summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/audio/remix_resample_unittest.cc
blob: 31dcfac1fe75c00cd64ad5cf2da9b755dd16d0c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "audio/remix_resample.h"

#include <cmath>

#include "common_audio/resampler/include/push_resampler.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "test/gtest.h"

namespace webrtc {
namespace voe {
namespace {

int GetFrameSize(int sample_rate_hz) {
  return sample_rate_hz / 100;
}

class UtilityTest : public ::testing::Test {
 protected:
  UtilityTest() {
    src_frame_.sample_rate_hz_ = 16000;
    src_frame_.samples_per_channel_ = src_frame_.sample_rate_hz_ / 100;
    src_frame_.num_channels_ = 1;
    dst_frame_.CopyFrom(src_frame_);
    golden_frame_.CopyFrom(src_frame_);
  }

  void RunResampleTest(int src_channels,
                       int src_sample_rate_hz,
                       int dst_channels,
                       int dst_sample_rate_hz);

  PushResampler<int16_t> resampler_;
  AudioFrame src_frame_;
  AudioFrame dst_frame_;
  AudioFrame golden_frame_;
};

// Sets the signal value to increase by `data` with every sample. Floats are
// used so non-integer values result in rounding error, but not an accumulating
// error.
void SetMonoFrame(float data, int sample_rate_hz, AudioFrame* frame) {
  frame->Mute();
  frame->num_channels_ = 1;
  frame->sample_rate_hz_ = sample_rate_hz;
  frame->samples_per_channel_ = GetFrameSize(sample_rate_hz);
  int16_t* frame_data = frame->mutable_data();
  for (size_t i = 0; i < frame->samples_per_channel_; i++) {
    frame_data[i] = static_cast<int16_t>(data * i);
  }
}

// Keep the existing sample rate.
void SetMonoFrame(float data, AudioFrame* frame) {
  SetMonoFrame(data, frame->sample_rate_hz_, frame);
}

// Sets the signal value to increase by `left` and `right` with every sample in
// each channel respectively.
void SetStereoFrame(float left,
                    float right,
                    int sample_rate_hz,
                    AudioFrame* frame) {
  frame->Mute();
  frame->num_channels_ = 2;
  frame->sample_rate_hz_ = sample_rate_hz;
  frame->samples_per_channel_ = GetFrameSize(sample_rate_hz);
  int16_t* frame_data = frame->mutable_data();
  for (size_t i = 0; i < frame->samples_per_channel_; i++) {
    frame_data[i * 2] = static_cast<int16_t>(left * i);
    frame_data[i * 2 + 1] = static_cast<int16_t>(right * i);
  }
}

// Keep the existing sample rate.
void SetStereoFrame(float left, float right, AudioFrame* frame) {
  SetStereoFrame(left, right, frame->sample_rate_hz_, frame);
}

// Sets the signal value to increase by `ch1`, `ch2`, `ch3`, `ch4` with every
// sample in each channel respectively.
void SetQuadFrame(float ch1,
                  float ch2,
                  float ch3,
                  float ch4,
                  int sample_rate_hz,
                  AudioFrame* frame) {
  frame->Mute();
  frame->num_channels_ = 4;
  frame->sample_rate_hz_ = sample_rate_hz;
  frame->samples_per_channel_ = GetFrameSize(sample_rate_hz);
  int16_t* frame_data = frame->mutable_data();
  for (size_t i = 0; i < frame->samples_per_channel_; i++) {
    frame_data[i * 4] = static_cast<int16_t>(ch1 * i);
    frame_data[i * 4 + 1] = static_cast<int16_t>(ch2 * i);
    frame_data[i * 4 + 2] = static_cast<int16_t>(ch3 * i);
    frame_data[i * 4 + 3] = static_cast<int16_t>(ch4 * i);
  }
}

void VerifyParams(const AudioFrame& ref_frame, const AudioFrame& test_frame) {
  EXPECT_EQ(ref_frame.num_channels_, test_frame.num_channels_);
  EXPECT_EQ(ref_frame.samples_per_channel_, test_frame.samples_per_channel_);
  EXPECT_EQ(ref_frame.sample_rate_hz_, test_frame.sample_rate_hz_);
}

// Computes the best SNR based on the error between `ref_frame` and
// `test_frame`. It allows for up to a `max_delay` in samples between the
// signals to compensate for the resampling delay.
float ComputeSNR(const AudioFrame& ref_frame,
                 const AudioFrame& test_frame,
                 size_t max_delay) {
  VerifyParams(ref_frame, test_frame);
  float best_snr = 0;
  size_t best_delay = 0;
  for (size_t delay = 0; delay <= max_delay; delay++) {
    float mse = 0;
    float variance = 0;
    const int16_t* ref_frame_data = ref_frame.data();
    const int16_t* test_frame_data = test_frame.data();
    for (size_t i = 0;
         i < ref_frame.samples_per_channel_ * ref_frame.num_channels_ - delay;
         i++) {
      int error = ref_frame_data[i] - test_frame_data[i + delay];
      mse += error * error;
      variance += ref_frame_data[i] * ref_frame_data[i];
    }
    float snr = 100;  // We assign 100 dB to the zero-error case.
    if (mse > 0)
      snr = 10 * std::log10(variance / mse);
    if (snr > best_snr) {
      best_snr = snr;
      best_delay = delay;
    }
  }
  printf("SNR=%.1f dB at delay=%zu\n", best_snr, best_delay);
  return best_snr;
}

void VerifyFramesAreEqual(const AudioFrame& ref_frame,
                          const AudioFrame& test_frame) {
  VerifyParams(ref_frame, test_frame);
  const int16_t* ref_frame_data = ref_frame.data();
  const int16_t* test_frame_data = test_frame.data();
  for (size_t i = 0;
       i < ref_frame.samples_per_channel_ * ref_frame.num_channels_; i++) {
    EXPECT_EQ(ref_frame_data[i], test_frame_data[i]);
  }
}

void UtilityTest::RunResampleTest(int src_channels,
                                  int src_sample_rate_hz,
                                  int dst_channels,
                                  int dst_sample_rate_hz) {
  PushResampler<int16_t> resampler;  // Create a new one with every test.
  const int16_t kSrcCh1 = 30;  // Shouldn't overflow for any used sample rate.
  const int16_t kSrcCh2 = 15;
  const int16_t kSrcCh3 = 22;
  const int16_t kSrcCh4 = 8;
  const float resampling_factor =
      (1.0 * src_sample_rate_hz) / dst_sample_rate_hz;
  const float dst_ch1 = resampling_factor * kSrcCh1;
  const float dst_ch2 = resampling_factor * kSrcCh2;
  const float dst_ch3 = resampling_factor * kSrcCh3;
  const float dst_ch4 = resampling_factor * kSrcCh4;
  const float dst_stereo_to_mono = (dst_ch1 + dst_ch2) / 2;
  const float dst_quad_to_mono = (dst_ch1 + dst_ch2 + dst_ch3 + dst_ch4) / 4;
  const float dst_quad_to_stereo_ch1 = (dst_ch1 + dst_ch2) / 2;
  const float dst_quad_to_stereo_ch2 = (dst_ch3 + dst_ch4) / 2;
  if (src_channels == 1)
    SetMonoFrame(kSrcCh1, src_sample_rate_hz, &src_frame_);
  else if (src_channels == 2)
    SetStereoFrame(kSrcCh1, kSrcCh2, src_sample_rate_hz, &src_frame_);
  else
    SetQuadFrame(kSrcCh1, kSrcCh2, kSrcCh3, kSrcCh4, src_sample_rate_hz,
                 &src_frame_);

  if (dst_channels == 1) {
    SetMonoFrame(0, dst_sample_rate_hz, &dst_frame_);
    if (src_channels == 1)
      SetMonoFrame(dst_ch1, dst_sample_rate_hz, &golden_frame_);
    else if (src_channels == 2)
      SetMonoFrame(dst_stereo_to_mono, dst_sample_rate_hz, &golden_frame_);
    else
      SetMonoFrame(dst_quad_to_mono, dst_sample_rate_hz, &golden_frame_);
  } else {
    SetStereoFrame(0, 0, dst_sample_rate_hz, &dst_frame_);
    if (src_channels == 1)
      SetStereoFrame(dst_ch1, dst_ch1, dst_sample_rate_hz, &golden_frame_);
    else if (src_channels == 2)
      SetStereoFrame(dst_ch1, dst_ch2, dst_sample_rate_hz, &golden_frame_);
    else
      SetStereoFrame(dst_quad_to_stereo_ch1, dst_quad_to_stereo_ch2,
                     dst_sample_rate_hz, &golden_frame_);
  }

  // The sinc resampler has a known delay, which we compute here. Multiplying by
  // two gives us a crude maximum for any resampling, as the old resampler
  // typically (but not always) has lower delay.
  static const size_t kInputKernelDelaySamples = 16;
  const size_t max_delay = static_cast<size_t>(
      static_cast<double>(dst_sample_rate_hz) / src_sample_rate_hz *
      kInputKernelDelaySamples * dst_channels * 2);
  printf("(%d, %d Hz) -> (%d, %d Hz) ",  // SNR reported on the same line later.
         src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz);
  RemixAndResample(src_frame_, &resampler, &dst_frame_);

  if (src_sample_rate_hz == 96000 && dst_sample_rate_hz <= 11025) {
    // The sinc resampler gives poor SNR at this extreme conversion, but we
    // expect to see this rarely in practice.
    EXPECT_GT(ComputeSNR(golden_frame_, dst_frame_, max_delay), 14.0f);
  } else {
    EXPECT_GT(ComputeSNR(golden_frame_, dst_frame_, max_delay), 46.0f);
  }
}

TEST_F(UtilityTest, RemixAndResampleCopyFrameSucceeds) {
  // Stereo -> stereo.
  SetStereoFrame(10, 10, &src_frame_);
  SetStereoFrame(0, 0, &dst_frame_);
  RemixAndResample(src_frame_, &resampler_, &dst_frame_);
  VerifyFramesAreEqual(src_frame_, dst_frame_);

  // Mono -> mono.
  SetMonoFrame(20, &src_frame_);
  SetMonoFrame(0, &dst_frame_);
  RemixAndResample(src_frame_, &resampler_, &dst_frame_);
  VerifyFramesAreEqual(src_frame_, dst_frame_);
}

TEST_F(UtilityTest, RemixAndResampleMixingOnlySucceeds) {
  // Stereo -> mono.
  SetStereoFrame(0, 0, &dst_frame_);
  SetMonoFrame(10, &src_frame_);
  SetStereoFrame(10, 10, &golden_frame_);
  RemixAndResample(src_frame_, &resampler_, &dst_frame_);
  VerifyFramesAreEqual(dst_frame_, golden_frame_);

  // Mono -> stereo.
  SetMonoFrame(0, &dst_frame_);
  SetStereoFrame(10, 20, &src_frame_);
  SetMonoFrame(15, &golden_frame_);
  RemixAndResample(src_frame_, &resampler_, &dst_frame_);
  VerifyFramesAreEqual(golden_frame_, dst_frame_);
}

TEST_F(UtilityTest, RemixAndResampleSucceeds) {
  const int kSampleRates[] = {8000,  11025, 16000, 22050,
                              32000, 44100, 48000, 96000};
  const int kSrcChannels[] = {1, 2, 4};
  const int kDstChannels[] = {1, 2};

  for (int src_rate : kSampleRates) {
    for (int dst_rate : kSampleRates) {
      for (size_t src_channels : kSrcChannels) {
        for (size_t dst_channels : kDstChannels) {
          RunResampleTest(src_channels, src_rate, dst_channels, dst_rate);
        }
      }
    }
  }
}

}  // namespace
}  // namespace voe
}  // namespace webrtc