1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/test_image.h"
#include <jxl/encode.h>
#include <algorithm>
#include <cstring>
#include <utility>
#include "lib/extras/dec/color_description.h"
#include "lib/extras/dec/color_hints.h"
#include "lib/extras/dec/decode.h"
#include "lib/jxl/base/byte_order.h"
#include "lib/jxl/base/random.h"
#include "lib/jxl/base/span.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/color_encoding_internal.h"
namespace jxl {
namespace test {
namespace {
void StoreValue(float val, size_t bits_per_sample, JxlPixelFormat format,
uint8_t** out) {
const float mul = (1u << bits_per_sample) - 1;
if (format.data_type == JXL_TYPE_UINT8) {
**out = val * mul;
} else if (format.data_type == JXL_TYPE_UINT16) {
uint16_t uval = val * mul;
if (SwapEndianness(format.endianness)) {
uval = JXL_BSWAP16(uval);
}
memcpy(*out, &uval, 2);
} else if (format.data_type == JXL_TYPE_FLOAT) {
// TODO(szabadka) Add support for custom bits / exponent bits floats.
if (SwapEndianness(format.endianness)) {
val = BSwapFloat(val);
}
memcpy(*out, &val, 4);
} else {
// TODO(szabadka) Add support for FLOAT16.
}
*out += extras::PackedImage::BitsPerChannel(format.data_type) / 8;
}
void FillPackedImage(size_t bits_per_sample, uint16_t seed,
extras::PackedImage* image) {
const size_t xsize = image->xsize;
const size_t ysize = image->ysize;
const JxlPixelFormat format = image->format;
// Cause more significant image difference for successive seeds.
Rng generator(seed);
// Returns random integer in interval [0, max_value)
auto rngu = [&generator](size_t max_value) -> size_t {
return generator.UniformU(0, max_value);
};
// Returns random float in interval [0.0, max_value)
auto rngf = [&generator](float max_value) {
return generator.UniformF(0.0f, max_value);
};
// Dark background gradient color
float r0 = rngf(0.5f);
float g0 = rngf(0.5f);
float b0 = rngf(0.5f);
float a0 = rngf(0.5f);
float r1 = rngf(0.5f);
float g1 = rngf(0.5f);
float b1 = rngf(0.5f);
float a1 = rngf(0.5f);
// Circle with different color
size_t circle_x = rngu(xsize);
size_t circle_y = rngu(ysize);
size_t circle_r = rngu(std::min(xsize, ysize));
// Rectangle with random noise
size_t rect_x0 = rngu(xsize);
size_t rect_y0 = rngu(ysize);
size_t rect_x1 = rngu(xsize);
size_t rect_y1 = rngu(ysize);
if (rect_x1 < rect_x0) std::swap(rect_x0, rect_y1);
if (rect_y1 < rect_y0) std::swap(rect_y0, rect_y1);
// Create pixel content to test, actual content does not matter as long as it
// can be compared after roundtrip.
const float imul16 = 1.0f / 65536.0f;
for (size_t y = 0; y < ysize; y++) {
uint8_t* out =
reinterpret_cast<uint8_t*>(image->pixels()) + y * image->stride;
for (size_t x = 0; x < xsize; x++) {
float r = r0 * (ysize - y - 1) / ysize + r1 * y / ysize;
float g = g0 * (ysize - y - 1) / ysize + g1 * y / ysize;
float b = b0 * (ysize - y - 1) / ysize + b1 * y / ysize;
float a = a0 * (ysize - y - 1) / ysize + a1 * y / ysize;
// put some shape in there for visual debugging
if ((x - circle_x) * (x - circle_x) + (y - circle_y) * (y - circle_y) <
circle_r * circle_r) {
r = std::min(1.0f, ((65535 - x * y) ^ seed) * imul16);
g = std::min(1.0f, ((x << 8) + y + seed) * imul16);
b = std::min(1.0f, ((y << 8) + x * seed) * imul16);
a = std::min(1.0f, (32768 + x * 256 - y) * imul16);
} else if (x > rect_x0 && x < rect_x1 && y > rect_y0 && y < rect_y1) {
r = rngf(1.0f);
g = rngf(1.0f);
b = rngf(1.0f);
a = rngf(1.0f);
}
if (format.num_channels == 1) {
StoreValue(g, bits_per_sample, format, &out);
} else if (format.num_channels == 2) {
StoreValue(g, bits_per_sample, format, &out);
StoreValue(a, bits_per_sample, format, &out);
} else if (format.num_channels == 3) {
StoreValue(r, bits_per_sample, format, &out);
StoreValue(g, bits_per_sample, format, &out);
StoreValue(b, bits_per_sample, format, &out);
} else if (format.num_channels == 4) {
StoreValue(r, bits_per_sample, format, &out);
StoreValue(g, bits_per_sample, format, &out);
StoreValue(b, bits_per_sample, format, &out);
StoreValue(a, bits_per_sample, format, &out);
}
}
}
}
} // namespace
std::vector<uint8_t> GetSomeTestImage(size_t xsize, size_t ysize,
size_t num_channels, uint16_t seed) {
// Cause more significant image difference for successive seeds.
Rng generator(seed);
// Returns random integer in interval [0, max_value)
auto rng = [&generator](size_t max_value) -> size_t {
return generator.UniformU(0, max_value);
};
// Dark background gradient color
uint16_t r0 = rng(32768);
uint16_t g0 = rng(32768);
uint16_t b0 = rng(32768);
uint16_t a0 = rng(32768);
uint16_t r1 = rng(32768);
uint16_t g1 = rng(32768);
uint16_t b1 = rng(32768);
uint16_t a1 = rng(32768);
// Circle with different color
size_t circle_x = rng(xsize);
size_t circle_y = rng(ysize);
size_t circle_r = rng(std::min(xsize, ysize));
// Rectangle with random noise
size_t rect_x0 = rng(xsize);
size_t rect_y0 = rng(ysize);
size_t rect_x1 = rng(xsize);
size_t rect_y1 = rng(ysize);
if (rect_x1 < rect_x0) std::swap(rect_x0, rect_y1);
if (rect_y1 < rect_y0) std::swap(rect_y0, rect_y1);
size_t num_pixels = xsize * ysize;
// 16 bits per channel, big endian, 4 channels
std::vector<uint8_t> pixels(num_pixels * num_channels * 2);
// Create pixel content to test, actual content does not matter as long as it
// can be compared after roundtrip.
for (size_t y = 0; y < ysize; y++) {
for (size_t x = 0; x < xsize; x++) {
uint16_t r = r0 * (ysize - y - 1) / ysize + r1 * y / ysize;
uint16_t g = g0 * (ysize - y - 1) / ysize + g1 * y / ysize;
uint16_t b = b0 * (ysize - y - 1) / ysize + b1 * y / ysize;
uint16_t a = a0 * (ysize - y - 1) / ysize + a1 * y / ysize;
// put some shape in there for visual debugging
if ((x - circle_x) * (x - circle_x) + (y - circle_y) * (y - circle_y) <
circle_r * circle_r) {
r = (65535 - x * y) ^ seed;
g = (x << 8) + y + seed;
b = (y << 8) + x * seed;
a = 32768 + x * 256 - y;
} else if (x > rect_x0 && x < rect_x1 && y > rect_y0 && y < rect_y1) {
r = rng(65536);
g = rng(65536);
b = rng(65536);
a = rng(65536);
}
size_t i = (y * xsize + x) * 2 * num_channels;
pixels[i + 0] = (r >> 8);
pixels[i + 1] = (r & 255);
if (num_channels >= 2) {
// This may store what is called 'g' in the alpha channel of a 2-channel
// image, but that's ok since the content is arbitrary
pixels[i + 2] = (g >> 8);
pixels[i + 3] = (g & 255);
}
if (num_channels >= 3) {
pixels[i + 4] = (b >> 8);
pixels[i + 5] = (b & 255);
}
if (num_channels >= 4) {
pixels[i + 6] = (a >> 8);
pixels[i + 7] = (a & 255);
}
}
}
return pixels;
}
TestImage::TestImage() {
SetChannels(3);
SetAllBitDepths(8);
SetColorEncoding("RGB_D65_SRG_Rel_SRG");
}
TestImage& TestImage::DecodeFromBytes(const std::vector<uint8_t>& bytes) {
ColorEncoding c_enc;
JXL_CHECK(c_enc.FromExternal(ppf_.color_encoding));
extras::ColorHints color_hints;
color_hints.Add("color_space", Description(c_enc));
JXL_CHECK(extras::DecodeBytes(Bytes(bytes), color_hints, &ppf_));
return *this;
}
TestImage& TestImage::ClearMetadata() {
ppf_.metadata = extras::PackedMetadata();
return *this;
}
TestImage& TestImage::SetDimensions(size_t xsize, size_t ysize) {
if (xsize <= ppf_.info.xsize && ysize <= ppf_.info.ysize) {
for (auto& frame : ppf_.frames) {
CropLayerInfo(xsize, ysize, &frame.frame_info.layer_info);
CropImage(xsize, ysize, &frame.color);
for (auto& ec : frame.extra_channels) {
CropImage(xsize, ysize, &ec);
}
}
} else {
JXL_CHECK(ppf_.info.xsize == 0 && ppf_.info.ysize == 0);
}
ppf_.info.xsize = xsize;
ppf_.info.ysize = ysize;
return *this;
}
TestImage& TestImage::SetChannels(size_t num_channels) {
JXL_CHECK(ppf_.frames.empty());
JXL_CHECK(!ppf_.preview_frame);
ppf_.info.num_color_channels = num_channels < 3 ? 1 : 3;
ppf_.info.num_extra_channels = num_channels - ppf_.info.num_color_channels;
if (ppf_.info.num_extra_channels > 0 && ppf_.info.alpha_bits == 0) {
ppf_.info.alpha_bits = ppf_.info.bits_per_sample;
ppf_.info.alpha_exponent_bits = ppf_.info.exponent_bits_per_sample;
}
ppf_.extra_channels_info.clear();
for (size_t i = 1; i < ppf_.info.num_extra_channels; ++i) {
extras::PackedExtraChannel ec;
ec.index = i;
JxlEncoderInitExtraChannelInfo(JXL_CHANNEL_ALPHA, &ec.ec_info);
if (ec.ec_info.bits_per_sample == 0) {
ec.ec_info.bits_per_sample = ppf_.info.bits_per_sample;
ec.ec_info.exponent_bits_per_sample = ppf_.info.exponent_bits_per_sample;
}
ppf_.extra_channels_info.emplace_back(std::move(ec));
}
format_.num_channels = std::min(static_cast<size_t>(4), num_channels);
if (ppf_.info.num_color_channels == 1 &&
ppf_.color_encoding.color_space != JXL_COLOR_SPACE_GRAY) {
SetColorEncoding("Gra_D65_Rel_SRG");
}
return *this;
}
// Sets the same bit depth on color, alpha and all extra channels.
TestImage& TestImage::SetAllBitDepths(uint32_t bits_per_sample,
uint32_t exponent_bits_per_sample) {
ppf_.info.bits_per_sample = bits_per_sample;
ppf_.info.exponent_bits_per_sample = exponent_bits_per_sample;
if (ppf_.info.num_extra_channels > 0) {
ppf_.info.alpha_bits = bits_per_sample;
ppf_.info.alpha_exponent_bits = exponent_bits_per_sample;
}
for (size_t i = 0; i < ppf_.extra_channels_info.size(); ++i) {
extras::PackedExtraChannel& ec = ppf_.extra_channels_info[i];
ec.ec_info.bits_per_sample = bits_per_sample;
ec.ec_info.exponent_bits_per_sample = exponent_bits_per_sample;
}
format_.data_type = DefaultDataType(ppf_.info);
return *this;
}
TestImage& TestImage::SetDataType(JxlDataType data_type) {
format_.data_type = data_type;
return *this;
}
TestImage& TestImage::SetEndianness(JxlEndianness endianness) {
format_.endianness = endianness;
return *this;
}
TestImage& TestImage::SetRowAlignment(size_t align) {
format_.align = align;
return *this;
}
TestImage& TestImage::SetColorEncoding(const std::string& description) {
JXL_CHECK(ParseDescription(description, &ppf_.color_encoding));
ColorEncoding c_enc;
JXL_CHECK(c_enc.FromExternal(ppf_.color_encoding));
IccBytes icc = c_enc.ICC();
JXL_CHECK(!icc.empty());
ppf_.icc.assign(icc.begin(), icc.end());
return *this;
}
TestImage& TestImage::CoalesceGIFAnimationWithAlpha() {
extras::PackedFrame canvas = ppf_.frames[0].Copy();
JXL_CHECK(canvas.color.format.num_channels == 3);
JXL_CHECK(canvas.color.format.data_type == JXL_TYPE_UINT8);
JXL_CHECK(canvas.extra_channels.size() == 1);
for (size_t i = 1; i < ppf_.frames.size(); i++) {
const extras::PackedFrame& frame = ppf_.frames[i];
JXL_CHECK(frame.extra_channels.size() == 1);
const JxlLayerInfo& layer_info = frame.frame_info.layer_info;
extras::PackedFrame rendered = canvas.Copy();
uint8_t* pixels_rendered =
reinterpret_cast<uint8_t*>(rendered.color.pixels());
const uint8_t* pixels_frame =
reinterpret_cast<const uint8_t*>(frame.color.pixels());
uint8_t* alpha_rendered =
reinterpret_cast<uint8_t*>(rendered.extra_channels[0].pixels());
const uint8_t* alpha_frame =
reinterpret_cast<const uint8_t*>(frame.extra_channels[0].pixels());
for (size_t y = 0; y < frame.color.ysize; y++) {
for (size_t x = 0; x < frame.color.xsize; x++) {
size_t idx_frame = y * frame.color.xsize + x;
size_t idx_rendered = ((layer_info.crop_y0 + y) * rendered.color.xsize +
(layer_info.crop_x0 + x));
if (alpha_frame[idx_frame] != 0) {
memcpy(&pixels_rendered[idx_rendered * 3],
&pixels_frame[idx_frame * 3], 3);
alpha_rendered[idx_rendered] = alpha_frame[idx_frame];
}
}
}
if (layer_info.save_as_reference != 0) {
canvas = rendered.Copy();
}
ppf_.frames[i] = std::move(rendered);
}
return *this;
}
TestImage::Frame::Frame(TestImage* parent, bool is_preview, size_t index)
: parent_(parent), is_preview_(is_preview), index_(index) {}
void TestImage::Frame::ZeroFill() {
memset(frame().color.pixels(), 0, frame().color.pixels_size);
for (auto& ec : frame().extra_channels) {
memset(ec.pixels(), 0, ec.pixels_size);
}
}
void TestImage::Frame::RandomFill(uint16_t seed) {
FillPackedImage(ppf().info.bits_per_sample, seed, &frame().color);
for (size_t i = 0; i < ppf().extra_channels_info.size(); ++i) {
FillPackedImage(ppf().extra_channels_info[i].ec_info.bits_per_sample,
seed + 1 + i, &frame().extra_channels[i]);
}
}
void TestImage::Frame::SetValue(size_t y, size_t x, size_t c, float val) {
const extras::PackedImage& color = frame().color;
JxlPixelFormat format = color.format;
JXL_CHECK(y < ppf().info.ysize);
JXL_CHECK(x < ppf().info.xsize);
JXL_CHECK(c < format.num_channels);
size_t pwidth = extras::PackedImage::BitsPerChannel(format.data_type) / 8;
size_t idx = ((y * color.xsize + x) * format.num_channels + c) * pwidth;
uint8_t* pixels = reinterpret_cast<uint8_t*>(frame().color.pixels());
uint8_t* p = pixels + idx;
StoreValue(val, ppf().info.bits_per_sample, frame().color.format, &p);
}
TestImage::Frame TestImage::AddFrame() {
size_t index = ppf_.frames.size();
extras::PackedFrame frame(ppf_.info.xsize, ppf_.info.ysize, format_);
for (size_t i = 0; i < ppf_.extra_channels_info.size(); ++i) {
JxlPixelFormat ec_format = {1, format_.data_type, format_.endianness, 0};
extras::PackedImage image(ppf_.info.xsize, ppf_.info.ysize, ec_format);
frame.extra_channels.emplace_back(std::move(image));
}
ppf_.frames.emplace_back(std::move(frame));
return Frame(this, false, index);
}
TestImage::Frame TestImage::AddPreview(size_t xsize, size_t ysize) {
extras::PackedFrame frame(xsize, ysize, format_);
for (size_t i = 0; i < ppf_.extra_channels_info.size(); ++i) {
JxlPixelFormat ec_format = {1, format_.data_type, format_.endianness, 0};
extras::PackedImage image(xsize, ysize, ec_format);
frame.extra_channels.emplace_back(std::move(image));
}
ppf_.preview_frame = make_unique<extras::PackedFrame>(std::move(frame));
return Frame(this, true, 0);
}
void TestImage::CropLayerInfo(size_t xsize, size_t ysize, JxlLayerInfo* info) {
if (info->crop_x0 < static_cast<ssize_t>(xsize)) {
info->xsize = std::min<size_t>(info->xsize, xsize - info->crop_x0);
} else {
info->xsize = 0;
}
if (info->crop_y0 < static_cast<ssize_t>(ysize)) {
info->ysize = std::min<size_t>(info->ysize, ysize - info->crop_y0);
} else {
info->ysize = 0;
}
}
void TestImage::CropImage(size_t xsize, size_t ysize,
extras::PackedImage* image) {
size_t new_stride = (image->stride / image->xsize) * xsize;
uint8_t* buf = reinterpret_cast<uint8_t*>(image->pixels());
for (size_t y = 0; y < ysize; ++y) {
memmove(&buf[y * new_stride], &buf[y * image->stride], new_stride);
}
image->xsize = xsize;
image->ysize = ysize;
image->stride = new_stride;
image->pixels_size = ysize * new_stride;
}
JxlDataType TestImage::DefaultDataType(const JxlBasicInfo& info) {
if (info.bits_per_sample == 16 && info.exponent_bits_per_sample == 5) {
return JXL_TYPE_FLOAT16;
} else if (info.exponent_bits_per_sample > 0 || info.bits_per_sample > 16) {
return JXL_TYPE_FLOAT;
} else if (info.bits_per_sample > 8) {
return JXL_TYPE_UINT16;
} else {
return JXL_TYPE_UINT8;
}
}
} // namespace test
} // namespace jxl
|