1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/huffman_table.h"
#include <cstring> /* for memcpy */
#include <vector>
#include "lib/jxl/ans_params.h"
#include "lib/jxl/dec_huffman.h"
namespace jxl {
/* Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
bit-wise reversal of the len least significant bits of key. */
static inline int GetNextKey(int key, int len) {
int step = 1u << (len - 1);
while (key & step) {
step >>= 1;
}
return (key & (step - 1)) + step;
}
/* Stores code in table[0], table[step], table[2*step], ..., table[end] */
/* Assumes that end is an integer multiple of step */
static inline void ReplicateValue(HuffmanCode* table, int step, int end,
HuffmanCode code) {
do {
end -= step;
table[end] = code;
} while (end > 0);
}
/* Returns the table width of the next 2nd level table. count is the histogram
of bit lengths for the remaining symbols, len is the code length of the next
processed symbol */
static inline size_t NextTableBitSize(const uint16_t* const count, size_t len,
int root_bits) {
size_t left = 1u << (len - root_bits);
while (len < PREFIX_MAX_BITS) {
if (left <= count[len]) break;
left -= count[len];
++len;
left <<= 1;
}
return len - root_bits;
}
uint32_t BuildHuffmanTable(HuffmanCode* root_table, int root_bits,
const uint8_t* const code_lengths,
size_t code_lengths_size, uint16_t* count) {
HuffmanCode code; /* current table entry */
HuffmanCode* table; /* next available space in table */
size_t len; /* current code length */
size_t symbol; /* symbol index in original or sorted table */
int key; /* reversed prefix code */
int step; /* step size to replicate values in current table */
int low; /* low bits for current root entry */
int mask; /* mask for low bits */
size_t table_bits; /* key length of current table */
int table_size; /* size of current table */
int total_size; /* sum of root table size and 2nd level table sizes */
/* offsets in sorted table for each length */
uint16_t offset[PREFIX_MAX_BITS + 1];
size_t max_length = 1;
if (code_lengths_size > 1u << PREFIX_MAX_BITS) return 0;
/* symbols sorted by code length */
std::vector<uint16_t> sorted_storage(code_lengths_size);
uint16_t* sorted = sorted_storage.data();
/* generate offsets into sorted symbol table by code length */
{
uint16_t sum = 0;
for (len = 1; len <= PREFIX_MAX_BITS; len++) {
offset[len] = sum;
if (count[len]) {
sum = static_cast<uint16_t>(sum + count[len]);
max_length = len;
}
}
}
/* sort symbols by length, by symbol order within each length */
for (symbol = 0; symbol < code_lengths_size; symbol++) {
if (code_lengths[symbol] != 0) {
sorted[offset[code_lengths[symbol]]++] = symbol;
}
}
table = root_table;
table_bits = root_bits;
table_size = 1u << table_bits;
total_size = table_size;
/* special case code with only one value */
if (offset[PREFIX_MAX_BITS] == 1) {
code.bits = 0;
code.value = static_cast<uint16_t>(sorted[0]);
for (key = 0; key < total_size; ++key) {
table[key] = code;
}
return total_size;
}
/* fill in root table */
/* let's reduce the table size to a smaller size if possible, and */
/* create the repetitions by memcpy if possible in the coming loop */
if (table_bits > max_length) {
table_bits = max_length;
table_size = 1u << table_bits;
}
key = 0;
symbol = 0;
code.bits = 1;
step = 2;
do {
for (; count[code.bits] != 0; --count[code.bits]) {
code.value = static_cast<uint16_t>(sorted[symbol++]);
ReplicateValue(&table[key], step, table_size, code);
key = GetNextKey(key, code.bits);
}
step <<= 1;
} while (++code.bits <= table_bits);
/* if root_bits != table_bits we only created one fraction of the */
/* table, and we need to replicate it now. */
while (total_size != table_size) {
memcpy(&table[table_size], &table[0], table_size * sizeof(table[0]));
table_size <<= 1;
}
/* fill in 2nd level tables and add pointers to root table */
mask = total_size - 1;
low = -1;
for (len = root_bits + 1, step = 2; len <= max_length; ++len, step <<= 1) {
for (; count[len] != 0; --count[len]) {
if ((key & mask) != low) {
table += table_size;
table_bits = NextTableBitSize(count, len, root_bits);
table_size = 1u << table_bits;
total_size += table_size;
low = key & mask;
root_table[low].bits = static_cast<uint8_t>(table_bits + root_bits);
root_table[low].value =
static_cast<uint16_t>((table - root_table) - low);
}
code.bits = static_cast<uint8_t>(len - root_bits);
code.value = static_cast<uint16_t>(sorted[symbol++]);
ReplicateValue(&table[key >> root_bits], step, table_size, code);
key = GetNextKey(key, len);
}
}
return total_size;
}
} // namespace jxl
|