, -0.000121760530512, -0.000897597057705,
-0.000562751488849, 0.000191123989093, 0.007113577630288,
0.044592622228814, 0.000222278879007, -0.162864473015945,
-0.162864473015945, 0.000222278879007, 0.044592622228814,
0.007113577630288, 0.000191123989093, -0.000562751488849,
-0.000176807273646, 0.010193185932466, 0.000437956841058,
0.000222278879007, -0.000913092543974, -0.017071696107902,
-0.017071696107902, -0.000913092543974, 0.000222278879007,
0.000437956841058, 0.010193185932466, -0.000176807273646,
0.001864627368902, 0.058637519197110, -0.000372823835211,
-0.162864473015945, -0.017071696107902, 0.414660099370354,
0.414660099370354, -0.017071696107902, -0.162864473015945,
-0.000372823835211, 0.058637519197110, 0.001864627368902,
0.001864627368902, 0.058637519197110, -0.000372823835211,
-0.162864473015945, -0.017071696107902, 0.414660099370354,
0.414660099370354, -0.017071696107902, -0.162864473015945,
-0.000372823835211, 0.058637519197110, 0.001864627368902,
-0.000176807273646, 0.010193185932466, 0.000437956841058,
0.000222278879007, -0.000913092543974, -0.017071696107902,
-0.017071696107902, -0.000913092543974, 0.000222278879007,
0.000437956841058, 0.010193185932466, -0.000176807273646,
-0.000562751488849, 0.000191123989093, 0.007113577630288,
0.044592622228814, 0.000222278879007, -0.162864473015945,
-0.162864473015945, 0.000222278879007, 0.044592622228814,
0.007113577630288, 0.000191123989093, -0.000562751488849,
-0.000897597057705, -0.000121760530512, 0.000946363683751,
0.007113577630288, 0.000437956841058, -0.000372823835211,
-0.000372823835211, 0.000437956841058, 0.007113577630288,
0.000946363683751, -0.000121760530512, -0.000897597057705,
-0.000314256996835, -0.001527942804748, -0.000121760530512,
0.000191123989093, 0.010193185932466, 0.058637519197110,
0.058637519197110, 0.010193185932466, 0.000191123989093,
-0.000121760530512, -0.001527942804748, -0.000314256996835,
-0.000314256996835, -0.000314256996835, -0.000897597057705,
-0.000562751488849, -0.000176807273646, 0.001864627368902,
0.001864627368902, -0.000176807273646, -0.000562751488849,
-0.000897597057705, -0.000314256996835, -0.000314256996835};
int64_t xsize = input.xsize();
int64_t ysize = input.ysize();
JXL_ASSIGN_OR_RETURN(ImageF box_downsample, ImageF::Create(xsize, ysize));
CopyImageTo(input, &box_downsample);
JXL_ASSIGN_OR_RETURN(box_downsample, DownsampleImage(box_downsample, 2));
JXL_ASSIGN_OR_RETURN(ImageF mask, ImageF::Create(box_downsample.xsize(),
box_downsample.ysize()));
CreateMask(box_downsample, mask);
for (size_t y = 0; y < output->ysize(); y++) {
float* row_out = output->Row(y);
const float* row_in[kernely];
const float* row_mask = mask.Row(y);
// get the rows in the support
for (size_t ky = 0; ky < kernely; ky++) {
int64_t iy = y * 2 + ky - (kernely - 1) / 2;
if (iy < 0) iy = 0;
if (iy >= ysize) iy = ysize - 1;
row_in[ky] = input.Row(iy);
}
for (size_t x = 0; x < output->xsize(); x++) {
// get min and max values of the original image in the support
float min = std::numeric_limits<float>::max();
float max = std::numeric_limits<float>::min();
// kernelx - R and kernely - R are the radius of a rectangular region in
// which the values of a pixel are bounded to reduce ringing.
static constexpr int64_t R = 5;
for (int64_t ky = R; ky + R < kernely; ky++) {
for (int64_t kx = R; kx + R < kernelx; kx++) {
int64_t ix = x * 2 + kx - (kernelx - 1) / 2;
if (ix < 0) ix = 0;
if (ix >= xsize) ix = xsize - 1;
min = std::min<float>(min, row_in[ky][ix]);
max = std::max<float>(max, row_in[ky][ix]);
}
}
float sum = 0;
for (int64_t ky = 0; ky < kernely; ky++) {
for (int64_t kx = 0; kx < kernelx; kx++) {
int64_t ix = x * 2 + kx - (kernelx - 1) / 2;
if (ix < 0) ix = 0;
if (ix >= xsize) ix = xsize - 1;
sum += row_in[ky][ix] * kernel[ky * kernelx + kx];
}
}
row_out[x] = sum;
// Clamp the pixel within the value of a small area to prevent ringning.
// The mask determines how much to clamp, clamp more to reduce more
// ringing in smooth areas, clamp less in noisy areas to get more
// sharpness. Higher mask_multiplier gives less clamping, so less
// ringing reduction.
const constexpr float mask_multiplier = 1;
float a = row_mask[x] * mask_multiplier;
float clip_min = min - a;
float clip_max = max + a;
if (row_out[x] < clip_min) {
row_out[x] = clip_min;
} else if (row_out[x] > clip_max) {
row_out[x] = clip_max;
}
}
}
return true;
}
} // namespace
Status DownsampleImage2_Sharper(Image3F* opsin) {
// Allocate extra space to avoid a reallocation when padding.
JXL_ASSIGN_OR_RETURN(Image3F downsampled,
Image3F::Create(DivCeil(opsin->xsize(), 2) + kBlockDim,
DivCeil(opsin->ysize(), 2) + kBlockDim));
downsampled.ShrinkTo(downsampled.xsize() - kBlockDim,
downsampled.ysize() - kBlockDim);
for (size_t c = 0; c < 3; c++) {
JXL_RETURN_IF_ERROR(
DownsampleImage2_Sharper(opsin->Plane(c), &downsampled.Plane(c)));
}
*opsin = std::move(downsampled);
return true;
}
namespace {
// The default upsampling kernels used by Upsampler in the decoder.
const constexpr int64_t kSize = 5;
const float kernel00[25] = {
-0.01716200f, -0.03452303f, -0.04022174f, -0.02921014f, -0.00624645f,
-0.03452303f, 0.14111091f, 0.28896755f, 0.00278718f, -0.01610267f,
-0.04022174f, 0.28896755f, 0.56661550f, 0.03777607f, -0.01986694f,
-0.02921014f, 0.00278718f, 0.03777607f, -0.03144731f, -0.01185068f,
-0.00624645f, -0.01610267f, -0.01986694f, -0.01185068f, -0.00213539f,
};
const float kernel01[25] = {
-0.00624645f, -0.01610267f, -0.01986694f, -0.01185068f, -0.00213539f,
-0.02921014f, 0.00278718f, 0.03777607f, -0.03144731f, -0.01185068f,
-0.04022174f, 0.28896755f, 0.56661550f, 0.03777607f, -0.01986694f,
-0.03452303f, 0.14111091f, 0.28896755f, 0.00278718f, -0.01610267f,
-0.01716200f, -0.03452303f, -0.04022174f, -0.02921014f, -0.00624645f,
};
const float kernel10[25] = {
-0.00624645f, -0.02921014f, -0.04022174f, -0.03452303f, -0.01716200f,
-0.01610267f, 0.00278718f, 0.28896755f, 0.14111091f, -0.03452303f,
-0.01986694f, 0.03777607f, 0.56661550f, 0.28896755f, -0.04022174f,
-0.01185068f, -0.03144731f, 0.03777607f, 0.00278718f, -0.02921014f,
-0.00213539f, -0.01185068f, -0.01986694f, -0.01610267f, -0.00624645f,
};
const float kernel11[25] = {
-0.00213539f, -0.01185068f, -0.01986694f, -0.01610267f, -0.00624645f,
-0.01185068f, -0.03144731f, 0.03777607f, 0.00278718f, -0.02921014f,
-0.01986694f, 0.03777607f, 0.56661550f, 0.28896755f, -0.04022174f,
-0.01610267f, 0.00278718f, 0.28896755f, 0.14111091f, -0.03452303f,
-0.00624645f, -0.02921014f, -0.04022174f, -0.03452303f, -0.01716200f,
};
// Does exactly the same as the Upsampler in dec_upsampler for 2x2 pixels, with
// default CustomTransformData.
// TODO(lode): use Upsampler instead. However, it requires pre-initialization
// and padding on the left side of the image which requires refactoring the
// other code using this.
void UpsampleImage(const ImageF& input, ImageF* output) {
int64_t xsize = input.xsize();
int64_t ysize = input.ysize();
int64_t xsize2 = output->xsize();
int64_t ysize2 = output->ysize();
for (int64_t y = 0; y < ysize2; y++) {
for (int64_t x = 0; x < xsize2; x++) {
const auto* kernel = kernel00;
if ((x & 1) && (y & 1)) {
kernel = kernel11;
} else if (x & 1) {
kernel = kernel10;
} else if (y & 1) {
kernel = kernel01;
}
float sum = 0;
int64_t x2 = x / 2;
int64_t y2 = y / 2;
// get min and max values of the original image in the support
float min = std::numeric_limits<float>::max();
float max = std::numeric_limits<float>::min();
for (int64_t ky = 0; ky < kSize; ky++) {
for (int64_t kx = 0; kx < kSize; kx++) {
int64_t xi = x2 - kSize / 2 + kx;
int64_t yi = y2 - kSize / 2 + ky;
if (xi < 0) xi = 0;
if (xi >= xsize) xi = input.xsize() - 1;
if (yi < 0) yi = 0;
if (yi >= ysize) yi = input.ysize() - 1;
min = std::min<float>(min, input.Row(yi)[xi]);
max = std::max<float>(max, input.Row(yi)[xi]);
}
}
for (int64_t ky = 0; ky < kSize; ky++) {
for (int64_t kx = 0; kx < kSize; kx++) {
int64_t xi = x2 - kSize / 2 + kx;
int64_t yi = y2 - kSize / 2 + ky;
if (xi < 0) xi = 0;
if (xi >= xsize) xi = input.xsize() - 1;
if (yi < 0) yi = 0;
if (yi >= ysize) yi = input.ysize() - 1;
sum += input.Row(yi)[xi] * kernel[ky * kSize + kx];
}
}
output->Row(y)[x] = sum;
if (output->Row(y)[x] < min) output->Row(y)[x] = min;
if (output->Row(y)[x] > max) output->Row(y)[x] = max;
}
}
}
// Returns the derivative of Upsampler, with respect to input pixel x2, y2, to
// output pixel x, y (ignoring the clamping).
float UpsamplerDeriv(int64_t x2, int64_t y2, int64_t x, int64_t y) {
const auto* kernel = kernel00;
if ((x & 1) && (y & 1)) {
kernel = kernel11;
} else if (x & 1) {
kernel = kernel10;
} else if (y & 1) {
kernel = kernel01;
}
int64_t ix = x / 2;
int64_t iy = y / 2;
int64_t kx = x2 - ix + kSize / 2;
int64_t ky = y2 - iy + kSize / 2;
// This should not happen.
if (kx < 0 || kx >= kSize || ky < 0 || ky >= kSize) return 0;
return kernel[ky * kSize + kx];
}
// Apply the derivative of the Upsampler to the input, reversing the effect of
// its coefficients. The output image is 2x2 times smaller than the input.
void AntiUpsample(const ImageF& input, ImageF* d) {
int64_t xsize = input.xsize();
int64_t ysize = input.ysize();
int64_t xsize2 = d->xsize();
int64_t ysize2 = d->ysize();
int64_t k0 = kSize - 1;
int64_t k1 = kSize;
for (int64_t y2 = 0; y2 < ysize2; ++y2) {
auto* row = d->Row(y2);
for (int64_t x2 = 0; x2 < xsize2; ++x2) {
int64_t x0 = x2 * 2 - k0;
if (x0 < 0) x0 = 0;
int64_t x1 = x2 * 2 + k1 + 1;
if (x1 > xsize) x1 = xsize;
int64_t y0 = y2 * 2 - k0;
if (y0 < 0) y0 = 0;
int64_t y1 = y2 * 2 + k1 + 1;
if (y1 > ysize) y1 = ysize;
float sum = 0;
for (int64_t y = y0; y < y1; ++y) {
const auto* row_in = input.Row(y);
for (int64_t x = x0; x < x1; ++x) {
double deriv = UpsamplerDeriv(x2, y2, x, y);
sum += deriv * row_in[x];
}
}
row[x2] = sum;
}
}
}
// Element-wise multiplies two images.
template <typename T>
void ElwiseMul(const Plane<T>& image1, const Plane<T>& image2, Plane<T>* out) {
const size_t xsize = image1.xsize();
const size_t ysize = image1.ysize();
JXL_CHECK(xsize == image2.xsize());
JXL_CHECK(ysize == image2.ysize());
JXL_CHECK(xsize == out->xsize());
JXL_CHECK(ysize == out->ysize());
for (size_t y = 0; y < ysize; ++y) {
const T* const JXL_RESTRICT row1 = image1.Row(y);
const T* const JXL_RESTRICT row2 = image2.Row(y);
T* const JXL_RESTRICT row_out = out->Row(y);
for (size_t x = 0; x < xsize; ++x) {
row_out[x] = row1[x] * row2[x];
}
}
}
// Element-wise divides two images.
template <typename T>
void ElwiseDiv(const Plane<T>& image1, const Plane<T>& image2, Plane<T>* out) {
const size_t xsize = image1.xsize();
const size_t ysize = image1.ysize();
JXL_CHECK(xsize == image2.xsize());
JXL_CHECK(ysize == image2.ysize());
JXL_CHECK(xsize == out->xsize());
JXL_CHECK(ysize == out->ysize());
for (size_t y = 0; y < ysize; ++y) {
const T* const JXL_RESTRICT row1 = image1.Row(y);
const T* const JXL_RESTRICT row2 = image2.Row(y);
T* const JXL_RESTRICT row_out = out->Row(y);
for (size_t x = 0; x < xsize; ++x) {
row_out[x] = row1[x] / row2[x];
}
}
}
void ReduceRinging(const ImageF& initial, const ImageF& mask, ImageF& down) {
int64_t xsize2 = down.xsize();
int64_t ysize2 = down.ysize();
for (size_t y = 0; y < down.ysize(); y++) {
const float* row_mask = mask.Row(y);
float* row_out = down.Row(y);
for (size_t x = 0; x < down.xsize(); x++) {
float v = down.Row(y)[x];
float min = initial.Row(y)[x];
float max = initial.Row(y)[x];
for (int64_t yi = -1; yi < 2; yi++) {
for (int64_t xi = -1; xi < 2; xi++) {
int64_t x2 = static_cast<int64_t>(x) + xi;
int64_t y2 = static_cast<int64_t>(y) + yi;
if (x2 < 0 || y2 < 0 || x2 >= xsize2 || y2 >= ysize2) continue;
min = std::min<float>(min, initial.Row(y2)[x2]);
max = std::max<float>(max, initial.Row(y2)[x2]);
}
}
row_out[x] = v;
// Clamp the pixel within the value of a small area to prevent ringning.
// The mask determines how much to clamp, clamp more to reduce more
// ringing in smooth areas, clamp less in noisy areas to get more
// sharpness. Higher mask_multiplier gives less clamping, so less
// ringing reduction.
const constexpr float mask_multiplier = 2;
float a = row_mask[x] * mask_multiplier;
float clip_min = min - a;
float clip_max = max + a;
if (row_out[x] < clip_min) row_out[x] = clip_min;
if (row_out[x] > clip_max) row_out[x] = clip_max;
}
}
}
// TODO(lode): move this to a separate file enc_downsample.cc
Status DownsampleImage2_Iterative(const ImageF& orig, ImageF* output) {
int64_t xsize = orig.xsize();
int64_t ysize = orig.ysize();
int64_t xsize2 = DivCeil(orig.xsize(), 2);
int64_t ysize2 = DivCeil(orig.ysize(), 2);
JXL_ASSIGN_OR_RETURN(ImageF box_downsample, ImageF::Create(xsize, ysize));
CopyImageTo(orig, &box_downsample);
JXL_ASSIGN_OR_RETURN(box_downsample, DownsampleImage(box_downsample, 2));
JXL_ASSIGN_OR_RETURN(ImageF mask, ImageF::Create(box_downsample.xsize(),
box_downsample.ysize()));
CreateMask(box_downsample, mask);
output->ShrinkTo(xsize2, ysize2);
// Initial result image using the sharper downsampling.
// Allocate extra space to avoid a reallocation when padding.
JXL_ASSIGN_OR_RETURN(ImageF initial,
ImageF::Create(DivCeil(orig.xsize(), 2) + kBlockDim,
DivCeil(orig.ysize(), 2) + kBlockDim));
initial.ShrinkTo(initial.xsize() - kBlockDim, initial.ysize() - kBlockDim);
JXL_RETURN_IF_ERROR(DownsampleImage2_Sharper(orig, &initial));
JXL_ASSIGN_OR_RETURN(ImageF down,
ImageF::Create(initial.xsize(), initial.ysize()));
CopyImageTo(initial, &down);
JXL_ASSIGN_OR_RETURN(ImageF up, ImageF::Create(xsize, ysize));
JXL_ASSIGN_OR_RETURN(ImageF corr, ImageF::Create(xsize, ysize));
JXL_ASSIGN_OR_RETURN(ImageF corr2, ImageF::Create(xsize2, ysize2));
// In the weights map, relatively higher values will allow less ringing but
// also less sharpness. With all constant values, it optimizes equally
// everywhere. Even in this case, the weights2 computed from
// this is still used and differs at the borders of the image.
// TODO(lode): Make use of the weights field for anti-ringing and clamping,
// the values are all set to 1 for now, but it is intended to be used for
// reducing ringing based on the mask, and taking clamping into account.
JXL_ASSIGN_OR_RETURN(ImageF weights, ImageF::Create(xsize, ysize));
for (size_t y = 0; y < weights.ysize(); y++) {
auto* row = weights.Row(y);
for (size_t x = 0; x < weights.xsize(); x++) {
row[x] = 1;
}
}
JXL_ASSIGN_OR_RETURN(ImageF weights2, ImageF::Create(xsize2, ysize2));
AntiUpsample(weights, &weights2);
const size_t num_it = 3;
for (size_t it = 0; it < num_it; ++it) {
UpsampleImage(down, &up);
JXL_ASSIGN_OR_RETURN(corr, LinComb<float>(1, orig, -1, up));
ElwiseMul(corr, weights, &corr);
AntiUpsample(corr, &corr2);
ElwiseDiv(corr2, weights2, &corr2);
JXL_ASSIGN_OR_RETURN(down, LinComb<float>(1, down, 1, corr2));
}
ReduceRinging(initial, mask, down);
// can't just use CopyImage, because the output image was prepared with
// padding.
for (size_t y = 0; y < down.ysize(); y++) {
for (size_t x = 0; x < down.xsize(); x++) {
float v = down.Row(y)[x];
output->Row(y)[x] = v;
}
}
return true;
}
} // namespace
Status DownsampleImage2_Iterative(Image3F* opsin) {
// Allocate extra space to avoid a reallocation when padding.
JXL_ASSIGN_OR_RETURN(Image3F downsampled,
Image3F::Create(DivCeil(opsin->xsize(), 2) + kBlockDim,
DivCeil(opsin->ysize(), 2) + kBlockDim));
downsampled.ShrinkTo(downsampled.xsize() - kBlockDim,
downsampled.ysize() - kBlockDim);
JXL_ASSIGN_OR_RETURN(Image3F rgb,
Image3F::Create(opsin->xsize(), opsin->ysize()));
OpsinParams opsin_params; // TODO(user): use the ones that are actually used
opsin_params.Init(kDefaultIntensityTarget);
OpsinToLinear(*opsin, Rect(rgb), nullptr, &rgb, opsin_params);
JXL_ASSIGN_OR_RETURN(ImageF mask,
ImageF::Create(opsin->xsize(), opsin->ysize()));
ButteraugliParams butter_params;
JXL_ASSIGN_OR_RETURN(std::unique_ptr<ButteraugliComparator> butter,
ButteraugliComparator::Make(rgb, butter_params));
JXL_RETURN_IF_ERROR(butter->Mask(&mask));
JXL_ASSIGN_OR_RETURN(ImageF mask_fuzzy,
ImageF::Create(opsin->xsize(), opsin->ysize()));
for (size_t c = 0; c < 3; c++) {
JXL_RETURN_IF_ERROR(
DownsampleImage2_Iterative(opsin->Plane(c), &downsampled.Plane(c)));
}
*opsin = std::move(downsampled);
return true;
}
Status LossyFrameHeuristics(const FrameHeader& frame_header,
PassesEncoderState* enc_state,
ModularFrameEncoder* modular_frame_encoder,
const Image3F* original_pixels, Image3F* opsin,
const Rect& rect, const JxlCmsInterface& cms,
ThreadPool* pool, AuxOut* aux_out) {
const CompressParams& cparams = enc_state->cparams;
const bool streaming_mode = enc_state->streaming_mode;
const bool initialize_global_state = enc_state->initialize_global_state;
PassesSharedState& shared = enc_state->shared;
const FrameDimensions& frame_dim = shared.frame_dim;
ImageFeatures& image_features = shared.image_features;
DequantMatrices& matrices = shared.matrices;
Quantizer& quantizer = shared.quantizer;
ImageI& raw_quant_field = shared.raw_quant_field;
ColorCorrelationMap& cmap = shared.cmap;
AcStrategyImage& ac_strategy = shared.ac_strategy;
ImageB& epf_sharpness = shared.epf_sharpness;
BlockCtxMap& block_ctx_map = shared.block_ctx_map;
// Find and subtract splines.
if (cparams.custom_splines.HasAny()) {
image_features.splines = cparams.custom_splines;
}
if (!streaming_mode && cparams.speed_tier <= SpeedTier::kSquirrel) {
if (!cparams.custom_splines.HasAny()) {
image_features.splines = FindSplines(*opsin);
}
JXL_RETURN_IF_ERROR(image_features.splines.InitializeDrawCache(
opsin->xsize(), opsin->ysize(), cmap));
image_features.splines.SubtractFrom(opsin);
}
// Find and subtract patches/dots.
if (!streaming_mode &&
ApplyOverride(cparams.patches,
cparams.speed_tier <= SpeedTier::kSquirrel)) {
JXL_RETURN_IF_ERROR(
FindBestPatchDictionary(*opsin, enc_state, cms, pool, aux_out));
PatchDictionaryEncoder::SubtractFrom(image_features.patches, opsin);
}
const float quant_dc = InitialQuantDC(cparams.butteraugli_distance);
// TODO(veluca): we can now run all the code from here to FindBestQuantizer
// (excluded) one rect at a time. Do that.
// Dependency graph:
//
// input: either XYB or input image
//
// input image -> XYB [optional]
// XYB -> initial quant field
// XYB -> Gaborished XYB
// Gaborished XYB -> CfL1
// initial quant field, Gaborished XYB, CfL1 -> ACS
// initial quant field, ACS, Gaborished XYB -> EPF control field
// initial quant field -> adjusted initial quant field
// adjusted initial quant field, ACS -> raw quant field
// raw quant field, ACS, Gaborished XYB -> CfL2
//
// output: Gaborished XYB, CfL, ACS, raw quant field, EPF control field.
ArControlFieldHeuristics ar_heuristics;
AcStrategyHeuristics acs_heuristics(cparams);
CfLHeuristics cfl_heuristics;
ImageF initial_quant_field;
ImageF initial_quant_masking;
ImageF initial_quant_masking1x1;
// Compute an initial estimate of the quantization field.
// Call InitialQuantField only in Hare mode or slower. Otherwise, rely
// on simple heuristics in FindBestAcStrategy, or set a constant for Falcon
// mode.
if (cparams.speed_tier > SpeedTier::kHare) {
JXL_ASSIGN_OR_RETURN(
initial_quant_field,
ImageF::Create(frame_dim.xsize_blocks, frame_dim.ysize_blocks));
JXL_ASSIGN_OR_RETURN(
initial_quant_masking,
ImageF::Create(frame_dim.xsize_blocks, frame_dim.ysize_blocks));
float q = 0.79 / cparams.butteraugli_distance;
FillImage(q, &initial_quant_field);
FillImage(1.0f / (q + 0.001f), &initial_quant_masking);
quantizer.ComputeGlobalScaleAndQuant(quant_dc, q, 0);
} else {
// Call this here, as it relies on pre-gaborish values.
float butteraugli_distance_for_iqf = cparams.butteraugli_distance;
if (!frame_header.loop_filter.gab) {
butteraugli_distance_for_iqf *= 0.73f;
}
JXL_ASSIGN_OR_RETURN(
initial_quant_field,
InitialQuantField(butteraugli_distance_for_iqf, *opsin, rect, pool,
1.0f, &initial_quant_masking,
&initial_quant_masking1x1));
float q = 0.39 / cparams.butteraugli_distance;
quantizer.ComputeGlobalScaleAndQuant(quant_dc, q, 0);
}
// TODO(veluca): do something about animations.
// Apply inverse-gaborish.
if (frame_header.loop_filter.gab) {
// Unsure why better to do some more gaborish on X and B than Y.
float weight[3] = {
1.0036278514398933f,
0.99406123118127299f,
0.99719338015886894f,
};
JXL_RETURN_IF_ERROR(GaborishInverse(opsin, rect, weight, pool));
}
if (initialize_global_state) {
JXL_RETURN_IF_ERROR(
FindBestDequantMatrices(cparams, modular_frame_encoder, &matrices));
}
JXL_RETURN_IF_ERROR(cfl_heuristics.Init(rect));
acs_heuristics.Init(*opsin, rect, initial_quant_field, initial_quant_masking,
initial_quant_masking1x1, &matrices);
std::atomic<bool> has_error{false};
auto process_tile = [&](const uint32_t tid, const size_t thread) {
if (has_error) return;
size_t n_enc_tiles = DivCeil(frame_dim.xsize_blocks, kEncTileDimInBlocks);
size_t tx = tid % n_enc_tiles;
size_t ty = tid / n_enc_tiles;
size_t by0 = ty * kEncTileDimInBlocks;
size_t by1 =
std::min((ty + 1) * kEncTileDimInBlocks, frame_dim.ysize_blocks);
size_t bx0 = tx * kEncTileDimInBlocks;
size_t bx1 =
std::min((tx + 1) * kEncTileDimInBlocks, frame_dim.xsize_blocks);
Rect r(bx0, by0, bx1 - bx0, by1 - by0);
// For speeds up to Wombat, we only compute the color correlation map
// once we know the transform type and the quantization map.
if (cparams.speed_tier <= SpeedTier::kSquirrel) {
cfl_heuristics.ComputeTile(r, *opsin, rect, matrices,
/*ac_strategy=*/nullptr,
/*raw_quant_field=*/nullptr,
/*quantizer=*/nullptr, /*fast=*/false, thread,
&cmap);
}
// Choose block sizes.
acs_heuristics.ProcessRect(r, cmap, &ac_strategy, thread);
// Choose amount of post-processing smoothing.
// TODO(veluca): should this go *after* AdjustQuantField?
if (!ar_heuristics.RunRect(cparams, frame_header, r, *opsin, rect,
initial_quant_field, ac_strategy, &epf_sharpness,
thread)) {
has_error = true;
return;
}
// Always set the initial quant field, so we can compute the CfL map with
// more accuracy. The initial quant field might change in slower modes, but
// adjusting the quant field with butteraugli when all the other encoding
// parameters are fixed is likely a more reliable choice anyway.
AdjustQuantField(ac_strategy, r, cparams.butteraugli_distance,
&initial_quant_field);
quantizer.SetQuantFieldRect(initial_quant_field, r, &raw_quant_field);
// Compute a non-default CfL map if we are at Hare speed, or slower.
if (cparams.speed_tier <= SpeedTier::kHare) {
cfl_heuristics.ComputeTile(
r, *opsin, rect, matrices, &ac_strategy, &raw_quant_field, &quantizer,
/*fast=*/cparams.speed_tier >= SpeedTier::kWombat, thread, &cmap);
}
};
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0,
DivCeil(frame_dim.xsize_blocks, kEncTileDimInBlocks) *
DivCeil(frame_dim.ysize_blocks, kEncTileDimInBlocks),
[&](const size_t num_threads) {
acs_heuristics.PrepareForThreads(num_threads);
ar_heuristics.PrepareForThreads(num_threads);
cfl_heuristics.PrepareForThreads(num_threads);
return true;
},
process_tile, "Enc Heuristics"));
if (has_error) return JXL_FAILURE("Enc Heuristics failed");
JXL_RETURN_IF_ERROR(acs_heuristics.Finalize(frame_dim, ac_strategy, aux_out));
// Refine quantization levels.
if (!streaming_mode) {
JXL_RETURN_IF_ERROR(FindBestQuantizer(frame_header, original_pixels, *opsin,
initial_quant_field, enc_state, cms,
pool, aux_out));
}
// Choose a context model that depends on the amount of quantization for AC.
if (cparams.speed_tier < SpeedTier::kFalcon && initialize_global_state) {
FindBestBlockEntropyModel(cparams, raw_quant_field, ac_strategy,
&block_ctx_map);
}
return true;
}
} // namespace jxl
|