summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_coding/acm2/acm_receiver.cc
blob: 4deabdf7ff4c0f5f607e21fc34da8648c88400a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_coding/acm2/acm_receiver.h"

#include <stdlib.h>
#include <string.h>

#include <cstdint>
#include <vector>

#include "absl/strings/match.h"
#include "api/audio/audio_frame.h"
#include "api/audio_codecs/audio_decoder.h"
#include "api/neteq/neteq.h"
#include "modules/audio_coding/acm2/acm_resampler.h"
#include "modules/audio_coding/acm2/call_statistics.h"
#include "modules/audio_coding/neteq/default_neteq_factory.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/strings/audio_format_to_string.h"
#include "system_wrappers/include/clock.h"

namespace webrtc {

namespace acm2 {

namespace {

std::unique_ptr<NetEq> CreateNetEq(
    NetEqFactory* neteq_factory,
    const NetEq::Config& config,
    Clock* clock,
    const rtc::scoped_refptr<AudioDecoderFactory>& decoder_factory) {
  if (neteq_factory) {
    return neteq_factory->CreateNetEq(config, decoder_factory, clock);
  }
  return DefaultNetEqFactory().CreateNetEq(config, decoder_factory, clock);
}

}  // namespace

AcmReceiver::Config::Config(
    rtc::scoped_refptr<AudioDecoderFactory> decoder_factory)
    : clock(*Clock::GetRealTimeClockRaw()), decoder_factory(decoder_factory) {}

AcmReceiver::Config::Config(const Config&) = default;
AcmReceiver::Config::~Config() = default;

AcmReceiver::AcmReceiver(const Config& config)
    : last_audio_buffer_(new int16_t[AudioFrame::kMaxDataSizeSamples]),
      neteq_(CreateNetEq(config.neteq_factory,
                         config.neteq_config,
                         &config.clock,
                         config.decoder_factory)),
      clock_(config.clock),
      resampled_last_output_frame_(true) {
  memset(last_audio_buffer_.get(), 0,
         sizeof(int16_t) * AudioFrame::kMaxDataSizeSamples);
}

AcmReceiver::~AcmReceiver() = default;

int AcmReceiver::SetMinimumDelay(int delay_ms) {
  if (neteq_->SetMinimumDelay(delay_ms))
    return 0;
  RTC_LOG(LS_ERROR) << "AcmReceiver::SetExtraDelay " << delay_ms;
  return -1;
}

int AcmReceiver::SetMaximumDelay(int delay_ms) {
  if (neteq_->SetMaximumDelay(delay_ms))
    return 0;
  RTC_LOG(LS_ERROR) << "AcmReceiver::SetExtraDelay " << delay_ms;
  return -1;
}

bool AcmReceiver::SetBaseMinimumDelayMs(int delay_ms) {
  return neteq_->SetBaseMinimumDelayMs(delay_ms);
}

int AcmReceiver::GetBaseMinimumDelayMs() const {
  return neteq_->GetBaseMinimumDelayMs();
}

absl::optional<int> AcmReceiver::last_packet_sample_rate_hz() const {
  MutexLock lock(&mutex_);
  if (!last_decoder_) {
    return absl::nullopt;
  }
  return last_decoder_->sample_rate_hz;
}

int AcmReceiver::last_output_sample_rate_hz() const {
  return neteq_->last_output_sample_rate_hz();
}

int AcmReceiver::InsertPacket(const RTPHeader& rtp_header,
                              rtc::ArrayView<const uint8_t> incoming_payload) {
  if (incoming_payload.empty()) {
    neteq_->InsertEmptyPacket(rtp_header);
    return 0;
  }

  int payload_type = rtp_header.payloadType;
  auto format = neteq_->GetDecoderFormat(payload_type);
  if (format && absl::EqualsIgnoreCase(format->sdp_format.name, "red")) {
    // This is a RED packet. Get the format of the audio codec.
    payload_type = incoming_payload[0] & 0x7f;
    format = neteq_->GetDecoderFormat(payload_type);
  }
  if (!format) {
    RTC_LOG_F(LS_ERROR) << "Payload-type " << payload_type
                        << " is not registered.";
    return -1;
  }

  {
    MutexLock lock(&mutex_);
    if (absl::EqualsIgnoreCase(format->sdp_format.name, "cn")) {
      if (last_decoder_ && last_decoder_->num_channels > 1) {
        // This is a CNG and the audio codec is not mono, so skip pushing in
        // packets into NetEq.
        return 0;
      }
    } else {
      last_decoder_ = DecoderInfo{/*payload_type=*/payload_type,
                                  /*sample_rate_hz=*/format->sample_rate_hz,
                                  /*num_channels=*/format->num_channels,
                                  /*sdp_format=*/std::move(format->sdp_format)};
    }
  }  // `mutex_` is released.

  if (neteq_->InsertPacket(rtp_header, incoming_payload) < 0) {
    RTC_LOG(LS_ERROR) << "AcmReceiver::InsertPacket "
                      << static_cast<int>(rtp_header.payloadType)
                      << " Failed to insert packet";
    return -1;
  }
  return 0;
}

int AcmReceiver::GetAudio(int desired_freq_hz,
                          AudioFrame* audio_frame,
                          bool* muted) {
  RTC_DCHECK(muted);

  int current_sample_rate_hz = 0;
  if (neteq_->GetAudio(audio_frame, muted, &current_sample_rate_hz) !=
      NetEq::kOK) {
    RTC_LOG(LS_ERROR) << "AcmReceiver::GetAudio - NetEq Failed.";
    return -1;
  }

  RTC_DCHECK_NE(current_sample_rate_hz, 0);

  // Update if resampling is required.
  const bool need_resampling =
      (desired_freq_hz != -1) && (current_sample_rate_hz != desired_freq_hz);

  // Accessing members, take the lock.
  MutexLock lock(&mutex_);
  if (need_resampling && !resampled_last_output_frame_) {
    // Prime the resampler with the last frame.
    int16_t temp_output[AudioFrame::kMaxDataSizeSamples];
    int samples_per_channel_int = resampler_.Resample10Msec(
        last_audio_buffer_.get(), current_sample_rate_hz, desired_freq_hz,
        audio_frame->num_channels_, AudioFrame::kMaxDataSizeSamples,
        temp_output);
    if (samples_per_channel_int < 0) {
      RTC_LOG(LS_ERROR) << "AcmReceiver::GetAudio - "
                           "Resampling last_audio_buffer_ failed.";
      return -1;
    }
  }

  // TODO(bugs.webrtc.org/3923) Glitches in the output may appear if the output
  // rate from NetEq changes.
  if (need_resampling) {
    // TODO(yujo): handle this more efficiently for muted frames.
    int samples_per_channel_int = resampler_.Resample10Msec(
        audio_frame->data(), current_sample_rate_hz, desired_freq_hz,
        audio_frame->num_channels_, AudioFrame::kMaxDataSizeSamples,
        audio_frame->mutable_data());
    if (samples_per_channel_int < 0) {
      RTC_LOG(LS_ERROR)
          << "AcmReceiver::GetAudio - Resampling audio_buffer_ failed.";
      return -1;
    }
    audio_frame->samples_per_channel_ =
        static_cast<size_t>(samples_per_channel_int);
    audio_frame->sample_rate_hz_ = desired_freq_hz;
    RTC_DCHECK_EQ(
        audio_frame->sample_rate_hz_,
        rtc::dchecked_cast<int>(audio_frame->samples_per_channel_ * 100));
    resampled_last_output_frame_ = true;
  } else {
    resampled_last_output_frame_ = false;
    // We might end up here ONLY if codec is changed.
  }

  // Store current audio in `last_audio_buffer_` for next time.
  memcpy(last_audio_buffer_.get(), audio_frame->data(),
         sizeof(int16_t) * audio_frame->samples_per_channel_ *
             audio_frame->num_channels_);

  call_stats_.DecodedByNetEq(audio_frame->speech_type_, *muted);
  return 0;
}

void AcmReceiver::SetCodecs(const std::map<int, SdpAudioFormat>& codecs) {
  neteq_->SetCodecs(codecs);
}

void AcmReceiver::FlushBuffers() {
  neteq_->FlushBuffers();
}

void AcmReceiver::RemoveAllCodecs() {
  MutexLock lock(&mutex_);
  neteq_->RemoveAllPayloadTypes();
  last_decoder_ = absl::nullopt;
}

absl::optional<uint32_t> AcmReceiver::GetPlayoutTimestamp() {
  return neteq_->GetPlayoutTimestamp();
}

int AcmReceiver::FilteredCurrentDelayMs() const {
  return neteq_->FilteredCurrentDelayMs();
}

int AcmReceiver::TargetDelayMs() const {
  return neteq_->TargetDelayMs();
}

absl::optional<std::pair<int, SdpAudioFormat>> AcmReceiver::LastDecoder()
    const {
  MutexLock lock(&mutex_);
  if (!last_decoder_) {
    return absl::nullopt;
  }
  RTC_DCHECK_NE(-1, last_decoder_->payload_type);
  return std::make_pair(last_decoder_->payload_type, last_decoder_->sdp_format);
}

void AcmReceiver::GetNetworkStatistics(
    NetworkStatistics* acm_stat,
    bool get_and_clear_legacy_stats /* = true */) const {
  NetEqNetworkStatistics neteq_stat;
  if (get_and_clear_legacy_stats) {
    // NetEq function always returns zero, so we don't check the return value.
    neteq_->NetworkStatistics(&neteq_stat);

    acm_stat->currentExpandRate = neteq_stat.expand_rate;
    acm_stat->currentSpeechExpandRate = neteq_stat.speech_expand_rate;
    acm_stat->currentPreemptiveRate = neteq_stat.preemptive_rate;
    acm_stat->currentAccelerateRate = neteq_stat.accelerate_rate;
    acm_stat->currentSecondaryDecodedRate = neteq_stat.secondary_decoded_rate;
    acm_stat->currentSecondaryDiscardedRate =
        neteq_stat.secondary_discarded_rate;
    acm_stat->meanWaitingTimeMs = neteq_stat.mean_waiting_time_ms;
    acm_stat->maxWaitingTimeMs = neteq_stat.max_waiting_time_ms;
  } else {
    neteq_stat = neteq_->CurrentNetworkStatistics();
    acm_stat->currentExpandRate = 0;
    acm_stat->currentSpeechExpandRate = 0;
    acm_stat->currentPreemptiveRate = 0;
    acm_stat->currentAccelerateRate = 0;
    acm_stat->currentSecondaryDecodedRate = 0;
    acm_stat->currentSecondaryDiscardedRate = 0;
    acm_stat->meanWaitingTimeMs = -1;
    acm_stat->maxWaitingTimeMs = 1;
  }
  acm_stat->currentBufferSize = neteq_stat.current_buffer_size_ms;
  acm_stat->preferredBufferSize = neteq_stat.preferred_buffer_size_ms;
  acm_stat->jitterPeaksFound = neteq_stat.jitter_peaks_found ? true : false;

  NetEqLifetimeStatistics neteq_lifetime_stat = neteq_->GetLifetimeStatistics();
  acm_stat->totalSamplesReceived = neteq_lifetime_stat.total_samples_received;
  acm_stat->concealedSamples = neteq_lifetime_stat.concealed_samples;
  acm_stat->silentConcealedSamples =
      neteq_lifetime_stat.silent_concealed_samples;
  acm_stat->concealmentEvents = neteq_lifetime_stat.concealment_events;
  acm_stat->jitterBufferDelayMs = neteq_lifetime_stat.jitter_buffer_delay_ms;
  acm_stat->jitterBufferTargetDelayMs =
      neteq_lifetime_stat.jitter_buffer_target_delay_ms;
  acm_stat->jitterBufferMinimumDelayMs =
      neteq_lifetime_stat.jitter_buffer_minimum_delay_ms;
  acm_stat->jitterBufferEmittedCount =
      neteq_lifetime_stat.jitter_buffer_emitted_count;
  acm_stat->delayedPacketOutageSamples =
      neteq_lifetime_stat.delayed_packet_outage_samples;
  acm_stat->relativePacketArrivalDelayMs =
      neteq_lifetime_stat.relative_packet_arrival_delay_ms;
  acm_stat->interruptionCount = neteq_lifetime_stat.interruption_count;
  acm_stat->totalInterruptionDurationMs =
      neteq_lifetime_stat.total_interruption_duration_ms;
  acm_stat->insertedSamplesForDeceleration =
      neteq_lifetime_stat.inserted_samples_for_deceleration;
  acm_stat->removedSamplesForAcceleration =
      neteq_lifetime_stat.removed_samples_for_acceleration;
  acm_stat->fecPacketsReceived = neteq_lifetime_stat.fec_packets_received;
  acm_stat->fecPacketsDiscarded = neteq_lifetime_stat.fec_packets_discarded;
  acm_stat->packetsDiscarded = neteq_lifetime_stat.packets_discarded;

  NetEqOperationsAndState neteq_operations_and_state =
      neteq_->GetOperationsAndState();
  acm_stat->packetBufferFlushes =
      neteq_operations_and_state.packet_buffer_flushes;
}

int AcmReceiver::EnableNack(size_t max_nack_list_size) {
  neteq_->EnableNack(max_nack_list_size);
  return 0;
}

void AcmReceiver::DisableNack() {
  neteq_->DisableNack();
}

std::vector<uint16_t> AcmReceiver::GetNackList(
    int64_t round_trip_time_ms) const {
  return neteq_->GetNackList(round_trip_time_ms);
}

void AcmReceiver::ResetInitialDelay() {
  neteq_->SetMinimumDelay(0);
  // TODO(turajs): Should NetEq Buffer be flushed?
}

uint32_t AcmReceiver::NowInTimestamp(int decoder_sampling_rate) const {
  // Down-cast the time to (32-6)-bit since we only care about
  // the least significant bits. (32-6) bits cover 2^(32-6) = 67108864 ms.
  // We masked 6 most significant bits of 32-bit so there is no overflow in
  // the conversion from milliseconds to timestamp.
  const uint32_t now_in_ms =
      static_cast<uint32_t>(clock_.TimeInMilliseconds() & 0x03ffffff);
  return static_cast<uint32_t>((decoder_sampling_rate / 1000) * now_in_ms);
}

void AcmReceiver::GetDecodingCallStatistics(
    AudioDecodingCallStats* stats) const {
  MutexLock lock(&mutex_);
  *stats = call_stats_.GetDecodingStatistics();
}

}  // namespace acm2

}  // namespace webrtc