summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/aec3/residual_echo_estimator_unittest.cc
blob: 9a7bf0a89c92203ff81b7dd0d7a1516293b87a19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
 *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/aec3/residual_echo_estimator.h"

#include <numeric>

#include "api/audio/echo_canceller3_config.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/test/echo_canceller_test_tools.h"
#include "rtc_base/random.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"

namespace webrtc {

namespace {
constexpr int kSampleRateHz = 48000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
constexpr float kEpsilon = 1e-4f;
}  // namespace

class ResidualEchoEstimatorTest {
 public:
  ResidualEchoEstimatorTest(size_t num_render_channels,
                            size_t num_capture_channels,
                            const EchoCanceller3Config& config)
      : num_render_channels_(num_render_channels),
        num_capture_channels_(num_capture_channels),
        config_(config),
        estimator_(config_, num_render_channels_),
        aec_state_(config_, num_capture_channels_),
        render_delay_buffer_(RenderDelayBuffer::Create(config_,
                                                       kSampleRateHz,
                                                       num_render_channels_)),
        E2_refined_(num_capture_channels_),
        S2_linear_(num_capture_channels_),
        Y2_(num_capture_channels_),
        R2_(num_capture_channels_),
        R2_unbounded_(num_capture_channels_),
        x_(kNumBands, num_render_channels_),
        H2_(num_capture_channels_,
            std::vector<std::array<float, kFftLengthBy2Plus1>>(10)),
        h_(num_capture_channels_,
           std::vector<float>(
               GetTimeDomainLength(config_.filter.refined.length_blocks),
               0.0f)),
        random_generator_(42U),
        output_(num_capture_channels_) {
    for (auto& H2_ch : H2_) {
      for (auto& H2_k : H2_ch) {
        H2_k.fill(0.01f);
      }
      H2_ch[2].fill(10.f);
      H2_ch[2][0] = 0.1f;
    }

    for (auto& subtractor_output : output_) {
      subtractor_output.Reset();
      subtractor_output.s_refined.fill(100.f);
    }
    y_.fill(0.f);

    constexpr float kLevel = 10.f;
    for (auto& E2_refined_ch : E2_refined_) {
      E2_refined_ch.fill(kLevel);
    }
    S2_linear_[0].fill(kLevel);
    for (auto& Y2_ch : Y2_) {
      Y2_ch.fill(kLevel);
    }
  }

  void RunOneFrame(bool dominant_nearend) {
    RandomizeSampleVector(&random_generator_,
                          x_.View(/*band=*/0, /*channel=*/0));
    render_delay_buffer_->Insert(x_);
    if (first_frame_) {
      render_delay_buffer_->Reset();
      first_frame_ = false;
    }
    render_delay_buffer_->PrepareCaptureProcessing();

    aec_state_.Update(delay_estimate_, H2_, h_,
                      *render_delay_buffer_->GetRenderBuffer(), E2_refined_,
                      Y2_, output_);

    estimator_.Estimate(aec_state_, *render_delay_buffer_->GetRenderBuffer(),
                        S2_linear_, Y2_, dominant_nearend, R2_, R2_unbounded_);
  }

  rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> R2() const {
    return R2_;
  }

 private:
  const size_t num_render_channels_;
  const size_t num_capture_channels_;
  const EchoCanceller3Config& config_;
  ResidualEchoEstimator estimator_;
  AecState aec_state_;
  std::unique_ptr<RenderDelayBuffer> render_delay_buffer_;
  std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined_;
  std::vector<std::array<float, kFftLengthBy2Plus1>> S2_linear_;
  std::vector<std::array<float, kFftLengthBy2Plus1>> Y2_;
  std::vector<std::array<float, kFftLengthBy2Plus1>> R2_;
  std::vector<std::array<float, kFftLengthBy2Plus1>> R2_unbounded_;
  Block x_;
  std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> H2_;
  std::vector<std::vector<float>> h_;
  Random random_generator_;
  std::vector<SubtractorOutput> output_;
  std::array<float, kBlockSize> y_;
  absl::optional<DelayEstimate> delay_estimate_;
  bool first_frame_ = true;
};

class ResidualEchoEstimatorMultiChannel
    : public ::testing::Test,
      public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};

INSTANTIATE_TEST_SUITE_P(MultiChannel,
                         ResidualEchoEstimatorMultiChannel,
                         ::testing::Combine(::testing::Values(1, 2, 4),
                                            ::testing::Values(1, 2, 4)));

TEST_P(ResidualEchoEstimatorMultiChannel, BasicTest) {
  const size_t num_render_channels = std::get<0>(GetParam());
  const size_t num_capture_channels = std::get<1>(GetParam());

  EchoCanceller3Config config;
  ResidualEchoEstimatorTest residual_echo_estimator_test(
      num_render_channels, num_capture_channels, config);
  for (int k = 0; k < 1993; ++k) {
    residual_echo_estimator_test.RunOneFrame(/*dominant_nearend=*/false);
  }
}

TEST(ResidualEchoEstimatorMultiChannel, ReverbTest) {
  const size_t num_render_channels = 1;
  const size_t num_capture_channels = 1;
  const size_t nFrames = 100;

  EchoCanceller3Config reference_config;
  reference_config.ep_strength.default_len = 0.95f;
  reference_config.ep_strength.nearend_len = 0.95f;
  EchoCanceller3Config config_use_nearend_len = reference_config;
  config_use_nearend_len.ep_strength.default_len = 0.95f;
  config_use_nearend_len.ep_strength.nearend_len = 0.83f;

  ResidualEchoEstimatorTest reference_residual_echo_estimator_test(
      num_render_channels, num_capture_channels, reference_config);
  ResidualEchoEstimatorTest use_nearend_len_residual_echo_estimator_test(
      num_render_channels, num_capture_channels, config_use_nearend_len);

  std::vector<float> acum_energy_reference_R2(num_capture_channels, 0.0f);
  std::vector<float> acum_energy_R2(num_capture_channels, 0.0f);
  for (size_t frame = 0; frame < nFrames; ++frame) {
    bool dominant_nearend = frame <= nFrames / 2 ? false : true;
    reference_residual_echo_estimator_test.RunOneFrame(dominant_nearend);
    use_nearend_len_residual_echo_estimator_test.RunOneFrame(dominant_nearend);
    const auto& reference_R2 = reference_residual_echo_estimator_test.R2();
    const auto& R2 = use_nearend_len_residual_echo_estimator_test.R2();
    ASSERT_EQ(reference_R2.size(), R2.size());
    for (size_t ch = 0; ch < reference_R2.size(); ++ch) {
      float energy_reference_R2 = std::accumulate(
          reference_R2[ch].cbegin(), reference_R2[ch].cend(), 0.0f);
      float energy_R2 = std::accumulate(R2[ch].cbegin(), R2[ch].cend(), 0.0f);
      if (dominant_nearend) {
        EXPECT_GE(energy_reference_R2, energy_R2);
      } else {
        EXPECT_NEAR(energy_reference_R2, energy_R2, kEpsilon);
      }
      acum_energy_reference_R2[ch] += energy_reference_R2;
      acum_energy_R2[ch] += energy_R2;
    }
    if (frame == nFrames / 2 || frame == nFrames - 1) {
      for (size_t ch = 0; ch < acum_energy_reference_R2.size(); ch++) {
        if (dominant_nearend) {
          EXPECT_GT(acum_energy_reference_R2[ch], acum_energy_R2[ch]);
        } else {
          EXPECT_NEAR(acum_energy_reference_R2[ch], acum_energy_R2[ch],
                      kEpsilon);
        }
      }
    }
  }
}

}  // namespace webrtc