summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/aec3/fullband_erle_estimator.cc
blob: e56674e4c929b6ef7813d64994517a14d36c302b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/*
 *  Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/aec3/fullband_erle_estimator.h"

#include <algorithm>
#include <memory>
#include <numeric>

#include "absl/types/optional.h"
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_minmax.h"

namespace webrtc {

namespace {
constexpr float kEpsilon = 1e-3f;
constexpr float kX2BandEnergyThreshold = 44015068.0f;
constexpr int kBlocksToHoldErle = 100;
constexpr int kPointsToAccumulate = 6;
}  // namespace

FullBandErleEstimator::FullBandErleEstimator(
    const EchoCanceller3Config::Erle& config,
    size_t num_capture_channels)
    : min_erle_log2_(FastApproxLog2f(config.min + kEpsilon)),
      max_erle_lf_log2_(FastApproxLog2f(config.max_l + kEpsilon)),
      hold_counters_instantaneous_erle_(num_capture_channels, 0),
      erle_time_domain_log2_(num_capture_channels, min_erle_log2_),
      instantaneous_erle_(num_capture_channels, ErleInstantaneous(config)),
      linear_filters_qualities_(num_capture_channels) {
  Reset();
}

FullBandErleEstimator::~FullBandErleEstimator() = default;

void FullBandErleEstimator::Reset() {
  for (auto& instantaneous_erle_ch : instantaneous_erle_) {
    instantaneous_erle_ch.Reset();
  }

  UpdateQualityEstimates();
  std::fill(erle_time_domain_log2_.begin(), erle_time_domain_log2_.end(),
            min_erle_log2_);
  std::fill(hold_counters_instantaneous_erle_.begin(),
            hold_counters_instantaneous_erle_.end(), 0);
}

void FullBandErleEstimator::Update(
    rtc::ArrayView<const float> X2,
    rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
    rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2,
    const std::vector<bool>& converged_filters) {
  for (size_t ch = 0; ch < Y2.size(); ++ch) {
    if (converged_filters[ch]) {
      // Computes the fullband ERLE.
      const float X2_sum = std::accumulate(X2.begin(), X2.end(), 0.0f);
      if (X2_sum > kX2BandEnergyThreshold * X2.size()) {
        const float Y2_sum =
            std::accumulate(Y2[ch].begin(), Y2[ch].end(), 0.0f);
        const float E2_sum =
            std::accumulate(E2[ch].begin(), E2[ch].end(), 0.0f);
        if (instantaneous_erle_[ch].Update(Y2_sum, E2_sum)) {
          hold_counters_instantaneous_erle_[ch] = kBlocksToHoldErle;
          erle_time_domain_log2_[ch] +=
              0.05f * ((instantaneous_erle_[ch].GetInstErleLog2().value()) -
                       erle_time_domain_log2_[ch]);
          erle_time_domain_log2_[ch] =
              std::max(erle_time_domain_log2_[ch], min_erle_log2_);
        }
      }
    }
    --hold_counters_instantaneous_erle_[ch];
    if (hold_counters_instantaneous_erle_[ch] == 0) {
      instantaneous_erle_[ch].ResetAccumulators();
    }
  }

  UpdateQualityEstimates();
}

void FullBandErleEstimator::Dump(
    const std::unique_ptr<ApmDataDumper>& data_dumper) const {
  data_dumper->DumpRaw("aec3_fullband_erle_log2", FullbandErleLog2());
  instantaneous_erle_[0].Dump(data_dumper);
}

void FullBandErleEstimator::UpdateQualityEstimates() {
  for (size_t ch = 0; ch < instantaneous_erle_.size(); ++ch) {
    linear_filters_qualities_[ch] =
        instantaneous_erle_[ch].GetQualityEstimate();
  }
}

FullBandErleEstimator::ErleInstantaneous::ErleInstantaneous(
    const EchoCanceller3Config::Erle& config)
    : clamp_inst_quality_to_zero_(config.clamp_quality_estimate_to_zero),
      clamp_inst_quality_to_one_(config.clamp_quality_estimate_to_one) {
  Reset();
}

FullBandErleEstimator::ErleInstantaneous::~ErleInstantaneous() = default;

bool FullBandErleEstimator::ErleInstantaneous::Update(const float Y2_sum,
                                                      const float E2_sum) {
  bool update_estimates = false;
  E2_acum_ += E2_sum;
  Y2_acum_ += Y2_sum;
  num_points_++;
  if (num_points_ == kPointsToAccumulate) {
    if (E2_acum_ > 0.f) {
      update_estimates = true;
      erle_log2_ = FastApproxLog2f(Y2_acum_ / E2_acum_ + kEpsilon);
    }
    num_points_ = 0;
    E2_acum_ = 0.f;
    Y2_acum_ = 0.f;
  }

  if (update_estimates) {
    UpdateMaxMin();
    UpdateQualityEstimate();
  }
  return update_estimates;
}

void FullBandErleEstimator::ErleInstantaneous::Reset() {
  ResetAccumulators();
  max_erle_log2_ = -10.f;  // -30 dB.
  min_erle_log2_ = 33.f;   // 100 dB.
  inst_quality_estimate_ = 0.f;
}

void FullBandErleEstimator::ErleInstantaneous::ResetAccumulators() {
  erle_log2_ = absl::nullopt;
  inst_quality_estimate_ = 0.f;
  num_points_ = 0;
  E2_acum_ = 0.f;
  Y2_acum_ = 0.f;
}

void FullBandErleEstimator::ErleInstantaneous::Dump(
    const std::unique_ptr<ApmDataDumper>& data_dumper) const {
  data_dumper->DumpRaw("aec3_fullband_erle_inst_log2",
                       erle_log2_ ? *erle_log2_ : -10.f);
  data_dumper->DumpRaw(
      "aec3_erle_instantaneous_quality",
      GetQualityEstimate() ? GetQualityEstimate().value() : 0.f);
  data_dumper->DumpRaw("aec3_fullband_erle_max_log2", max_erle_log2_);
  data_dumper->DumpRaw("aec3_fullband_erle_min_log2", min_erle_log2_);
}

void FullBandErleEstimator::ErleInstantaneous::UpdateMaxMin() {
  RTC_DCHECK(erle_log2_);
  // Adding the forgetting factors for the maximum and minimum and capping the
  // result to the incoming value.
  max_erle_log2_ -= 0.0004f;  // Forget factor, approx 1dB every 3 sec.
  max_erle_log2_ = std::max(max_erle_log2_, erle_log2_.value());
  min_erle_log2_ += 0.0004f;  // Forget factor, approx 1dB every 3 sec.
  min_erle_log2_ = std::min(min_erle_log2_, erle_log2_.value());
}

void FullBandErleEstimator::ErleInstantaneous::UpdateQualityEstimate() {
  const float alpha = 0.07f;
  float quality_estimate = 0.f;
  RTC_DCHECK(erle_log2_);
  // TODO(peah): Currently, the estimate can become be less than 0; this should
  // be corrected.
  if (max_erle_log2_ > min_erle_log2_) {
    quality_estimate = (erle_log2_.value() - min_erle_log2_) /
                       (max_erle_log2_ - min_erle_log2_);
  }
  if (quality_estimate > inst_quality_estimate_) {
    inst_quality_estimate_ = quality_estimate;
  } else {
    inst_quality_estimate_ +=
        alpha * (quality_estimate - inst_quality_estimate_);
  }
}

}  // namespace webrtc