summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/agc2/noise_level_estimator.cc
blob: 691513b5094a98e882511206bb8df2b981b88d10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
 *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/agc2/noise_level_estimator.h"

#include <stddef.h>

#include <algorithm>
#include <cmath>
#include <numeric>

#include "api/array_view.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"

namespace webrtc {
namespace {

constexpr int kFramesPerSecond = 100;

float FrameEnergy(const AudioFrameView<const float>& audio) {
  float energy = 0.0f;
  for (int k = 0; k < audio.num_channels(); ++k) {
    float channel_energy =
        std::accumulate(audio.channel(k).begin(), audio.channel(k).end(), 0.0f,
                        [](float a, float b) -> float { return a + b * b; });
    energy = std::max(channel_energy, energy);
  }
  return energy;
}

float EnergyToDbfs(float signal_energy, int num_samples) {
  RTC_DCHECK_GE(signal_energy, 0.0f);
  const float rms_square = signal_energy / num_samples;
  constexpr float kMinDbfs = -90.30899869919436f;
  if (rms_square <= 1.0f) {
    return kMinDbfs;
  }
  return 10.0f * std::log10(rms_square) + kMinDbfs;
}

// Updates the noise floor with instant decay and slow attack. This tuning is
// specific for AGC2, so that (i) it can promptly increase the gain if the noise
// floor drops (instant decay) and (ii) in case of music or fast speech, due to
// which the noise floor can be overestimated, the gain reduction is slowed
// down.
float SmoothNoiseFloorEstimate(float current_estimate, float new_estimate) {
  constexpr float kAttack = 0.5f;
  if (current_estimate < new_estimate) {
    // Attack phase.
    return kAttack * new_estimate + (1.0f - kAttack) * current_estimate;
  }
  // Instant attack.
  return new_estimate;
}

class NoiseFloorEstimator : public NoiseLevelEstimator {
 public:
  // Update the noise floor every 5 seconds.
  static constexpr int kUpdatePeriodNumFrames = 500;
  static_assert(kUpdatePeriodNumFrames >= 200,
                "A too small value may cause noise level overestimation.");
  static_assert(kUpdatePeriodNumFrames <= 1500,
                "A too large value may make AGC2 slow at reacting to increased "
                "noise levels.");

  NoiseFloorEstimator(ApmDataDumper* data_dumper) : data_dumper_(data_dumper) {
    RTC_DCHECK(data_dumper_);
    // Initially assume that 48 kHz will be used. `Analyze()` will detect the
    // used sample rate and call `Initialize()` again if needed.
    Initialize(/*sample_rate_hz=*/48000);
  }
  NoiseFloorEstimator(const NoiseFloorEstimator&) = delete;
  NoiseFloorEstimator& operator=(const NoiseFloorEstimator&) = delete;
  ~NoiseFloorEstimator() = default;

  float Analyze(const AudioFrameView<const float>& frame) override {
    // Detect sample rate changes.
    const int sample_rate_hz =
        static_cast<int>(frame.samples_per_channel() * kFramesPerSecond);
    if (sample_rate_hz != sample_rate_hz_) {
      Initialize(sample_rate_hz);
    }

    const float frame_energy = FrameEnergy(frame);
    if (frame_energy <= min_noise_energy_) {
      // Ignore frames when muted or below the minimum measurable energy.
      if (data_dumper_)
        data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level",
                              noise_energy_);
      return EnergyToDbfs(noise_energy_,
                          static_cast<int>(frame.samples_per_channel()));
    }

    if (preliminary_noise_energy_set_) {
      preliminary_noise_energy_ =
          std::min(preliminary_noise_energy_, frame_energy);
    } else {
      preliminary_noise_energy_ = frame_energy;
      preliminary_noise_energy_set_ = true;
    }
    if (data_dumper_)
      data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level",
                            preliminary_noise_energy_);

    if (counter_ == 0) {
      // Full period observed.
      first_period_ = false;
      // Update the estimated noise floor energy with the preliminary
      // estimation.
      noise_energy_ = SmoothNoiseFloorEstimate(
          /*current_estimate=*/noise_energy_,
          /*new_estimate=*/preliminary_noise_energy_);
      // Reset for a new observation period.
      counter_ = kUpdatePeriodNumFrames;
      preliminary_noise_energy_set_ = false;
    } else if (first_period_) {
      // While analyzing the signal during the initial period, continuously
      // update the estimated noise energy, which is monotonic.
      noise_energy_ = preliminary_noise_energy_;
      counter_--;
    } else {
      // During the observation period it's only allowed to lower the energy.
      noise_energy_ = std::min(noise_energy_, preliminary_noise_energy_);
      counter_--;
    }

    float noise_rms_dbfs = EnergyToDbfs(
        noise_energy_, static_cast<int>(frame.samples_per_channel()));
    if (data_dumper_)
      data_dumper_->DumpRaw("agc2_noise_rms_dbfs", noise_rms_dbfs);

    return noise_rms_dbfs;
  }

 private:
  void Initialize(int sample_rate_hz) {
    sample_rate_hz_ = sample_rate_hz;
    first_period_ = true;
    preliminary_noise_energy_set_ = false;
    // Initialize the minimum noise energy to -84 dBFS.
    min_noise_energy_ = sample_rate_hz * 2.0f * 2.0f / kFramesPerSecond;
    preliminary_noise_energy_ = min_noise_energy_;
    noise_energy_ = min_noise_energy_;
    counter_ = kUpdatePeriodNumFrames;
  }

  ApmDataDumper* const data_dumper_;
  int sample_rate_hz_;
  float min_noise_energy_;
  bool first_period_;
  bool preliminary_noise_energy_set_;
  float preliminary_noise_energy_;
  float noise_energy_;
  int counter_;
};

}  // namespace

std::unique_ptr<NoiseLevelEstimator> CreateNoiseFloorEstimator(
    ApmDataDumper* data_dumper) {
  return std::make_unique<NoiseFloorEstimator>(data_dumper);
}

}  // namespace webrtc