summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/agc2/rnn_vad/rnn_gru_unittest.cc
blob: 88ae72803ad63a992beebbe766cccb54bbf8e3c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
 *  Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/agc2/rnn_vad/rnn_gru.h"

#include <array>
#include <memory>
#include <vector>

#include "api/array_view.h"
#include "modules/audio_processing/agc2/rnn_vad/test_utils.h"
#include "modules/audio_processing/test/performance_timer.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "test/gtest.h"
#include "third_party/rnnoise/src/rnn_vad_weights.h"

namespace webrtc {
namespace rnn_vad {
namespace {

void TestGatedRecurrentLayer(
    GatedRecurrentLayer& gru,
    rtc::ArrayView<const float> input_sequence,
    rtc::ArrayView<const float> expected_output_sequence) {
  const int input_sequence_length = rtc::CheckedDivExact(
      rtc::dchecked_cast<int>(input_sequence.size()), gru.input_size());
  const int output_sequence_length = rtc::CheckedDivExact(
      rtc::dchecked_cast<int>(expected_output_sequence.size()), gru.size());
  ASSERT_EQ(input_sequence_length, output_sequence_length)
      << "The test data length is invalid.";
  // Feed the GRU layer and check the output at every step.
  gru.Reset();
  for (int i = 0; i < input_sequence_length; ++i) {
    SCOPED_TRACE(i);
    gru.ComputeOutput(
        input_sequence.subview(i * gru.input_size(), gru.input_size()));
    const auto expected_output =
        expected_output_sequence.subview(i * gru.size(), gru.size());
    ExpectNearAbsolute(expected_output, gru, 3e-6f);
  }
}

// Gated recurrent units layer test data.
constexpr int kGruInputSize = 5;
constexpr int kGruOutputSize = 4;
constexpr std::array<int8_t, 12> kGruBias = {96,   -99, -81, -114, 49,  119,
                                             -118, 68,  -76, 91,   121, 125};
constexpr std::array<int8_t, 60> kGruWeights = {
    // Input 0.
    124, 9, 1, 116,        // Update.
    -66, -21, -118, -110,  // Reset.
    104, 75, -23, -51,     // Output.
    // Input 1.
    -72, -111, 47, 93,   // Update.
    77, -98, 41, -8,     // Reset.
    40, -23, -43, -107,  // Output.
    // Input 2.
    9, -73, 30, -32,      // Update.
    -2, 64, -26, 91,      // Reset.
    -48, -24, -28, -104,  // Output.
    // Input 3.
    74, -46, 116, 15,    // Update.
    32, 52, -126, -38,   // Reset.
    -121, 12, -16, 110,  // Output.
    // Input 4.
    -95, 66, -103, -35,  // Update.
    -38, 3, -126, -61,   // Reset.
    28, 98, -117, -43    // Output.
};
constexpr std::array<int8_t, 48> kGruRecurrentWeights = {
    // Output 0.
    -3, 87, 50, 51,     // Update.
    -22, 27, -39, 62,   // Reset.
    31, -83, -52, -48,  // Output.
    // Output 1.
    -6, 83, -19, 104,  // Update.
    105, 48, 23, 68,   // Reset.
    23, 40, 7, -120,   // Output.
    // Output 2.
    64, -62, 117, 85,     // Update.
    51, -43, 54, -105,    // Reset.
    120, 56, -128, -107,  // Output.
    // Output 3.
    39, 50, -17, -47,   // Update.
    -117, 14, 108, 12,  // Reset.
    -7, -72, 103, -87,  // Output.
};
constexpr std::array<float, 20> kGruInputSequence = {
    0.89395463f, 0.93224651f, 0.55788344f, 0.32341808f, 0.93355054f,
    0.13475326f, 0.97370994f, 0.14253306f, 0.93710381f, 0.76093364f,
    0.65780413f, 0.41657975f, 0.49403164f, 0.46843281f, 0.75138855f,
    0.24517593f, 0.47657707f, 0.57064998f, 0.435184f,   0.19319285f};
constexpr std::array<float, 16> kGruExpectedOutputSequence = {
    0.0239123f,  0.5773077f,  0.f,         0.f,
    0.01282811f, 0.64330572f, 0.f,         0.04863098f,
    0.00781069f, 0.75267816f, 0.f,         0.02579715f,
    0.00471378f, 0.59162533f, 0.11087593f, 0.01334511f};

class RnnGruParametrization
    : public ::testing::TestWithParam<AvailableCpuFeatures> {};

// Checks that the output of a GRU layer is within tolerance given test input
// data.
TEST_P(RnnGruParametrization, CheckGatedRecurrentLayer) {
  GatedRecurrentLayer gru(kGruInputSize, kGruOutputSize, kGruBias, kGruWeights,
                          kGruRecurrentWeights,
                          /*cpu_features=*/GetParam(),
                          /*layer_name=*/"GRU");
  TestGatedRecurrentLayer(gru, kGruInputSequence, kGruExpectedOutputSequence);
}

TEST_P(RnnGruParametrization, DISABLED_BenchmarkGatedRecurrentLayer) {
  // Prefetch test data.
  std::unique_ptr<FileReader> reader = CreateGruInputReader();
  std::vector<float> gru_input_sequence(reader->size());
  reader->ReadChunk(gru_input_sequence);

  using ::rnnoise::kHiddenGruBias;
  using ::rnnoise::kHiddenGruRecurrentWeights;
  using ::rnnoise::kHiddenGruWeights;
  using ::rnnoise::kHiddenLayerOutputSize;
  using ::rnnoise::kInputLayerOutputSize;

  GatedRecurrentLayer gru(kInputLayerOutputSize, kHiddenLayerOutputSize,
                          kHiddenGruBias, kHiddenGruWeights,
                          kHiddenGruRecurrentWeights,
                          /*cpu_features=*/GetParam(),
                          /*layer_name=*/"GRU");

  rtc::ArrayView<const float> input_sequence(gru_input_sequence);
  ASSERT_EQ(input_sequence.size() % kInputLayerOutputSize,
            static_cast<size_t>(0));
  const int input_sequence_length =
      input_sequence.size() / kInputLayerOutputSize;

  constexpr int kNumTests = 100;
  ::webrtc::test::PerformanceTimer perf_timer(kNumTests);
  for (int k = 0; k < kNumTests; ++k) {
    perf_timer.StartTimer();
    for (int i = 0; i < input_sequence_length; ++i) {
      gru.ComputeOutput(
          input_sequence.subview(i * gru.input_size(), gru.input_size()));
    }
    perf_timer.StopTimer();
  }
  RTC_LOG(LS_INFO) << (perf_timer.GetDurationAverage() / 1000) << " +/- "
                   << (perf_timer.GetDurationStandardDeviation() / 1000)
                   << " ms";
}

// Finds the relevant CPU features combinations to test.
std::vector<AvailableCpuFeatures> GetCpuFeaturesToTest() {
  std::vector<AvailableCpuFeatures> v;
  v.push_back(NoAvailableCpuFeatures());
  AvailableCpuFeatures available = GetAvailableCpuFeatures();
  if (available.sse2) {
    v.push_back({/*sse2=*/true, /*avx2=*/false, /*neon=*/false});
  }
  if (available.avx2) {
    v.push_back({/*sse2=*/false, /*avx2=*/true, /*neon=*/false});
  }
  if (available.neon) {
    v.push_back({/*sse2=*/false, /*avx2=*/false, /*neon=*/true});
  }
  return v;
}

INSTANTIATE_TEST_SUITE_P(
    RnnVadTest,
    RnnGruParametrization,
    ::testing::ValuesIn(GetCpuFeaturesToTest()),
    [](const ::testing::TestParamInfo<AvailableCpuFeatures>& info) {
      return info.param.ToString();
    });

}  // namespace
}  // namespace rnn_vad
}  // namespace webrtc