summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_coding/neteq/decision_logic.cc
blob: fd4f2f5a200854dd357c721d46ac753800a31753 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_coding/neteq/decision_logic.h"

#include <stdio.h>

#include <cstdint>
#include <memory>
#include <string>

#include "absl/types/optional.h"
#include "api/neteq/neteq.h"
#include "api/neteq/neteq_controller.h"
#include "modules/audio_coding/neteq/packet_arrival_history.h"
#include "modules/audio_coding/neteq/packet_buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/experiments/struct_parameters_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "system_wrappers/include/field_trial.h"

namespace webrtc {

namespace {

constexpr int kPostponeDecodingLevel = 50;
constexpr int kTargetLevelWindowMs = 100;
constexpr int kMaxWaitForPacketMs = 100;
// The granularity of delay adjustments (accelerate/preemptive expand) is 15ms,
// but round up since the clock has a granularity of 10ms.
constexpr int kDelayAdjustmentGranularityMs = 20;
constexpr int kReinitAfterExpandsMs = 1000;

std::unique_ptr<DelayManager> CreateDelayManager(
    const NetEqController::Config& neteq_config) {
  DelayManager::Config config;
  config.max_packets_in_buffer = neteq_config.max_packets_in_buffer;
  config.base_minimum_delay_ms = neteq_config.base_min_delay_ms;
  config.Log();
  return std::make_unique<DelayManager>(config, neteq_config.tick_timer);
}

bool IsTimestretch(NetEq::Mode mode) {
  return mode == NetEq::Mode::kAccelerateSuccess ||
         mode == NetEq::Mode::kAccelerateLowEnergy ||
         mode == NetEq::Mode::kPreemptiveExpandSuccess ||
         mode == NetEq::Mode::kPreemptiveExpandLowEnergy;
}

bool IsCng(NetEq::Mode mode) {
  return mode == NetEq::Mode::kRfc3389Cng ||
         mode == NetEq::Mode::kCodecInternalCng;
}

bool IsExpand(NetEq::Mode mode) {
  return mode == NetEq::Mode::kExpand || mode == NetEq::Mode::kCodecPlc;
}

}  // namespace

DecisionLogic::Config::Config() {
  StructParametersParser::Create(
      "enable_stable_delay_mode", &enable_stable_delay_mode,          //
      "combine_concealment_decision", &combine_concealment_decision,  //
      "packet_history_size_ms", &packet_history_size_ms,              //
      "cng_timeout_ms", &cng_timeout_ms,                              //
      "deceleration_target_level_offset_ms",
      &deceleration_target_level_offset_ms)
      ->Parse(webrtc::field_trial::FindFullName(
          "WebRTC-Audio-NetEqDecisionLogicConfig"));
  RTC_LOG(LS_INFO) << "NetEq decision logic config:"
                   << " enable_stable_delay_mode=" << enable_stable_delay_mode
                   << " combine_concealment_decision="
                   << combine_concealment_decision
                   << " packet_history_size_ms=" << packet_history_size_ms
                   << " cng_timeout_ms=" << cng_timeout_ms.value_or(-1)
                   << " deceleration_target_level_offset_ms="
                   << deceleration_target_level_offset_ms;
}

DecisionLogic::DecisionLogic(NetEqController::Config config)
    : DecisionLogic(config,
                    CreateDelayManager(config),
                    std::make_unique<BufferLevelFilter>()) {}

DecisionLogic::DecisionLogic(
    NetEqController::Config config,
    std::unique_ptr<DelayManager> delay_manager,
    std::unique_ptr<BufferLevelFilter> buffer_level_filter)
    : delay_manager_(std::move(delay_manager)),
      buffer_level_filter_(std::move(buffer_level_filter)),
      packet_arrival_history_(config_.packet_history_size_ms),
      tick_timer_(config.tick_timer),
      disallow_time_stretching_(!config.allow_time_stretching),
      timescale_countdown_(
          tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1)) {}

DecisionLogic::~DecisionLogic() = default;

void DecisionLogic::SoftReset() {
  packet_length_samples_ = 0;
  sample_memory_ = 0;
  prev_time_scale_ = false;
  timescale_countdown_ =
      tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1);
  time_stretched_cn_samples_ = 0;
  delay_manager_->Reset();
  buffer_level_filter_->Reset();
  packet_arrival_history_.Reset();
}

void DecisionLogic::SetSampleRate(int fs_hz, size_t output_size_samples) {
  // TODO(hlundin): Change to an enumerator and skip assert.
  RTC_DCHECK(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 ||
             fs_hz == 48000);
  sample_rate_khz_ = fs_hz / 1000;
  output_size_samples_ = output_size_samples;
  packet_arrival_history_.set_sample_rate(fs_hz);
}

NetEq::Operation DecisionLogic::GetDecision(const NetEqStatus& status,
                                            bool* reset_decoder) {
  prev_time_scale_ = prev_time_scale_ && IsTimestretch(status.last_mode);
  if (prev_time_scale_) {
    timescale_countdown_ = tick_timer_->GetNewCountdown(kMinTimescaleInterval);
  }
  if (!IsCng(status.last_mode) &&
      !(config_.combine_concealment_decision && IsExpand(status.last_mode))) {
    FilterBufferLevel(status.packet_buffer_info.span_samples);
  }

  // Guard for errors, to avoid getting stuck in error mode.
  if (status.last_mode == NetEq::Mode::kError) {
    if (!status.next_packet) {
      return NetEq::Operation::kExpand;
    } else {
      // Use kUndefined to flag for a reset.
      return NetEq::Operation::kUndefined;
    }
  }

  if (status.next_packet && status.next_packet->is_cng) {
    return CngOperation(status);
  }

  // Handle the case with no packet at all available (except maybe DTMF).
  if (!status.next_packet) {
    return NoPacket(status);
  }

  // If the expand period was very long, reset NetEQ since it is likely that the
  // sender was restarted.
  if (!config_.combine_concealment_decision && IsExpand(status.last_mode) &&
      status.generated_noise_samples >
          static_cast<size_t>(kReinitAfterExpandsMs * sample_rate_khz_)) {
    *reset_decoder = true;
    return NetEq::Operation::kNormal;
  }

  if (PostponeDecode(status)) {
    return NoPacket(status);
  }

  const uint32_t five_seconds_samples =
      static_cast<uint32_t>(5000 * sample_rate_khz_);
  // Check if the required packet is available.
  if (status.target_timestamp == status.next_packet->timestamp) {
    return ExpectedPacketAvailable(status);
  }
  if (!PacketBuffer::IsObsoleteTimestamp(status.next_packet->timestamp,
                                         status.target_timestamp,
                                         five_seconds_samples)) {
    return FuturePacketAvailable(status);
  }
  // This implies that available_timestamp < target_timestamp, which can
  // happen when a new stream or codec is received. Signal for a reset.
  return NetEq::Operation::kUndefined;
}

int DecisionLogic::TargetLevelMs() const {
  int target_delay_ms = delay_manager_->TargetDelayMs();
  if (!config_.enable_stable_delay_mode) {
    target_delay_ms =
        std::max(target_delay_ms,
                 static_cast<int>(packet_length_samples_ / sample_rate_khz_));
  }
  return target_delay_ms;
}

int DecisionLogic::UnlimitedTargetLevelMs() const {
  return delay_manager_->UnlimitedTargetLevelMs();
}

int DecisionLogic::GetFilteredBufferLevel() const {
  return buffer_level_filter_->filtered_current_level();
}

absl::optional<int> DecisionLogic::PacketArrived(
    int fs_hz,
    bool should_update_stats,
    const PacketArrivedInfo& info) {
  buffer_flush_ = buffer_flush_ || info.buffer_flush;
  if (!should_update_stats || info.is_cng_or_dtmf) {
    return absl::nullopt;
  }
  if (info.packet_length_samples > 0 && fs_hz > 0 &&
      info.packet_length_samples != packet_length_samples_) {
    packet_length_samples_ = info.packet_length_samples;
    delay_manager_->SetPacketAudioLength(packet_length_samples_ * 1000 / fs_hz);
  }
  int64_t time_now_ms = tick_timer_->ticks() * tick_timer_->ms_per_tick();
  packet_arrival_history_.Insert(info.main_timestamp, time_now_ms);
  if (packet_arrival_history_.size() < 2) {
    // No meaningful delay estimate unless at least 2 packets have arrived.
    return absl::nullopt;
  }
  int arrival_delay_ms =
      packet_arrival_history_.GetDelayMs(info.main_timestamp, time_now_ms);
  bool reordered =
      !packet_arrival_history_.IsNewestRtpTimestamp(info.main_timestamp);
  delay_manager_->Update(arrival_delay_ms, reordered);
  return arrival_delay_ms;
}

void DecisionLogic::FilterBufferLevel(size_t buffer_size_samples) {
  buffer_level_filter_->SetTargetBufferLevel(TargetLevelMs());

  int time_stretched_samples = time_stretched_cn_samples_;
  if (prev_time_scale_) {
    time_stretched_samples += sample_memory_;
  }

  if (buffer_flush_) {
    buffer_level_filter_->SetFilteredBufferLevel(buffer_size_samples);
    buffer_flush_ = false;
  } else {
    buffer_level_filter_->Update(buffer_size_samples, time_stretched_samples);
  }
  prev_time_scale_ = false;
  time_stretched_cn_samples_ = 0;
}

NetEq::Operation DecisionLogic::CngOperation(
    NetEqController::NetEqStatus status) {
  // Signed difference between target and available timestamp.
  int32_t timestamp_diff = static_cast<int32_t>(
      static_cast<uint32_t>(status.generated_noise_samples +
                            status.target_timestamp) -
      status.next_packet->timestamp);
  int optimal_level_samp = TargetLevelMs() * sample_rate_khz_;
  const int64_t excess_waiting_time_samp =
      -static_cast<int64_t>(timestamp_diff) - optimal_level_samp;

  if (excess_waiting_time_samp > optimal_level_samp / 2) {
    // The waiting time for this packet will be longer than 1.5
    // times the wanted buffer delay. Apply fast-forward to cut the
    // waiting time down to the optimal.
    noise_fast_forward_ = rtc::saturated_cast<size_t>(noise_fast_forward_ +
                                                      excess_waiting_time_samp);
    timestamp_diff =
        rtc::saturated_cast<int32_t>(timestamp_diff + excess_waiting_time_samp);
  }

  if (timestamp_diff < 0 && status.last_mode == NetEq::Mode::kRfc3389Cng) {
    // Not time to play this packet yet. Wait another round before using this
    // packet. Keep on playing CNG from previous CNG parameters.
    return NetEq::Operation::kRfc3389CngNoPacket;
  } else {
    // Otherwise, go for the CNG packet now.
    noise_fast_forward_ = 0;
    return NetEq::Operation::kRfc3389Cng;
  }
}

NetEq::Operation DecisionLogic::NoPacket(NetEqController::NetEqStatus status) {
  switch (status.last_mode) {
    case NetEq::Mode::kRfc3389Cng:
      return NetEq::Operation::kRfc3389CngNoPacket;
    case NetEq::Mode::kCodecInternalCng: {
      // Stop CNG after a timeout.
      if (config_.cng_timeout_ms &&
          status.generated_noise_samples >
              static_cast<size_t>(*config_.cng_timeout_ms * sample_rate_khz_)) {
        return NetEq::Operation::kExpand;
      }
      return NetEq::Operation::kCodecInternalCng;
    }
    default:
      return status.play_dtmf ? NetEq::Operation::kDtmf
                              : NetEq::Operation::kExpand;
  }
}

NetEq::Operation DecisionLogic::ExpectedPacketAvailable(
    NetEqController::NetEqStatus status) {
  if (!disallow_time_stretching_ && status.last_mode != NetEq::Mode::kExpand &&
      !status.play_dtmf) {
    if (config_.enable_stable_delay_mode) {
      const int playout_delay_ms = GetPlayoutDelayMs(status);
      const int low_limit = TargetLevelMs();
      const int high_limit = low_limit +
                             packet_arrival_history_.GetMaxDelayMs() +
                             kDelayAdjustmentGranularityMs;
      if (playout_delay_ms >= high_limit * 4) {
        return NetEq::Operation::kFastAccelerate;
      }
      if (TimescaleAllowed()) {
        if (playout_delay_ms >= high_limit) {
          return NetEq::Operation::kAccelerate;
        }
        if (playout_delay_ms < low_limit) {
          return NetEq::Operation::kPreemptiveExpand;
        }
      }
    } else {
      const int target_level_samples = TargetLevelMs() * sample_rate_khz_;
      const int low_limit = std::max(
          target_level_samples * 3 / 4,
          target_level_samples -
              config_.deceleration_target_level_offset_ms * sample_rate_khz_);
      const int high_limit = std::max(
          target_level_samples,
          low_limit + kDelayAdjustmentGranularityMs * sample_rate_khz_);

      const int buffer_level_samples =
          buffer_level_filter_->filtered_current_level();
      if (buffer_level_samples >= high_limit * 4)
        return NetEq::Operation::kFastAccelerate;
      if (TimescaleAllowed()) {
        if (buffer_level_samples >= high_limit)
          return NetEq::Operation::kAccelerate;
        if (buffer_level_samples < low_limit)
          return NetEq::Operation::kPreemptiveExpand;
      }
    }
  }
  return NetEq::Operation::kNormal;
}

NetEq::Operation DecisionLogic::FuturePacketAvailable(
    NetEqController::NetEqStatus status) {
  // Required packet is not available, but a future packet is.
  // Check if we should continue with an ongoing concealment because the new
  // packet is too far into the future.
  if (config_.combine_concealment_decision || IsCng(status.last_mode)) {
    const int buffer_delay_samples =
        config_.combine_concealment_decision
            ? status.packet_buffer_info.span_samples_wait_time
            : status.packet_buffer_info.span_samples;
    const int buffer_delay_ms = buffer_delay_samples / sample_rate_khz_;
    const int high_limit = TargetLevelMs() + kTargetLevelWindowMs / 2;
    const int low_limit =
        std::max(0, TargetLevelMs() - kTargetLevelWindowMs / 2);
    const bool above_target_delay = buffer_delay_ms > high_limit;
    const bool below_target_delay = buffer_delay_ms < low_limit;
    if ((PacketTooEarly(status) && !above_target_delay) ||
        (below_target_delay && !config_.combine_concealment_decision)) {
      return NoPacket(status);
    }
    uint32_t timestamp_leap =
        status.next_packet->timestamp - status.target_timestamp;
    if (config_.combine_concealment_decision) {
      if (timestamp_leap != status.generated_noise_samples) {
        // The delay was adjusted, reinitialize the buffer level filter.
        buffer_level_filter_->SetFilteredBufferLevel(buffer_delay_samples);
      }
    } else {
      time_stretched_cn_samples_ =
          timestamp_leap - status.generated_noise_samples;
    }
  } else if (IsExpand(status.last_mode) && ShouldContinueExpand(status)) {
    return NoPacket(status);
  }

  // Time to play the next packet.
  switch (status.last_mode) {
    case NetEq::Mode::kExpand:
      return NetEq::Operation::kMerge;
    case NetEq::Mode::kCodecPlc:
    case NetEq::Mode::kRfc3389Cng:
    case NetEq::Mode::kCodecInternalCng:
      return NetEq::Operation::kNormal;
    default:
      return status.play_dtmf ? NetEq::Operation::kDtmf
                              : NetEq::Operation::kExpand;
  }
}

bool DecisionLogic::UnderTargetLevel() const {
  return buffer_level_filter_->filtered_current_level() <
         TargetLevelMs() * sample_rate_khz_;
}

bool DecisionLogic::PostponeDecode(NetEqController::NetEqStatus status) const {
  // Make sure we don't restart audio too soon after CNG or expand to avoid
  // running out of data right away again.
  const size_t min_buffer_level_samples =
      TargetLevelMs() * sample_rate_khz_ * kPostponeDecodingLevel / 100;
  const size_t buffer_level_samples =
      config_.combine_concealment_decision
          ? status.packet_buffer_info.span_samples_wait_time
          : status.packet_buffer_info.span_samples;
  if (buffer_level_samples >= min_buffer_level_samples) {
    return false;
  }
  // Don't postpone decoding if there is a future DTX packet in the packet
  // buffer.
  if (status.packet_buffer_info.dtx_or_cng) {
    return false;
  }
  // Continue CNG until the buffer is at least at the minimum level.
  if (config_.combine_concealment_decision && IsCng(status.last_mode)) {
    return true;
  }
  // Only continue expand if the mute factor is low enough (otherwise the
  // expansion was short enough to not be noticable). Note that the MuteFactor
  // is in Q14, so a value of 16384 corresponds to 1.
  if (IsExpand(status.last_mode) && status.expand_mutefactor < 16384 / 2) {
    return true;
  }
  return false;
}

bool DecisionLogic::ReinitAfterExpands(
    NetEqController::NetEqStatus status) const {
  const uint32_t timestamp_leap =
      status.next_packet->timestamp - status.target_timestamp;
  return timestamp_leap >=
         static_cast<uint32_t>(kReinitAfterExpandsMs * sample_rate_khz_);
}

bool DecisionLogic::PacketTooEarly(NetEqController::NetEqStatus status) const {
  const uint32_t timestamp_leap =
      status.next_packet->timestamp - status.target_timestamp;
  return timestamp_leap > status.generated_noise_samples;
}

bool DecisionLogic::MaxWaitForPacket(
    NetEqController::NetEqStatus status) const {
  return status.generated_noise_samples >=
         static_cast<size_t>(kMaxWaitForPacketMs * sample_rate_khz_);
}

bool DecisionLogic::ShouldContinueExpand(
    NetEqController::NetEqStatus status) const {
  return !ReinitAfterExpands(status) && !MaxWaitForPacket(status) &&
         PacketTooEarly(status) && UnderTargetLevel();
}

int DecisionLogic::GetPlayoutDelayMs(
    NetEqController::NetEqStatus status) const {
  uint32_t playout_timestamp =
      status.target_timestamp - status.sync_buffer_samples;
  return packet_arrival_history_.GetDelayMs(
      playout_timestamp, tick_timer_->ticks() * tick_timer_->ms_per_tick());
}

}  // namespace webrtc