summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/call/simulated_network.cc
blob: 8f9d76dfe3c2268ade21b2e718753c5a88d8482a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
 *  Copyright 2018 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "call/simulated_network.h"

#include <algorithm>
#include <cmath>
#include <cstdint>
#include <utility>

#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"

namespace webrtc {
namespace {

// Calculate the time (in microseconds) that takes to send N `bits` on a
// network with link capacity equal to `capacity_kbps` starting at time
// `start_time_us`.
int64_t CalculateArrivalTimeUs(int64_t start_time_us,
                               int64_t bits,
                               int capacity_kbps) {
  // If capacity is 0, the link capacity is assumed to be infinite.
  if (capacity_kbps == 0) {
    return start_time_us;
  }
  // Adding `capacity - 1` to the numerator rounds the extra delay caused by
  // capacity constraints up to an integral microsecond. Sending 0 bits takes 0
  // extra time, while sending 1 bit gets rounded up to 1 (the multiplication by
  // 1000 is because capacity is in kbps).
  // The factor 1000 comes from 10^6 / 10^3, where 10^6 is due to the time unit
  // being us and 10^3 is due to the rate unit being kbps.
  return start_time_us + ((1000 * bits + capacity_kbps - 1) / capacity_kbps);
}

}  // namespace

SimulatedNetwork::SimulatedNetwork(Config config, uint64_t random_seed)
    : random_(random_seed),
      bursting_(false),
      last_enqueue_time_us_(0),
      last_capacity_link_exit_time_(0) {
  SetConfig(config);
}

SimulatedNetwork::~SimulatedNetwork() = default;

void SimulatedNetwork::SetConfig(const Config& config) {
  MutexLock lock(&config_lock_);
  config_state_.config = config;  // Shallow copy of the struct.
  double prob_loss = config.loss_percent / 100.0;
  if (config_state_.config.avg_burst_loss_length == -1) {
    // Uniform loss
    config_state_.prob_loss_bursting = prob_loss;
    config_state_.prob_start_bursting = prob_loss;
  } else {
    // Lose packets according to a gilbert-elliot model.
    int avg_burst_loss_length = config.avg_burst_loss_length;
    int min_avg_burst_loss_length = std::ceil(prob_loss / (1 - prob_loss));

    RTC_CHECK_GT(avg_burst_loss_length, min_avg_burst_loss_length)
        << "For a total packet loss of " << config.loss_percent
        << "%% then"
           " avg_burst_loss_length must be "
        << min_avg_burst_loss_length + 1 << " or higher.";

    config_state_.prob_loss_bursting = (1.0 - 1.0 / avg_burst_loss_length);
    config_state_.prob_start_bursting =
        prob_loss / (1 - prob_loss) / avg_burst_loss_length;
  }
}

void SimulatedNetwork::UpdateConfig(
    std::function<void(BuiltInNetworkBehaviorConfig*)> config_modifier) {
  MutexLock lock(&config_lock_);
  config_modifier(&config_state_.config);
}

void SimulatedNetwork::PauseTransmissionUntil(int64_t until_us) {
  MutexLock lock(&config_lock_);
  config_state_.pause_transmission_until_us = until_us;
}

bool SimulatedNetwork::EnqueuePacket(PacketInFlightInfo packet) {
  RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);

  // Check that old packets don't get enqueued, the SimulatedNetwork expect that
  // the packets' send time is monotonically increasing. The tolerance for
  // non-monotonic enqueue events is 0.5 ms because on multi core systems
  // clock_gettime(CLOCK_MONOTONIC) can show non-monotonic behaviour between
  // theads running on different cores.
  // TODO(bugs.webrtc.org/14525): Open a bug on this with the goal to re-enable
  // the DCHECK.
  // At the moment, we see more than 130ms between non-monotonic events, which
  // is more than expected.
  // RTC_DCHECK_GE(packet.send_time_us - last_enqueue_time_us_, -2000);

  ConfigState state = GetConfigState();

  // If the network config requires packet overhead, let's apply it as early as
  // possible.
  packet.size += state.config.packet_overhead;

  // If `queue_length_packets` is 0, the queue size is infinite.
  if (state.config.queue_length_packets > 0 &&
      capacity_link_.size() >= state.config.queue_length_packets) {
    // Too many packet on the link, drop this one.
    return false;
  }

  // If the packet has been sent before the previous packet in the network left
  // the capacity queue, let's ensure the new packet will start its trip in the
  // network after the last bit of the previous packet has left it.
  int64_t packet_send_time_us = packet.send_time_us;
  if (!capacity_link_.empty()) {
    packet_send_time_us =
        std::max(packet_send_time_us, capacity_link_.back().arrival_time_us);
  }
  capacity_link_.push({.packet = packet,
                       .arrival_time_us = CalculateArrivalTimeUs(
                           packet_send_time_us, packet.size * 8,
                           state.config.link_capacity_kbps)});

  // Only update `next_process_time_us_` if not already set (if set, there is no
  // way that a new packet will make the `next_process_time_us_` change).
  if (!next_process_time_us_) {
    RTC_DCHECK_EQ(capacity_link_.size(), 1);
    next_process_time_us_ = capacity_link_.front().arrival_time_us;
  }

  last_enqueue_time_us_ = packet.send_time_us;
  return true;
}

absl::optional<int64_t> SimulatedNetwork::NextDeliveryTimeUs() const {
  RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
  return next_process_time_us_;
}

void SimulatedNetwork::UpdateCapacityQueue(ConfigState state,
                                           int64_t time_now_us) {
  // If there is at least one packet in the `capacity_link_`, let's update its
  // arrival time to take into account changes in the network configuration
  // since the last call to UpdateCapacityQueue.
  if (!capacity_link_.empty()) {
    capacity_link_.front().arrival_time_us = CalculateArrivalTimeUs(
        std::max(capacity_link_.front().packet.send_time_us,
                 last_capacity_link_exit_time_),
        capacity_link_.front().packet.size * 8,
        state.config.link_capacity_kbps);
  }

  // The capacity link is empty or the first packet is not expected to exit yet.
  if (capacity_link_.empty() ||
      time_now_us < capacity_link_.front().arrival_time_us) {
    return;
  }
  bool reorder_packets = false;

  do {
    // Time to get this packet (the original or just updated arrival_time_us is
    // smaller or equal to time_now_us).
    PacketInfo packet = capacity_link_.front();
    capacity_link_.pop();

    // If the network is paused, the pause will be implemented as an extra delay
    // to be spent in the `delay_link_` queue.
    if (state.pause_transmission_until_us > packet.arrival_time_us) {
      packet.arrival_time_us = state.pause_transmission_until_us;
    }

    // Store the original arrival time, before applying packet loss or extra
    // delay. This is needed to know when it is the first available time the
    // next packet in the `capacity_link_` queue can start transmitting.
    last_capacity_link_exit_time_ = packet.arrival_time_us;

    // Drop packets at an average rate of `state.config.loss_percent` with
    // and average loss burst length of `state.config.avg_burst_loss_length`.
    if ((bursting_ && random_.Rand<double>() < state.prob_loss_bursting) ||
        (!bursting_ && random_.Rand<double>() < state.prob_start_bursting)) {
      bursting_ = true;
      packet.arrival_time_us = PacketDeliveryInfo::kNotReceived;
    } else {
      // If packets are not dropped, apply extra delay as configured.
      bursting_ = false;
      int64_t arrival_time_jitter_us = std::max(
          random_.Gaussian(state.config.queue_delay_ms * 1000,
                           state.config.delay_standard_deviation_ms * 1000),
          0.0);

      // If reordering is not allowed then adjust arrival_time_jitter
      // to make sure all packets are sent in order.
      int64_t last_arrival_time_us =
          delay_link_.empty() ? -1 : delay_link_.back().arrival_time_us;
      if (!state.config.allow_reordering && !delay_link_.empty() &&
          packet.arrival_time_us + arrival_time_jitter_us <
              last_arrival_time_us) {
        arrival_time_jitter_us = last_arrival_time_us - packet.arrival_time_us;
      }
      packet.arrival_time_us += arrival_time_jitter_us;

      // Optimization: Schedule a reorder only when a packet will exit before
      // the one in front.
      if (last_arrival_time_us > packet.arrival_time_us) {
        reorder_packets = true;
      }
    }
    delay_link_.emplace_back(packet);

    // If there are no packets in the queue, there is nothing else to do.
    if (capacity_link_.empty()) {
      break;
    }
    // If instead there is another packet in the `capacity_link_` queue, let's
    // calculate its arrival_time_us based on the latest config (which might
    // have been changed since it was enqueued).
    int64_t next_start = std::max(last_capacity_link_exit_time_,
                                  capacity_link_.front().packet.send_time_us);
    capacity_link_.front().arrival_time_us = CalculateArrivalTimeUs(
        next_start, capacity_link_.front().packet.size * 8,
        state.config.link_capacity_kbps);
    // And if the next packet in the queue needs to exit, let's dequeue it.
  } while (capacity_link_.front().arrival_time_us <= time_now_us);

  if (state.config.allow_reordering && reorder_packets) {
    // Packets arrived out of order and since the network config allows
    // reordering, let's sort them per arrival_time_us to make so they will also
    // be delivered out of order.
    std::stable_sort(delay_link_.begin(), delay_link_.end(),
                     [](const PacketInfo& p1, const PacketInfo& p2) {
                       return p1.arrival_time_us < p2.arrival_time_us;
                     });
  }
}

SimulatedNetwork::ConfigState SimulatedNetwork::GetConfigState() const {
  MutexLock lock(&config_lock_);
  return config_state_;
}

std::vector<PacketDeliveryInfo> SimulatedNetwork::DequeueDeliverablePackets(
    int64_t receive_time_us) {
  RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);

  UpdateCapacityQueue(GetConfigState(), receive_time_us);
  std::vector<PacketDeliveryInfo> packets_to_deliver;

  // Check the extra delay queue.
  while (!delay_link_.empty() &&
         receive_time_us >= delay_link_.front().arrival_time_us) {
    PacketInfo packet_info = delay_link_.front();
    packets_to_deliver.emplace_back(
        PacketDeliveryInfo(packet_info.packet, packet_info.arrival_time_us));
    delay_link_.pop_front();
  }

  if (!delay_link_.empty()) {
    next_process_time_us_ = delay_link_.front().arrival_time_us;
  } else if (!capacity_link_.empty()) {
    next_process_time_us_ = capacity_link_.front().arrival_time_us;
  } else {
    next_process_time_us_.reset();
  }
  return packets_to_deliver;
}

}  // namespace webrtc