summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/agc/legacy/digital_agc.cc
blob: 4cd86acba8e98862741d26b6b14b32549ea505f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/agc/legacy/digital_agc.h"

#include <string.h>

#include "modules/audio_processing/agc/legacy/gain_control.h"
#include "rtc_base/checks.h"

namespace webrtc {

namespace {

// To generate the gaintable, copy&paste the following lines to a Matlab window:
// MaxGain = 6; MinGain = 0; CompRatio = 3; Knee = 1;
// zeros = 0:31; lvl = 2.^(1-zeros);
// A = -10*log10(lvl) * (CompRatio - 1) / CompRatio;
// B = MaxGain - MinGain;
// gains = round(2^16*10.^(0.05 * (MinGain + B * (
// log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) /
// log(1/(1+exp(Knee*B))))));
// fprintf(1, '\t%i, %i, %i, %i,\n', gains);
// % Matlab code for plotting the gain and input/output level characteristic
// (copy/paste the following 3 lines):
// in = 10*log10(lvl); out = 20*log10(gains/65536);
// subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input
// (dB)'); ylabel('Gain (dB)');
// subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on;
// xlabel('Input (dB)'); ylabel('Output (dB)');
// zoom on;

// Generator table for y=log2(1+e^x) in Q8.
enum { kGenFuncTableSize = 128 };
static const uint16_t kGenFuncTable[kGenFuncTableSize] = {
    256,   485,   786,   1126,  1484,  1849,  2217,  2586,  2955,  3324,  3693,
    4063,  4432,  4801,  5171,  5540,  5909,  6279,  6648,  7017,  7387,  7756,
    8125,  8495,  8864,  9233,  9603,  9972,  10341, 10711, 11080, 11449, 11819,
    12188, 12557, 12927, 13296, 13665, 14035, 14404, 14773, 15143, 15512, 15881,
    16251, 16620, 16989, 17359, 17728, 18097, 18466, 18836, 19205, 19574, 19944,
    20313, 20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268, 23637, 24006,
    24376, 24745, 25114, 25484, 25853, 26222, 26592, 26961, 27330, 27700, 28069,
    28438, 28808, 29177, 29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
    32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086, 35456, 35825, 36194,
    36564, 36933, 37302, 37672, 38041, 38410, 38780, 39149, 39518, 39888, 40257,
    40626, 40996, 41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950, 44320,
    44689, 45058, 45428, 45797, 46166, 46536, 46905};

static const int16_t kAvgDecayTime = 250;  // frames; < 3000

// the 32 most significant bits of A(19) * B(26) >> 13
#define AGC_MUL32(A, B) (((B) >> 13) * (A) + (((0x00001FFF & (B)) * (A)) >> 13))
// C + the 32 most significant bits of A * B
#define AGC_SCALEDIFF32(A, B, C) \
  ((C) + ((B) >> 16) * (A) + (((0x0000FFFF & (B)) * (A)) >> 16))

}  // namespace

int32_t WebRtcAgc_CalculateGainTable(int32_t* gainTable,       // Q16
                                     int16_t digCompGaindB,    // Q0
                                     int16_t targetLevelDbfs,  // Q0
                                     uint8_t limiterEnable,
                                     int16_t analogTarget) {  // Q0
  // This function generates the compressor gain table used in the fixed digital
  // part.
  uint32_t tmpU32no1, tmpU32no2, absInLevel, logApprox;
  int32_t inLevel, limiterLvl;
  int32_t tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
  const uint16_t kLog10 = 54426;    // log2(10)     in Q14
  const uint16_t kLog10_2 = 49321;  // 10*log10(2)  in Q14
  const uint16_t kLogE_1 = 23637;   // log2(e)      in Q14
  uint16_t constMaxGain;
  uint16_t tmpU16, intPart, fracPart;
  const int16_t kCompRatio = 3;
  int16_t limiterOffset = 0;  // Limiter offset
  int16_t limiterIdx, limiterLvlX;
  int16_t constLinApprox, maxGain, diffGain;
  int16_t i, tmp16, tmp16no1;
  int zeros, zerosScale;

  // Constants
  //    kLogE_1 = 23637; // log2(e)      in Q14
  //    kLog10 = 54426; // log2(10)     in Q14
  //    kLog10_2 = 49321; // 10*log10(2)  in Q14

  // Calculate maximum digital gain and zero gain level
  tmp32no1 = (digCompGaindB - analogTarget) * (kCompRatio - 1);
  tmp16no1 = analogTarget - targetLevelDbfs;
  tmp16no1 +=
      WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
  maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
  tmp32no1 = maxGain * kCompRatio;
  if ((digCompGaindB <= analogTarget) && (limiterEnable)) {
    limiterOffset = 0;
  }

  // Calculate the difference between maximum gain and gain at 0dB0v
  tmp32no1 = digCompGaindB * (kCompRatio - 1);
  diffGain =
      WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
  if (diffGain < 0 || diffGain >= kGenFuncTableSize) {
    RTC_DCHECK(0);
    return -1;
  }

  // Calculate the limiter level and index:
  //  limiterLvlX = analogTarget - limiterOffset
  //  limiterLvl  = targetLevelDbfs + limiterOffset/compRatio
  limiterLvlX = analogTarget - limiterOffset;
  limiterIdx = 2 + WebRtcSpl_DivW32W16ResW16((int32_t)limiterLvlX * (1 << 13),
                                             kLog10_2 / 2);
  tmp16no1 =
      WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
  limiterLvl = targetLevelDbfs + tmp16no1;

  // Calculate (through table lookup):
  //  constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
  constMaxGain = kGenFuncTable[diffGain];  // in Q8

  // Calculate a parameter used to approximate the fractional part of 2^x with a
  // piecewise linear function in Q14:
  //  constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
  constLinApprox = 22817;  // in Q14

  // Calculate a denominator used in the exponential part to convert from dB to
  // linear scale:
  //  den = 20*constMaxGain (in Q8)
  den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain);  // in Q8

  for (i = 0; i < 32; i++) {
    // Calculate scaled input level (compressor):
    //  inLevel =
    //  fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
    tmp16 = (int16_t)((kCompRatio - 1) * (i - 1));       // Q0
    tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1;  // Q14
    inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio);    // Q14

    // Calculate diffGain-inLevel, to map using the genFuncTable
    inLevel = (int32_t)diffGain * (1 << 14) - inLevel;  // Q14

    // Make calculations on abs(inLevel) and compensate for the sign afterwards.
    absInLevel = (uint32_t)WEBRTC_SPL_ABS_W32(inLevel);  // Q14

    // LUT with interpolation
    intPart = (uint16_t)(absInLevel >> 14);
    fracPart =
        (uint16_t)(absInLevel & 0x00003FFF);  // extract the fractional part
    tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart];  // Q8
    tmpU32no1 = tmpU16 * fracPart;                                 // Q22
    tmpU32no1 += (uint32_t)kGenFuncTable[intPart] << 14;           // Q22
    logApprox = tmpU32no1 >> 8;                                    // Q14
    // Compensate for negative exponent using the relation:
    //  log2(1 + 2^-x) = log2(1 + 2^x) - x
    if (inLevel < 0) {
      zeros = WebRtcSpl_NormU32(absInLevel);
      zerosScale = 0;
      if (zeros < 15) {
        // Not enough space for multiplication
        tmpU32no2 = absInLevel >> (15 - zeros);                 // Q(zeros-1)
        tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1);  // Q(zeros+13)
        if (zeros < 9) {
          zerosScale = 9 - zeros;
          tmpU32no1 >>= zerosScale;  // Q(zeros+13)
        } else {
          tmpU32no2 >>= zeros - 9;  // Q22
        }
      } else {
        tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1);  // Q28
        tmpU32no2 >>= 6;                                         // Q22
      }
      logApprox = 0;
      if (tmpU32no2 < tmpU32no1) {
        logApprox = (tmpU32no1 - tmpU32no2) >> (8 - zerosScale);  // Q14
      }
    }
    numFIX = (maxGain * constMaxGain) * (1 << 6);  // Q14
    numFIX -= (int32_t)logApprox * diffGain;       // Q14

    // Calculate ratio
    // Shift `numFIX` as much as possible.
    // Ensure we avoid wrap-around in `den` as well.
    if (numFIX > (den >> 8) || -numFIX > (den >> 8)) {  // `den` is Q8.
      zeros = WebRtcSpl_NormW32(numFIX);
    } else {
      zeros = WebRtcSpl_NormW32(den) + 8;
    }
    numFIX *= 1 << zeros;  // Q(14+zeros)

    // Shift den so we end up in Qy1
    tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 9);  // Q(zeros - 1)
    y32 = numFIX / tmp32no1;                          // in Q15
    // This is to do rounding in Q14.
    y32 = y32 >= 0 ? (y32 + 1) >> 1 : -((-y32 + 1) >> 1);

    if (limiterEnable && (i < limiterIdx)) {
      tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2);  // Q14
      tmp32 -= limiterLvl * (1 << 14);                 // Q14
      y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
    }
    if (y32 > 39000) {
      tmp32 = (y32 >> 1) * kLog10 + 4096;  // in Q27
      tmp32 >>= 13;                        // In Q14.
    } else {
      tmp32 = y32 * kLog10 + 8192;  // in Q28
      tmp32 >>= 14;                 // In Q14.
    }
    tmp32 += 16 << 14;  // in Q14 (Make sure final output is in Q16)

    // Calculate power
    if (tmp32 > 0) {
      intPart = (int16_t)(tmp32 >> 14);
      fracPart = (uint16_t)(tmp32 & 0x00003FFF);  // in Q14
      if ((fracPart >> 13) != 0) {
        tmp16 = (2 << 14) - constLinApprox;
        tmp32no2 = (1 << 14) - fracPart;
        tmp32no2 *= tmp16;
        tmp32no2 >>= 13;
        tmp32no2 = (1 << 14) - tmp32no2;
      } else {
        tmp16 = constLinApprox - (1 << 14);
        tmp32no2 = (fracPart * tmp16) >> 13;
      }
      fracPart = (uint16_t)tmp32no2;
      gainTable[i] =
          (1 << intPart) + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
    } else {
      gainTable[i] = 0;
    }
  }

  return 0;
}

int32_t WebRtcAgc_InitDigital(DigitalAgc* stt, int16_t agcMode) {
  if (agcMode == kAgcModeFixedDigital) {
    // start at minimum to find correct gain faster
    stt->capacitorSlow = 0;
  } else {
    // start out with 0 dB gain
    stt->capacitorSlow = 134217728;  // (int32_t)(0.125f * 32768.0f * 32768.0f);
  }
  stt->capacitorFast = 0;
  stt->gain = 65536;
  stt->gatePrevious = 0;
  stt->agcMode = agcMode;

  // initialize VADs
  WebRtcAgc_InitVad(&stt->vadNearend);
  WebRtcAgc_InitVad(&stt->vadFarend);

  return 0;
}

int32_t WebRtcAgc_AddFarendToDigital(DigitalAgc* stt,
                                     const int16_t* in_far,
                                     size_t nrSamples) {
  RTC_DCHECK(stt);
  // VAD for far end
  WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);

  return 0;
}

// Gains is an 11 element long array (one value per ms, incl start & end).
int32_t WebRtcAgc_ComputeDigitalGains(DigitalAgc* stt,
                                      const int16_t* const* in_near,
                                      size_t num_bands,
                                      uint32_t FS,
                                      int16_t lowlevelSignal,
                                      int32_t gains[11]) {
  int32_t tmp32;
  int32_t env[10];
  int32_t max_nrg;
  int32_t cur_level;
  int32_t gain32;
  int16_t logratio;
  int16_t lower_thr, upper_thr;
  int16_t zeros = 0, zeros_fast, frac = 0;
  int16_t decay;
  int16_t gate, gain_adj;
  int16_t k;
  size_t n, L;

  // determine number of samples per ms
  if (FS == 8000) {
    L = 8;
  } else if (FS == 16000 || FS == 32000 || FS == 48000) {
    L = 16;
  } else {
    return -1;
  }

  // VAD for near end
  logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, in_near[0], L * 10);

  // Account for far end VAD
  if (stt->vadFarend.counter > 10) {
    tmp32 = 3 * logratio;
    logratio = (int16_t)((tmp32 - stt->vadFarend.logRatio) >> 2);
  }

  // Determine decay factor depending on VAD
  //  upper_thr = 1.0f;
  //  lower_thr = 0.25f;
  upper_thr = 1024;  // Q10
  lower_thr = 0;     // Q10
  if (logratio > upper_thr) {
    // decay = -2^17 / DecayTime;  ->  -65
    decay = -65;
  } else if (logratio < lower_thr) {
    decay = 0;
  } else {
    // decay = (int16_t)(((lower_thr - logratio)
    //       * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
    // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr))  ->  65
    tmp32 = (lower_thr - logratio) * 65;
    decay = (int16_t)(tmp32 >> 10);
  }

  // adjust decay factor for long silence (detected as low standard deviation)
  // This is only done in the adaptive modes
  if (stt->agcMode != kAgcModeFixedDigital) {
    if (stt->vadNearend.stdLongTerm < 4000) {
      decay = 0;
    } else if (stt->vadNearend.stdLongTerm < 8096) {
      // decay = (int16_t)(((stt->vadNearend.stdLongTerm - 4000) * decay) >>
      // 12);
      tmp32 = (stt->vadNearend.stdLongTerm - 4000) * decay;
      decay = (int16_t)(tmp32 >> 12);
    }

    if (lowlevelSignal != 0) {
      decay = 0;
    }
  }
  // Find max amplitude per sub frame
  // iterate over sub frames
  for (k = 0; k < 10; k++) {
    // iterate over samples
    max_nrg = 0;
    for (n = 0; n < L; n++) {
      int32_t nrg = in_near[0][k * L + n] * in_near[0][k * L + n];
      if (nrg > max_nrg) {
        max_nrg = nrg;
      }
    }
    env[k] = max_nrg;
  }

  // Calculate gain per sub frame
  gains[0] = stt->gain;
  for (k = 0; k < 10; k++) {
    // Fast envelope follower
    //  decay time = -131000 / -1000 = 131 (ms)
    stt->capacitorFast =
        AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
    if (env[k] > stt->capacitorFast) {
      stt->capacitorFast = env[k];
    }
    // Slow envelope follower
    if (env[k] > stt->capacitorSlow) {
      // increase capacitorSlow
      stt->capacitorSlow = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow),
                                           stt->capacitorSlow);
    } else {
      // decrease capacitorSlow
      stt->capacitorSlow =
          AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
    }

    // use maximum of both capacitors as current level
    if (stt->capacitorFast > stt->capacitorSlow) {
      cur_level = stt->capacitorFast;
    } else {
      cur_level = stt->capacitorSlow;
    }
    // Translate signal level into gain, using a piecewise linear approximation
    // find number of leading zeros
    zeros = WebRtcSpl_NormU32((uint32_t)cur_level);
    if (cur_level == 0) {
      zeros = 31;
    }
    tmp32 = ((uint32_t)cur_level << zeros) & 0x7FFFFFFF;
    frac = (int16_t)(tmp32 >> 19);  // Q12.
    // Interpolate between gainTable[zeros] and gainTable[zeros-1].
    tmp32 =
        ((stt->gainTable[zeros - 1] - stt->gainTable[zeros]) * (int64_t)frac) >>
        12;
    gains[k + 1] = stt->gainTable[zeros] + tmp32;
  }

  // Gate processing (lower gain during absence of speech)
  zeros = (zeros << 9) - (frac >> 3);
  // find number of leading zeros
  zeros_fast = WebRtcSpl_NormU32((uint32_t)stt->capacitorFast);
  if (stt->capacitorFast == 0) {
    zeros_fast = 31;
  }
  tmp32 = ((uint32_t)stt->capacitorFast << zeros_fast) & 0x7FFFFFFF;
  zeros_fast <<= 9;
  zeros_fast -= (int16_t)(tmp32 >> 22);

  gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;

  if (gate < 0) {
    stt->gatePrevious = 0;
  } else {
    tmp32 = stt->gatePrevious * 7;
    gate = (int16_t)((gate + tmp32) >> 3);
    stt->gatePrevious = gate;
  }
  // gate < 0     -> no gate
  // gate > 2500  -> max gate
  if (gate > 0) {
    if (gate < 2500) {
      gain_adj = (2500 - gate) >> 5;
    } else {
      gain_adj = 0;
    }
    for (k = 0; k < 10; k++) {
      if ((gains[k + 1] - stt->gainTable[0]) > 8388608) {
        // To prevent wraparound
        tmp32 = (gains[k + 1] - stt->gainTable[0]) >> 8;
        tmp32 *= 178 + gain_adj;
      } else {
        tmp32 = (gains[k + 1] - stt->gainTable[0]) * (178 + gain_adj);
        tmp32 >>= 8;
      }
      gains[k + 1] = stt->gainTable[0] + tmp32;
    }
  }

  // Limit gain to avoid overload distortion
  for (k = 0; k < 10; k++) {
    // Find a shift of gains[k + 1] such that it can be squared without
    // overflow, but at least by 10 bits.
    zeros = 10;
    if (gains[k + 1] > 47452159) {
      zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
    }
    gain32 = (gains[k + 1] >> zeros) + 1;
    gain32 *= gain32;
    // check for overflow
    while (AGC_MUL32((env[k] >> 12) + 1, gain32) >
           WEBRTC_SPL_SHIFT_W32((int32_t)32767, 2 * (1 - zeros + 10))) {
      // multiply by 253/256 ==> -0.1 dB
      if (gains[k + 1] > 8388607) {
        // Prevent wrap around
        gains[k + 1] = (gains[k + 1] / 256) * 253;
      } else {
        gains[k + 1] = (gains[k + 1] * 253) / 256;
      }
      gain32 = (gains[k + 1] >> zeros) + 1;
      gain32 *= gain32;
    }
  }
  // gain reductions should be done 1 ms earlier than gain increases
  for (k = 1; k < 10; k++) {
    if (gains[k] > gains[k + 1]) {
      gains[k] = gains[k + 1];
    }
  }
  // save start gain for next frame
  stt->gain = gains[10];

  return 0;
}

int32_t WebRtcAgc_ApplyDigitalGains(const int32_t gains[11],
                                    size_t num_bands,
                                    uint32_t FS,
                                    const int16_t* const* in_near,
                                    int16_t* const* out) {
  // Apply gain
  // handle first sub frame separately
  size_t L;
  int16_t L2;  // samples/subframe

  // determine number of samples per ms
  if (FS == 8000) {
    L = 8;
    L2 = 3;
  } else if (FS == 16000 || FS == 32000 || FS == 48000) {
    L = 16;
    L2 = 4;
  } else {
    return -1;
  }

  for (size_t i = 0; i < num_bands; ++i) {
    if (in_near[i] != out[i]) {
      // Only needed if they don't already point to the same place.
      memcpy(out[i], in_near[i], 10 * L * sizeof(in_near[i][0]));
    }
  }

  // iterate over samples
  int32_t delta = (gains[1] - gains[0]) * (1 << (4 - L2));
  int32_t gain32 = gains[0] * (1 << 4);
  for (size_t n = 0; n < L; n++) {
    for (size_t i = 0; i < num_bands; ++i) {
      int32_t out_tmp = (int64_t)out[i][n] * ((gain32 + 127) >> 7) >> 16;
      if (out_tmp > 4095) {
        out[i][n] = (int16_t)32767;
      } else if (out_tmp < -4096) {
        out[i][n] = (int16_t)-32768;
      } else {
        int32_t tmp32 = ((int64_t)out[i][n] * (gain32 >> 4)) >> 16;
        out[i][n] = (int16_t)tmp32;
      }
    }

    gain32 += delta;
  }
  // iterate over subframes
  for (int k = 1; k < 10; k++) {
    delta = (gains[k + 1] - gains[k]) * (1 << (4 - L2));
    gain32 = gains[k] * (1 << 4);
    // iterate over samples
    for (size_t n = 0; n < L; n++) {
      for (size_t i = 0; i < num_bands; ++i) {
        int64_t tmp64 = ((int64_t)(out[i][k * L + n])) * (gain32 >> 4);
        tmp64 = tmp64 >> 16;
        if (tmp64 > 32767) {
          out[i][k * L + n] = 32767;
        } else if (tmp64 < -32768) {
          out[i][k * L + n] = -32768;
        } else {
          out[i][k * L + n] = (int16_t)(tmp64);
        }
      }
      gain32 += delta;
    }
  }
  return 0;
}

void WebRtcAgc_InitVad(AgcVad* state) {
  int16_t k;

  state->HPstate = 0;   // state of high pass filter
  state->logRatio = 0;  // log( P(active) / P(inactive) )
  // average input level (Q10)
  state->meanLongTerm = 15 << 10;

  // variance of input level (Q8)
  state->varianceLongTerm = 500 << 8;

  state->stdLongTerm = 0;  // standard deviation of input level in dB
  // short-term average input level (Q10)
  state->meanShortTerm = 15 << 10;

  // short-term variance of input level (Q8)
  state->varianceShortTerm = 500 << 8;

  state->stdShortTerm =
      0;               // short-term standard deviation of input level in dB
  state->counter = 3;  // counts updates
  for (k = 0; k < 8; k++) {
    // downsampling filter
    state->downState[k] = 0;
  }
}

int16_t WebRtcAgc_ProcessVad(AgcVad* state,       // (i) VAD state
                             const int16_t* in,   // (i) Speech signal
                             size_t nrSamples) {  // (i) number of samples
  uint32_t nrg;
  int32_t out, tmp32, tmp32b;
  uint16_t tmpU16;
  int16_t k, subfr, tmp16;
  int16_t buf1[8];
  int16_t buf2[4];
  int16_t HPstate;
  int16_t zeros, dB;
  int64_t tmp64;

  // process in 10 sub frames of 1 ms (to save on memory)
  nrg = 0;
  HPstate = state->HPstate;
  for (subfr = 0; subfr < 10; subfr++) {
    // downsample to 4 kHz
    if (nrSamples == 160) {
      for (k = 0; k < 8; k++) {
        tmp32 = (int32_t)in[2 * k] + (int32_t)in[2 * k + 1];
        tmp32 >>= 1;
        buf1[k] = (int16_t)tmp32;
      }
      in += 16;

      WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
    } else {
      WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
      in += 8;
    }

    // high pass filter and compute energy
    for (k = 0; k < 4; k++) {
      out = buf2[k] + HPstate;
      tmp32 = 600 * out;
      HPstate = (int16_t)((tmp32 >> 10) - buf2[k]);

      // Add 'out * out / 2**6' to 'nrg' in a non-overflowing
      // way. Guaranteed to work as long as 'out * out / 2**6' fits in
      // an int32_t.
      nrg += out * (out / (1 << 6));
      nrg += out * (out % (1 << 6)) / (1 << 6);
    }
  }
  state->HPstate = HPstate;

  // find number of leading zeros
  if (!(0xFFFF0000 & nrg)) {
    zeros = 16;
  } else {
    zeros = 0;
  }
  if (!(0xFF000000 & (nrg << zeros))) {
    zeros += 8;
  }
  if (!(0xF0000000 & (nrg << zeros))) {
    zeros += 4;
  }
  if (!(0xC0000000 & (nrg << zeros))) {
    zeros += 2;
  }
  if (!(0x80000000 & (nrg << zeros))) {
    zeros += 1;
  }

  // energy level (range {-32..30}) (Q10)
  dB = (15 - zeros) * (1 << 11);

  // Update statistics

  if (state->counter < kAvgDecayTime) {
    // decay time = AvgDecTime * 10 ms
    state->counter++;
  }

  // update short-term estimate of mean energy level (Q10)
  tmp32 = state->meanShortTerm * 15 + dB;
  state->meanShortTerm = (int16_t)(tmp32 >> 4);

  // update short-term estimate of variance in energy level (Q8)
  tmp32 = (dB * dB) >> 12;
  tmp32 += state->varianceShortTerm * 15;
  state->varianceShortTerm = tmp32 / 16;

  // update short-term estimate of standard deviation in energy level (Q10)
  tmp32 = state->meanShortTerm * state->meanShortTerm;
  tmp32 = (state->varianceShortTerm << 12) - tmp32;
  state->stdShortTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);

  // update long-term estimate of mean energy level (Q10)
  tmp32 = state->meanLongTerm * state->counter + dB;
  state->meanLongTerm =
      WebRtcSpl_DivW32W16ResW16(tmp32, WebRtcSpl_AddSatW16(state->counter, 1));

  // update long-term estimate of variance in energy level (Q8)
  tmp32 = (dB * dB) >> 12;
  tmp32 += state->varianceLongTerm * state->counter;
  state->varianceLongTerm =
      WebRtcSpl_DivW32W16(tmp32, WebRtcSpl_AddSatW16(state->counter, 1));

  // update long-term estimate of standard deviation in energy level (Q10)
  tmp32 = state->meanLongTerm * state->meanLongTerm;
  tmp32 = (state->varianceLongTerm << 12) - tmp32;
  state->stdLongTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);

  // update voice activity measure (Q10)
  tmp16 = 3 << 12;
  // TODO(bjornv): (dB - state->meanLongTerm) can overflow, e.g., in
  // ApmTest.Process unit test. Previously the macro WEBRTC_SPL_MUL_16_16()
  // was used, which did an intermediate cast to (int16_t), hence losing
  // significant bits. This cause logRatio to max out positive, rather than
  // negative. This is a bug, but has very little significance.
  tmp32 = tmp16 * (int16_t)(dB - state->meanLongTerm);
  tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
  tmpU16 = (13 << 12);
  tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
  tmp64 = tmp32;
  tmp64 += tmp32b >> 10;
  tmp64 >>= 6;

  // limit
  if (tmp64 > 2048) {
    tmp64 = 2048;
  } else if (tmp64 < -2048) {
    tmp64 = -2048;
  }
  state->logRatio = (int16_t)tmp64;

  return state->logRatio;  // Q10
}

}  // namespace webrtc