1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/modular/transform/squeeze.h"
#include <stdlib.h>
#include "lib/jxl/base/common.h"
#include "lib/jxl/base/data_parallel.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/modular/modular_image.h"
#include "lib/jxl/modular/transform/transform.h"
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/modular/transform/squeeze.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/simd_util-inl.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Abs;
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::And;
using hwy::HWY_NAMESPACE::Gt;
using hwy::HWY_NAMESPACE::IfThenElse;
using hwy::HWY_NAMESPACE::IfThenZeroElse;
using hwy::HWY_NAMESPACE::Lt;
using hwy::HWY_NAMESPACE::MulEven;
using hwy::HWY_NAMESPACE::Ne;
using hwy::HWY_NAMESPACE::Neg;
using hwy::HWY_NAMESPACE::OddEven;
using hwy::HWY_NAMESPACE::RebindToUnsigned;
using hwy::HWY_NAMESPACE::ShiftLeft;
using hwy::HWY_NAMESPACE::ShiftRight;
using hwy::HWY_NAMESPACE::Sub;
using hwy::HWY_NAMESPACE::Xor;
#if HWY_TARGET != HWY_SCALAR
JXL_INLINE void FastUnsqueeze(const pixel_type *JXL_RESTRICT p_residual,
const pixel_type *JXL_RESTRICT p_avg,
const pixel_type *JXL_RESTRICT p_navg,
const pixel_type *p_pout,
pixel_type *JXL_RESTRICT p_out,
pixel_type *p_nout) {
const HWY_CAPPED(pixel_type, 8) d;
const RebindToUnsigned<decltype(d)> du;
const size_t N = Lanes(d);
auto onethird = Set(d, 0x55555556);
for (size_t x = 0; x < 8; x += N) {
auto avg = Load(d, p_avg + x);
auto next_avg = Load(d, p_navg + x);
auto top = Load(d, p_pout + x);
// Equivalent to SmoothTendency(top,avg,next_avg), but without branches
auto Ba = Sub(top, avg);
auto an = Sub(avg, next_avg);
auto nonmono = Xor(Ba, an);
auto absBa = Abs(Ba);
auto absan = Abs(an);
auto absBn = Abs(Sub(top, next_avg));
// Compute a3 = absBa / 3
auto a3e = BitCast(d, ShiftRight<32>(MulEven(absBa, onethird)));
auto a3oi = MulEven(Reverse(d, absBa), onethird);
auto a3o = BitCast(
d, Reverse(hwy::HWY_NAMESPACE::Repartition<pixel_type_w, decltype(d)>(),
a3oi));
auto a3 = OddEven(a3o, a3e);
a3 = Add(a3, Add(absBn, Set(d, 2)));
auto absdiff = ShiftRight<2>(a3);
auto skipdiff = Ne(Ba, Zero(d));
skipdiff = And(skipdiff, Ne(an, Zero(d)));
skipdiff = And(skipdiff, Lt(nonmono, Zero(d)));
auto absBa2 = Add(ShiftLeft<1>(absBa), And(absdiff, Set(d, 1)));
absdiff = IfThenElse(Gt(absdiff, absBa2),
Add(ShiftLeft<1>(absBa), Set(d, 1)), absdiff);
auto absan2 = ShiftLeft<1>(absan);
absdiff = IfThenElse(Gt(Add(absdiff, And(absdiff, Set(d, 1))), absan2),
absan2, absdiff);
auto diff1 = IfThenElse(Lt(top, next_avg), Neg(absdiff), absdiff);
auto tendency = IfThenZeroElse(skipdiff, diff1);
auto diff_minus_tendency = Load(d, p_residual + x);
auto diff = Add(diff_minus_tendency, tendency);
auto out =
Add(avg, ShiftRight<1>(
Add(diff, BitCast(d, ShiftRight<31>(BitCast(du, diff))))));
Store(out, d, p_out + x);
Store(Sub(out, diff), d, p_nout + x);
}
}
#endif
Status InvHSqueeze(Image &input, uint32_t c, uint32_t rc, ThreadPool *pool) {
JXL_ASSERT(c < input.channel.size());
JXL_ASSERT(rc < input.channel.size());
Channel &chin = input.channel[c];
const Channel &chin_residual = input.channel[rc];
// These must be valid since we ran MetaApply already.
JXL_ASSERT(chin.w == DivCeil(chin.w + chin_residual.w, 2));
JXL_ASSERT(chin.h == chin_residual.h);
if (chin_residual.w == 0) {
// Short-circuit: output channel has same dimensions as input.
input.channel[c].hshift--;
return true;
}
// Note: chin.w >= chin_residual.w and at most 1 different.
JXL_ASSIGN_OR_RETURN(Channel chout,
Channel::Create(chin.w + chin_residual.w, chin.h,
chin.hshift - 1, chin.vshift));
JXL_DEBUG_V(4,
"Undoing horizontal squeeze of channel %i using residuals in "
"channel %i (going from width %" PRIuS " to %" PRIuS ")",
c, rc, chin.w, chout.w);
if (chin_residual.h == 0) {
// Short-circuit: channel with no pixels.
input.channel[c] = std::move(chout);
return true;
}
auto unsqueeze_row = [&](size_t y, size_t x0) {
const pixel_type *JXL_RESTRICT p_residual = chin_residual.Row(y);
const pixel_type *JXL_RESTRICT p_avg = chin.Row(y);
pixel_type *JXL_RESTRICT p_out = chout.Row(y);
for (size_t x = x0; x < chin_residual.w; x++) {
pixel_type_w diff_minus_tendency = p_residual[x];
pixel_type_w avg = p_avg[x];
pixel_type_w next_avg = (x + 1 < chin.w ? p_avg[x + 1] : avg);
pixel_type_w left = (x ? p_out[(x << 1) - 1] : avg);
pixel_type_w tendency = SmoothTendency(left, avg, next_avg);
pixel_type_w diff = diff_minus_tendency + tendency;
pixel_type_w A = avg + (diff / 2);
p_out[(x << 1)] = A;
pixel_type_w B = A - diff;
p_out[(x << 1) + 1] = B;
}
if (chout.w & 1) p_out[chout.w - 1] = p_avg[chin.w - 1];
};
// somewhat complicated trickery just to be able to SIMD this.
// Horizontal unsqueeze has horizontal data dependencies, so we do
// 8 rows at a time and treat it as a vertical unsqueeze of a
// transposed 8x8 block (or 9x8 for one input).
static constexpr const size_t kRowsPerThread = 8;
const auto unsqueeze_span = [&](const uint32_t task, size_t /* thread */) {
const size_t y0 = task * kRowsPerThread;
const size_t rows = std::min(kRowsPerThread, chin.h - y0);
size_t x = 0;
#if HWY_TARGET != HWY_SCALAR
intptr_t onerow_in = chin.plane.PixelsPerRow();
intptr_t onerow_inr = chin_residual.plane.PixelsPerRow();
intptr_t onerow_out = chout.plane.PixelsPerRow();
const pixel_type *JXL_RESTRICT p_residual = chin_residual.Row(y0);
const pixel_type *JXL_RESTRICT p_avg = chin.Row(y0);
pixel_type *JXL_RESTRICT p_out = chout.Row(y0);
HWY_ALIGN pixel_type b_p_avg[9 * kRowsPerThread];
HWY_ALIGN pixel_type b_p_residual[8 * kRowsPerThread];
HWY_ALIGN pixel_type b_p_out_even[8 * kRowsPerThread];
HWY_ALIGN pixel_type b_p_out_odd[8 * kRowsPerThread];
HWY_ALIGN pixel_type b_p_out_evenT[8 * kRowsPerThread];
HWY_ALIGN pixel_type b_p_out_oddT[8 * kRowsPerThread];
const HWY_CAPPED(pixel_type, 8) d;
const size_t N = Lanes(d);
if (chin_residual.w > 16 && rows == kRowsPerThread) {
for (; x < chin_residual.w - 9; x += 8) {
Transpose8x8Block(p_residual + x, b_p_residual, onerow_inr);
Transpose8x8Block(p_avg + x, b_p_avg, onerow_in);
for (size_t y = 0; y < kRowsPerThread; y++) {
b_p_avg[8 * 8 + y] = p_avg[x + 8 + onerow_in * y];
}
for (size_t i = 0; i < 8; i++) {
FastUnsqueeze(
b_p_residual + 8 * i, b_p_avg + 8 * i, b_p_avg + 8 * (i + 1),
(x + i ? b_p_out_odd + 8 * ((x + i - 1) & 7) : b_p_avg + 8 * i),
b_p_out_even + 8 * i, b_p_out_odd + 8 * i);
}
Transpose8x8Block(b_p_out_even, b_p_out_evenT, 8);
Transpose8x8Block(b_p_out_odd, b_p_out_oddT, 8);
for (size_t y = 0; y < kRowsPerThread; y++) {
for (size_t i = 0; i < kRowsPerThread; i += N) {
auto even = Load(d, b_p_out_evenT + 8 * y + i);
auto odd = Load(d, b_p_out_oddT + 8 * y + i);
StoreInterleaved(d, even, odd,
p_out + ((x + i) << 1) + onerow_out * y);
}
}
}
}
#endif
for (size_t y = 0; y < rows; y++) {
unsqueeze_row(y0 + y, x);
}
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, DivCeil(chin.h, kRowsPerThread),
ThreadPool::NoInit, unsqueeze_span,
"InvHorizontalSqueeze"));
input.channel[c] = std::move(chout);
return true;
}
Status InvVSqueeze(Image &input, uint32_t c, uint32_t rc, ThreadPool *pool) {
JXL_ASSERT(c < input.channel.size());
JXL_ASSERT(rc < input.channel.size());
const Channel &chin = input.channel[c];
const Channel &chin_residual = input.channel[rc];
// These must be valid since we ran MetaApply already.
JXL_ASSERT(chin.h == DivCeil(chin.h + chin_residual.h, 2));
JXL_ASSERT(chin.w == chin_residual.w);
if (chin_residual.h == 0) {
// Short-circuit: output channel has same dimensions as input.
input.channel[c].vshift--;
return true;
}
// Note: chin.h >= chin_residual.h and at most 1 different.
JXL_ASSIGN_OR_RETURN(Channel chout,
Channel::Create(chin.w, chin.h + chin_residual.h,
chin.hshift, chin.vshift - 1));
JXL_DEBUG_V(
4,
"Undoing vertical squeeze of channel %i using residuals in channel "
"%i (going from height %" PRIuS " to %" PRIuS ")",
c, rc, chin.h, chout.h);
if (chin_residual.w == 0) {
// Short-circuit: channel with no pixels.
input.channel[c] = std::move(chout);
return true;
}
static constexpr const int kColsPerThread = 64;
const auto unsqueeze_slice = [&](const uint32_t task, size_t /* thread */) {
const size_t x0 = task * kColsPerThread;
const size_t x1 =
std::min(static_cast<size_t>(task + 1) * kColsPerThread, chin.w);
const size_t w = x1 - x0;
// We only iterate up to std::min(chin_residual.h, chin.h) which is
// always chin_residual.h.
for (size_t y = 0; y < chin_residual.h; y++) {
const pixel_type *JXL_RESTRICT p_residual = chin_residual.Row(y) + x0;
const pixel_type *JXL_RESTRICT p_avg = chin.Row(y) + x0;
const pixel_type *JXL_RESTRICT p_navg =
chin.Row(y + 1 < chin.h ? y + 1 : y) + x0;
pixel_type *JXL_RESTRICT p_out = chout.Row(y << 1) + x0;
pixel_type *JXL_RESTRICT p_nout = chout.Row((y << 1) + 1) + x0;
const pixel_type *p_pout = y > 0 ? chout.Row((y << 1) - 1) + x0 : p_avg;
size_t x = 0;
#if HWY_TARGET != HWY_SCALAR
for (; x + 7 < w; x += 8) {
FastUnsqueeze(p_residual + x, p_avg + x, p_navg + x, p_pout + x,
p_out + x, p_nout + x);
}
#endif
for (; x < w; x++) {
pixel_type_w avg = p_avg[x];
pixel_type_w next_avg = p_navg[x];
pixel_type_w top = p_pout[x];
pixel_type_w tendency = SmoothTendency(top, avg, next_avg);
pixel_type_w diff_minus_tendency = p_residual[x];
pixel_type_w diff = diff_minus_tendency + tendency;
pixel_type_w out = avg + (diff / 2);
p_out[x] = out;
// If the chin_residual.h == chin.h, the output has an even number
// of rows so the next line is fine. Otherwise, this loop won't
// write to the last output row which is handled separately.
p_nout[x] = out - diff;
}
}
};
JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, DivCeil(chin.w, kColsPerThread),
ThreadPool::NoInit, unsqueeze_slice,
"InvVertSqueeze"));
if (chout.h & 1) {
size_t y = chin.h - 1;
const pixel_type *p_avg = chin.Row(y);
pixel_type *p_out = chout.Row(y << 1);
for (size_t x = 0; x < chin.w; x++) {
p_out[x] = p_avg[x];
}
}
input.channel[c] = std::move(chout);
return true;
}
Status InvSqueeze(Image &input, const std::vector<SqueezeParams> ¶meters,
ThreadPool *pool) {
for (int i = parameters.size() - 1; i >= 0; i--) {
JXL_RETURN_IF_ERROR(
CheckMetaSqueezeParams(parameters[i], input.channel.size()));
bool horizontal = parameters[i].horizontal;
bool in_place = parameters[i].in_place;
uint32_t beginc = parameters[i].begin_c;
uint32_t endc = parameters[i].begin_c + parameters[i].num_c - 1;
uint32_t offset;
if (in_place) {
offset = endc + 1;
} else {
offset = input.channel.size() + beginc - endc - 1;
}
if (beginc < input.nb_meta_channels) {
// This is checked in MetaSqueeze.
JXL_ASSERT(input.nb_meta_channels > parameters[i].num_c);
input.nb_meta_channels -= parameters[i].num_c;
}
for (uint32_t c = beginc; c <= endc; c++) {
uint32_t rc = offset + c - beginc;
// MetaApply should imply that `rc` is within range, otherwise there's a
// programming bug.
JXL_ASSERT(rc < input.channel.size());
if ((input.channel[c].w < input.channel[rc].w) ||
(input.channel[c].h < input.channel[rc].h)) {
return JXL_FAILURE("Corrupted squeeze transform");
}
if (horizontal) {
JXL_RETURN_IF_ERROR(InvHSqueeze(input, c, rc, pool));
} else {
JXL_RETURN_IF_ERROR(InvVSqueeze(input, c, rc, pool));
}
}
input.channel.erase(input.channel.begin() + offset,
input.channel.begin() + offset + (endc - beginc + 1));
}
return true;
}
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(InvSqueeze);
Status InvSqueeze(Image &input, const std::vector<SqueezeParams> ¶meters,
ThreadPool *pool) {
return HWY_DYNAMIC_DISPATCH(InvSqueeze)(input, parameters, pool);
}
void DefaultSqueezeParameters(std::vector<SqueezeParams> *parameters,
const Image &image) {
int nb_channels = image.channel.size() - image.nb_meta_channels;
parameters->clear();
size_t w = image.channel[image.nb_meta_channels].w;
size_t h = image.channel[image.nb_meta_channels].h;
JXL_DEBUG_V(
7, "Default squeeze parameters for %" PRIuS "x%" PRIuS " image: ", w, h);
// do horizontal first on wide images; vertical first on tall images
bool wide = (w > h);
if (nb_channels > 2 && image.channel[image.nb_meta_channels + 1].w == w &&
image.channel[image.nb_meta_channels + 1].h == h) {
// assume channels 1 and 2 are chroma, and can be squeezed first for 4:2:0
// previews
JXL_DEBUG_V(7, "(4:2:0 chroma), %" PRIuS "x%" PRIuS " image", w, h);
SqueezeParams params;
// horizontal chroma squeeze
params.horizontal = true;
params.in_place = false;
params.begin_c = image.nb_meta_channels + 1;
params.num_c = 2;
parameters->push_back(params);
params.horizontal = false;
// vertical chroma squeeze
parameters->push_back(params);
}
SqueezeParams params;
params.begin_c = image.nb_meta_channels;
params.num_c = nb_channels;
params.in_place = true;
if (!wide) {
if (h > kMaxFirstPreviewSize) {
params.horizontal = false;
parameters->push_back(params);
h = (h + 1) / 2;
JXL_DEBUG_V(7, "Vertical (%" PRIuS "x%" PRIuS "), ", w, h);
}
}
while (w > kMaxFirstPreviewSize || h > kMaxFirstPreviewSize) {
if (w > kMaxFirstPreviewSize) {
params.horizontal = true;
parameters->push_back(params);
w = (w + 1) / 2;
JXL_DEBUG_V(7, "Horizontal (%" PRIuS "x%" PRIuS "), ", w, h);
}
if (h > kMaxFirstPreviewSize) {
params.horizontal = false;
parameters->push_back(params);
h = (h + 1) / 2;
JXL_DEBUG_V(7, "Vertical (%" PRIuS "x%" PRIuS "), ", w, h);
}
}
JXL_DEBUG_V(7, "that's it");
}
Status CheckMetaSqueezeParams(const SqueezeParams ¶meter,
int num_channels) {
int c1 = parameter.begin_c;
int c2 = parameter.begin_c + parameter.num_c - 1;
if (c1 < 0 || c1 >= num_channels || c2 < 0 || c2 >= num_channels || c2 < c1) {
return JXL_FAILURE("Invalid channel range");
}
return true;
}
Status MetaSqueeze(Image &image, std::vector<SqueezeParams> *parameters) {
if (parameters->empty()) {
DefaultSqueezeParameters(parameters, image);
}
for (auto ¶meter : *parameters) {
JXL_RETURN_IF_ERROR(
CheckMetaSqueezeParams(parameter, image.channel.size()));
bool horizontal = parameter.horizontal;
bool in_place = parameter.in_place;
uint32_t beginc = parameter.begin_c;
uint32_t endc = parameter.begin_c + parameter.num_c - 1;
uint32_t offset;
if (beginc < image.nb_meta_channels) {
if (endc >= image.nb_meta_channels) {
return JXL_FAILURE("Invalid squeeze: mix of meta and nonmeta channels");
}
if (!in_place) {
return JXL_FAILURE(
"Invalid squeeze: meta channels require in-place residuals");
}
image.nb_meta_channels += parameter.num_c;
}
if (in_place) {
offset = endc + 1;
} else {
offset = image.channel.size();
}
for (uint32_t c = beginc; c <= endc; c++) {
if (image.channel[c].hshift > 30 || image.channel[c].vshift > 30) {
return JXL_FAILURE("Too many squeezes: shift > 30");
}
size_t w = image.channel[c].w;
size_t h = image.channel[c].h;
if (w == 0 || h == 0) return JXL_FAILURE("Squeezing empty channel");
if (horizontal) {
image.channel[c].w = (w + 1) / 2;
if (image.channel[c].hshift >= 0) image.channel[c].hshift++;
w = w - (w + 1) / 2;
} else {
image.channel[c].h = (h + 1) / 2;
if (image.channel[c].vshift >= 0) image.channel[c].vshift++;
h = h - (h + 1) / 2;
}
JXL_RETURN_IF_ERROR(image.channel[c].shrink());
JXL_ASSIGN_OR_RETURN(Channel placeholder, Channel::Create(w, h));
placeholder.hshift = image.channel[c].hshift;
placeholder.vshift = image.channel[c].vshift;
image.channel.insert(image.channel.begin() + offset + (c - beginc),
std::move(placeholder));
JXL_DEBUG_V(8, "MetaSqueeze applied, current image: %s",
image.DebugString().c_str());
}
}
return true;
}
} // namespace jxl
#endif
|