1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef LIB_JXL_IMAGE_OPS_H_
#define LIB_JXL_IMAGE_OPS_H_
// Operations on images.
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <limits>
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/frame_dimensions.h"
#include "lib/jxl/image.h"
namespace jxl {
// Works for mixed image-like argument types.
template <class Image1, class Image2>
bool SameSize(const Image1& image1, const Image2& image2) {
return image1.xsize() == image2.xsize() && image1.ysize() == image2.ysize();
}
template <typename T>
void CopyImageTo(const Plane<T>& from, Plane<T>* JXL_RESTRICT to) {
JXL_ASSERT(SameSize(from, *to));
if (from.ysize() == 0 || from.xsize() == 0) return;
for (size_t y = 0; y < from.ysize(); ++y) {
const T* JXL_RESTRICT row_from = from.ConstRow(y);
T* JXL_RESTRICT row_to = to->Row(y);
memcpy(row_to, row_from, from.xsize() * sizeof(T));
}
}
// Copies `from:rect_from` to `to:rect_to`.
template <typename T>
void CopyImageTo(const Rect& rect_from, const Plane<T>& from,
const Rect& rect_to, Plane<T>* JXL_RESTRICT to) {
JXL_DASSERT(SameSize(rect_from, rect_to));
JXL_DASSERT(rect_from.IsInside(from));
JXL_DASSERT(rect_to.IsInside(*to));
if (rect_from.xsize() == 0) return;
for (size_t y = 0; y < rect_from.ysize(); ++y) {
const T* JXL_RESTRICT row_from = rect_from.ConstRow(from, y);
T* JXL_RESTRICT row_to = rect_to.Row(to, y);
memcpy(row_to, row_from, rect_from.xsize() * sizeof(T));
}
}
// Copies `from:rect_from` to `to:rect_to`.
template <typename T>
void CopyImageTo(const Rect& rect_from, const Image3<T>& from,
const Rect& rect_to, Image3<T>* JXL_RESTRICT to) {
JXL_ASSERT(SameSize(rect_from, rect_to));
for (size_t c = 0; c < 3; c++) {
CopyImageTo(rect_from, from.Plane(c), rect_to, &to->Plane(c));
}
}
template <typename T, typename U>
void ConvertPlaneAndClamp(const Rect& rect_from, const Plane<T>& from,
const Rect& rect_to, Plane<U>* JXL_RESTRICT to) {
JXL_ASSERT(SameSize(rect_from, rect_to));
using M = decltype(T() + U());
for (size_t y = 0; y < rect_to.ysize(); ++y) {
const T* JXL_RESTRICT row_from = rect_from.ConstRow(from, y);
U* JXL_RESTRICT row_to = rect_to.Row(to, y);
for (size_t x = 0; x < rect_to.xsize(); ++x) {
row_to[x] =
std::min<M>(std::max<M>(row_from[x], std::numeric_limits<U>::min()),
std::numeric_limits<U>::max());
}
}
}
// Copies `from` to `to`.
template <typename T>
void CopyImageTo(const T& from, T* JXL_RESTRICT to) {
return CopyImageTo(Rect(from), from, Rect(*to), to);
}
// Copies `from:rect_from` to `to:rect_to`; also copies `padding` pixels of
// border around `from:rect_from`, in all directions, whenever they are inside
// the first image.
template <typename T>
void CopyImageToWithPadding(const Rect& from_rect, const T& from,
size_t padding, const Rect& to_rect, T* to) {
size_t xextra0 = std::min(padding, from_rect.x0());
size_t xextra1 =
std::min(padding, from.xsize() - from_rect.x0() - from_rect.xsize());
size_t yextra0 = std::min(padding, from_rect.y0());
size_t yextra1 =
std::min(padding, from.ysize() - from_rect.y0() - from_rect.ysize());
JXL_DASSERT(to_rect.x0() >= xextra0);
JXL_DASSERT(to_rect.y0() >= yextra0);
return CopyImageTo(Rect(from_rect.x0() - xextra0, from_rect.y0() - yextra0,
from_rect.xsize() + xextra0 + xextra1,
from_rect.ysize() + yextra0 + yextra1),
from,
Rect(to_rect.x0() - xextra0, to_rect.y0() - yextra0,
to_rect.xsize() + xextra0 + xextra1,
to_rect.ysize() + yextra0 + yextra1),
to);
}
// Returns linear combination of two grayscale images.
template <typename T>
StatusOr<Plane<T>> LinComb(const T lambda1, const Plane<T>& image1,
const T lambda2, const Plane<T>& image2) {
const size_t xsize = image1.xsize();
const size_t ysize = image1.ysize();
JXL_CHECK(xsize == image2.xsize());
JXL_CHECK(ysize == image2.ysize());
JXL_ASSIGN_OR_RETURN(Plane<T> out, Plane<T>::Create(xsize, ysize));
for (size_t y = 0; y < ysize; ++y) {
const T* const JXL_RESTRICT row1 = image1.Row(y);
const T* const JXL_RESTRICT row2 = image2.Row(y);
T* const JXL_RESTRICT row_out = out.Row(y);
for (size_t x = 0; x < xsize; ++x) {
row_out[x] = lambda1 * row1[x] + lambda2 * row2[x];
}
}
return out;
}
// Multiplies image by lambda in-place
template <typename T>
void ScaleImage(const T lambda, Plane<T>* image) {
for (size_t y = 0; y < image->ysize(); ++y) {
T* const JXL_RESTRICT row = image->Row(y);
for (size_t x = 0; x < image->xsize(); ++x) {
row[x] = lambda * row[x];
}
}
}
// Multiplies image by lambda in-place
template <typename T>
void ScaleImage(const T lambda, Image3<T>* image) {
for (size_t c = 0; c < 3; ++c) {
ScaleImage(lambda, &image->Plane(c));
}
}
template <typename T>
void FillImage(const T value, Plane<T>* image) {
for (size_t y = 0; y < image->ysize(); ++y) {
T* const JXL_RESTRICT row = image->Row(y);
for (size_t x = 0; x < image->xsize(); ++x) {
row[x] = value;
}
}
}
template <typename T>
void ZeroFillImage(Plane<T>* image) {
if (image->xsize() == 0) return;
for (size_t y = 0; y < image->ysize(); ++y) {
T* const JXL_RESTRICT row = image->Row(y);
memset(row, 0, image->xsize() * sizeof(T));
}
}
// Mirrors out of bounds coordinates and returns valid coordinates unchanged.
// We assume the radius (distance outside the image) is small compared to the
// image size, otherwise this might not terminate.
// The mirror is outside the last column (border pixel is also replicated).
static inline int64_t Mirror(int64_t x, const int64_t xsize) {
JXL_DASSERT(xsize != 0);
// TODO(janwas): replace with branchless version
while (x < 0 || x >= xsize) {
if (x < 0) {
x = -x - 1;
} else {
x = 2 * xsize - 1 - x;
}
}
return x;
}
// Wrap modes for ensuring X/Y coordinates are in the valid range [0, size):
// Mirrors (repeating the edge pixel once). Useful for convolutions.
struct WrapMirror {
JXL_INLINE int64_t operator()(const int64_t coord, const int64_t size) const {
return Mirror(coord, size);
}
};
// Returns the same coordinate: required for TFNode with Border(), or useful
// when we know "coord" is already valid (e.g. interior of an image).
struct WrapUnchanged {
JXL_INLINE int64_t operator()(const int64_t coord, int64_t /*size*/) const {
return coord;
}
};
// Similar to Wrap* but for row pointers (reduces Row() multiplications).
class WrapRowMirror {
public:
template <class ImageOrView>
WrapRowMirror(const ImageOrView& image, size_t ysize)
: first_row_(image.ConstRow(0)), last_row_(image.ConstRow(ysize - 1)) {}
const float* operator()(const float* const JXL_RESTRICT row,
const int64_t stride) const {
if (row < first_row_) {
const int64_t num_before = first_row_ - row;
// Mirrored; one row before => row 0, two before = row 1, ...
return first_row_ + num_before - stride;
}
if (row > last_row_) {
const int64_t num_after = row - last_row_;
// Mirrored; one row after => last row, two after = last - 1, ...
return last_row_ - num_after + stride;
}
return row;
}
private:
const float* const JXL_RESTRICT first_row_;
const float* const JXL_RESTRICT last_row_;
};
struct WrapRowUnchanged {
JXL_INLINE const float* operator()(const float* const JXL_RESTRICT row,
int64_t /*stride*/) const {
return row;
}
};
// Computes the minimum and maximum pixel value.
template <typename T>
void ImageMinMax(const Plane<T>& image, T* const JXL_RESTRICT min,
T* const JXL_RESTRICT max) {
*min = std::numeric_limits<T>::max();
*max = std::numeric_limits<T>::lowest();
for (size_t y = 0; y < image.ysize(); ++y) {
const T* const JXL_RESTRICT row = image.Row(y);
for (size_t x = 0; x < image.xsize(); ++x) {
*min = std::min(*min, row[x]);
*max = std::max(*max, row[x]);
}
}
}
// Initializes all planes to the same "value".
template <typename T>
void FillImage(const T value, Image3<T>* image) {
for (size_t c = 0; c < 3; ++c) {
for (size_t y = 0; y < image->ysize(); ++y) {
T* JXL_RESTRICT row = image->PlaneRow(c, y);
for (size_t x = 0; x < image->xsize(); ++x) {
row[x] = value;
}
}
}
}
template <typename T>
void FillPlane(const T value, Plane<T>* image, Rect rect) {
for (size_t y = 0; y < rect.ysize(); ++y) {
T* JXL_RESTRICT row = rect.Row(image, y);
for (size_t x = 0; x < rect.xsize(); ++x) {
row[x] = value;
}
}
}
template <typename T>
void ZeroFillImage(Image3<T>* image) {
for (size_t c = 0; c < 3; ++c) {
for (size_t y = 0; y < image->ysize(); ++y) {
T* JXL_RESTRICT row = image->PlaneRow(c, y);
if (image->xsize() != 0) memset(row, 0, image->xsize() * sizeof(T));
}
}
}
// Same as above, but operates in-place. Assumes that the `in` image was
// allocated large enough.
void PadImageToBlockMultipleInPlace(Image3F* JXL_RESTRICT in,
size_t block_dim = kBlockDim);
// Downsamples an image by a given factor.
StatusOr<Image3F> DownsampleImage(const Image3F& opsin, size_t factor);
StatusOr<ImageF> DownsampleImage(const ImageF& image, size_t factor);
} // namespace jxl
#endif // LIB_JXL_IMAGE_OPS_H_
|