summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/splines.h
blob: af51ec937e066d1e774c34c69f500c13753fe78a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#ifndef LIB_JXL_SPLINES_H_
#define LIB_JXL_SPLINES_H_

#include <array>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <utility>
#include <vector>

#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/chroma_from_luma.h"
#include "lib/jxl/image.h"

namespace jxl {

class ANSSymbolReader;
class BitReader;

static constexpr float kDesiredRenderingDistance = 1.f;

typedef std::array<float, 32> Dct32;

enum SplineEntropyContexts : size_t {
  kQuantizationAdjustmentContext = 0,
  kStartingPositionContext,
  kNumSplinesContext,
  kNumControlPointsContext,
  kControlPointsContext,
  kDCTContext,
  kNumSplineContexts
};

struct Spline {
  struct Point {
    Point() : x(0.0f), y(0.0f) {}
    Point(float x, float y) : x(x), y(y) {}
    float x, y;
    bool operator==(const Point& other) const {
      return std::fabs(x - other.x) < 1e-3f && std::fabs(y - other.y) < 1e-3f;
    }
  };
  std::vector<Point> control_points;
  // X, Y, B.
  std::array<Dct32, 3> color_dct;
  // Splines are draws by normalized Gaussian splatting. This controls the
  // Gaussian's parameter along the spline.
  Dct32 sigma_dct;
};

class QuantizedSplineEncoder;

class QuantizedSpline {
 public:
  QuantizedSpline() = default;
  explicit QuantizedSpline(const Spline& original,
                           int32_t quantization_adjustment, float y_to_x,
                           float y_to_b);

  Status Dequantize(const Spline::Point& starting_point,
                    int32_t quantization_adjustment, float y_to_x, float y_to_b,
                    uint64_t image_size, uint64_t* total_estimated_area_reached,
                    Spline& result) const;

  Status Decode(const std::vector<uint8_t>& context_map,
                ANSSymbolReader* decoder, BitReader* br,
                size_t max_control_points, size_t* total_num_control_points);

 private:
  friend class QuantizedSplineEncoder;

  std::vector<std::pair<int64_t, int64_t>>
      control_points_;  // Double delta-encoded.
  int color_dct_[3][32] = {};
  int sigma_dct_[32] = {};
};

// A single "drawable unit" of a spline, i.e. a line of the region in which we
// render each Gaussian. The structure doesn't actually depend on the exact
// row, which allows reuse for different y values (which are tracked
// separately).
struct SplineSegment {
  float center_x, center_y;
  float maximum_distance;
  float inv_sigma;
  float sigma_over_4_times_intensity;
  float color[3];
};

class Splines {
 public:
  Splines() = default;
  explicit Splines(const int32_t quantization_adjustment,
                   std::vector<QuantizedSpline> splines,
                   std::vector<Spline::Point> starting_points)
      : quantization_adjustment_(quantization_adjustment),
        splines_(std::move(splines)),
        starting_points_(std::move(starting_points)) {}

  bool HasAny() const { return !splines_.empty(); }

  void Clear();

  Status Decode(BitReader* br, size_t num_pixels);

  void AddTo(Image3F* opsin, const Rect& opsin_rect,
             const Rect& image_rect) const;
  void AddToRow(float* JXL_RESTRICT row_x, float* JXL_RESTRICT row_y,
                float* JXL_RESTRICT row_b, const Rect& image_row) const;
  void SubtractFrom(Image3F* opsin) const;

  const std::vector<QuantizedSpline>& QuantizedSplines() const {
    return splines_;
  }
  const std::vector<Spline::Point>& StartingPoints() const {
    return starting_points_;
  }

  int32_t GetQuantizationAdjustment() const { return quantization_adjustment_; }

  Status InitializeDrawCache(size_t image_xsize, size_t image_ysize,
                             const ColorCorrelationMap& cmap);

 private:
  template <bool>
  void ApplyToRow(float* JXL_RESTRICT row_x, float* JXL_RESTRICT row_y,
                  float* JXL_RESTRICT row_b, const Rect& image_row) const;
  template <bool>
  void Apply(Image3F* opsin, const Rect& opsin_rect,
             const Rect& image_rect) const;

  // If positive, quantization weights are multiplied by 1 + this/8, which
  // increases precision. If negative, they are divided by 1 - this/8. If 0,
  // they are unchanged.
  int32_t quantization_adjustment_ = 0;
  std::vector<QuantizedSpline> splines_;
  std::vector<Spline::Point> starting_points_;
  std::vector<SplineSegment> segments_;
  std::vector<size_t> segment_indices_;
  std::vector<size_t> segment_y_start_;
};

}  // namespace jxl

#endif  // LIB_JXL_SPLINES_H_