summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/capture_levels_adjuster/audio_samples_scaler_unittest.cc
blob: 6e5fc2cbe35e4c8945d33b277d6734812328da66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
 *  Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "modules/audio_processing/capture_levels_adjuster/audio_samples_scaler.h"

#include <tuple>

#include "modules/audio_processing/test/audio_buffer_tools.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"

namespace webrtc {
namespace {

float SampleValueForChannel(int channel) {
  constexpr float kSampleBaseValue = 100.f;
  constexpr float kSampleChannelOffset = 1.f;
  return kSampleBaseValue + channel * kSampleChannelOffset;
}

void PopulateBuffer(AudioBuffer& audio_buffer) {
  for (size_t ch = 0; ch < audio_buffer.num_channels(); ++ch) {
    test::FillBufferChannel(SampleValueForChannel(ch), ch, audio_buffer);
  }
}

constexpr int kNumFramesToProcess = 10;

class AudioSamplesScalerTest
    : public ::testing::Test,
      public ::testing::WithParamInterface<std::tuple<int, int, float>> {
 protected:
  int sample_rate_hz() const { return std::get<0>(GetParam()); }
  int num_channels() const { return std::get<1>(GetParam()); }
  float initial_gain() const { return std::get<2>(GetParam()); }
};

INSTANTIATE_TEST_SUITE_P(
    AudioSamplesScalerTestSuite,
    AudioSamplesScalerTest,
    ::testing::Combine(::testing::Values(16000, 32000, 48000),
                       ::testing::Values(1, 2, 4),
                       ::testing::Values(0.1f, 1.f, 2.f, 4.f)));

TEST_P(AudioSamplesScalerTest, InitialGainIsRespected) {
  AudioSamplesScaler scaler(initial_gain());

  AudioBuffer audio_buffer(sample_rate_hz(), num_channels(), sample_rate_hz(),
                           num_channels(), sample_rate_hz(), num_channels());

  for (int frame = 0; frame < kNumFramesToProcess; ++frame) {
    PopulateBuffer(audio_buffer);
    scaler.Process(audio_buffer);
    for (int ch = 0; ch < num_channels(); ++ch) {
      for (size_t i = 0; i < audio_buffer.num_frames(); ++i) {
        EXPECT_FLOAT_EQ(audio_buffer.channels_const()[ch][i],
                        initial_gain() * SampleValueForChannel(ch));
      }
    }
  }
}

TEST_P(AudioSamplesScalerTest, VerifyGainAdjustment) {
  const float higher_gain = initial_gain();
  const float lower_gain = higher_gain / 2.f;

  AudioSamplesScaler scaler(lower_gain);

  AudioBuffer audio_buffer(sample_rate_hz(), num_channels(), sample_rate_hz(),
                           num_channels(), sample_rate_hz(), num_channels());

  // Allow the intial, lower, gain to take effect.
  PopulateBuffer(audio_buffer);

  scaler.Process(audio_buffer);

  // Set the new, higher, gain.
  scaler.SetGain(higher_gain);

  // Ensure that the new, higher, gain is achieved gradually over one frame.
  PopulateBuffer(audio_buffer);

  scaler.Process(audio_buffer);
  for (int ch = 0; ch < num_channels(); ++ch) {
    for (size_t i = 0; i < audio_buffer.num_frames() - 1; ++i) {
      EXPECT_LT(audio_buffer.channels_const()[ch][i],
                higher_gain * SampleValueForChannel(ch));
      EXPECT_LE(audio_buffer.channels_const()[ch][i],
                audio_buffer.channels_const()[ch][i + 1]);
    }
    EXPECT_LE(audio_buffer.channels_const()[ch][audio_buffer.num_frames() - 1],
              higher_gain * SampleValueForChannel(ch));
  }

  // Ensure that the new, higher, gain is achieved and stay unchanged.
  for (int frame = 0; frame < kNumFramesToProcess; ++frame) {
    PopulateBuffer(audio_buffer);
    scaler.Process(audio_buffer);

    for (int ch = 0; ch < num_channels(); ++ch) {
      for (size_t i = 0; i < audio_buffer.num_frames(); ++i) {
        EXPECT_FLOAT_EQ(audio_buffer.channels_const()[ch][i],
                        higher_gain * SampleValueForChannel(ch));
      }
    }
  }

  // Set the new, lower, gain.
  scaler.SetGain(lower_gain);

  // Ensure that the new, lower, gain is achieved gradually over one frame.
  PopulateBuffer(audio_buffer);
  scaler.Process(audio_buffer);
  for (int ch = 0; ch < num_channels(); ++ch) {
    for (size_t i = 0; i < audio_buffer.num_frames() - 1; ++i) {
      EXPECT_GT(audio_buffer.channels_const()[ch][i],
                lower_gain * SampleValueForChannel(ch));
      EXPECT_GE(audio_buffer.channels_const()[ch][i],
                audio_buffer.channels_const()[ch][i + 1]);
    }
    EXPECT_GE(audio_buffer.channels_const()[ch][audio_buffer.num_frames() - 1],
              lower_gain * SampleValueForChannel(ch));
  }

  // Ensure that the new, lower, gain is achieved and stay unchanged.
  for (int frame = 0; frame < kNumFramesToProcess; ++frame) {
    PopulateBuffer(audio_buffer);
    scaler.Process(audio_buffer);

    for (int ch = 0; ch < num_channels(); ++ch) {
      for (size_t i = 0; i < audio_buffer.num_frames(); ++i) {
        EXPECT_FLOAT_EQ(audio_buffer.channels_const()[ch][i],
                        lower_gain * SampleValueForChannel(ch));
      }
    }
  }
}

TEST(AudioSamplesScaler, UpwardsClamping) {
  constexpr int kSampleRateHz = 48000;
  constexpr int kNumChannels = 1;
  constexpr float kGain = 10.f;
  constexpr float kMaxClampedSampleValue = 32767.f;
  static_assert(kGain > 1.f, "");

  AudioSamplesScaler scaler(kGain);

  AudioBuffer audio_buffer(kSampleRateHz, kNumChannels, kSampleRateHz,
                           kNumChannels, kSampleRateHz, kNumChannels);

  for (int frame = 0; frame < kNumFramesToProcess; ++frame) {
    for (size_t ch = 0; ch < audio_buffer.num_channels(); ++ch) {
      test::FillBufferChannel(
          kMaxClampedSampleValue - audio_buffer.num_channels() + 1.f + ch, ch,
          audio_buffer);
    }

    scaler.Process(audio_buffer);
    for (int ch = 0; ch < kNumChannels; ++ch) {
      for (size_t i = 0; i < audio_buffer.num_frames(); ++i) {
        EXPECT_FLOAT_EQ(audio_buffer.channels_const()[ch][i],
                        kMaxClampedSampleValue);
      }
    }
  }
}

TEST(AudioSamplesScaler, DownwardsClamping) {
  constexpr int kSampleRateHz = 48000;
  constexpr int kNumChannels = 1;
  constexpr float kGain = 10.f;
  constexpr float kMinClampedSampleValue = -32768.f;
  static_assert(kGain > 1.f, "");

  AudioSamplesScaler scaler(kGain);

  AudioBuffer audio_buffer(kSampleRateHz, kNumChannels, kSampleRateHz,
                           kNumChannels, kSampleRateHz, kNumChannels);

  for (int frame = 0; frame < kNumFramesToProcess; ++frame) {
    for (size_t ch = 0; ch < audio_buffer.num_channels(); ++ch) {
      test::FillBufferChannel(
          kMinClampedSampleValue + audio_buffer.num_channels() - 1.f + ch, ch,
          audio_buffer);
    }

    scaler.Process(audio_buffer);
    for (int ch = 0; ch < kNumChannels; ++ch) {
      for (size_t i = 0; i < audio_buffer.num_frames(); ++i) {
        EXPECT_FLOAT_EQ(audio_buffer.channels_const()[ch][i],
                        kMinClampedSampleValue);
      }
    }
  }
}

}  // namespace
}  // namespace webrtc