summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/include/audio_processing.h
blob: e3223513afc91f94d2bbc6333ef83573de82ee4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#ifndef MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
#define MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_

// MSVC++ requires this to be set before any other includes to get M_PI.
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

#include <math.h>
#include <stddef.h>  // size_t
#include <stdio.h>   // FILE
#include <string.h>

#include <vector>

#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "api/audio/echo_canceller3_config.h"
#include "api/audio/echo_control.h"
#include "api/ref_count.h"
#include "api/scoped_refptr.h"
#include "modules/audio_processing/include/audio_processing_statistics.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/system/file_wrapper.h"
#include "rtc_base/system/rtc_export.h"

namespace rtc {
class TaskQueue;
}  // namespace rtc

namespace webrtc {

class AecDump;
class AudioBuffer;

class StreamConfig;
class ProcessingConfig;

class EchoDetector;
class CustomAudioAnalyzer;
class CustomProcessing;

// The Audio Processing Module (APM) provides a collection of voice processing
// components designed for real-time communications software.
//
// APM operates on two audio streams on a frame-by-frame basis. Frames of the
// primary stream, on which all processing is applied, are passed to
// `ProcessStream()`. Frames of the reverse direction stream are passed to
// `ProcessReverseStream()`. On the client-side, this will typically be the
// near-end (capture) and far-end (render) streams, respectively. APM should be
// placed in the signal chain as close to the audio hardware abstraction layer
// (HAL) as possible.
//
// On the server-side, the reverse stream will normally not be used, with
// processing occurring on each incoming stream.
//
// Component interfaces follow a similar pattern and are accessed through
// corresponding getters in APM. All components are disabled at create-time,
// with default settings that are recommended for most situations. New settings
// can be applied without enabling a component. Enabling a component triggers
// memory allocation and initialization to allow it to start processing the
// streams.
//
// Thread safety is provided with the following assumptions to reduce locking
// overhead:
//   1. The stream getters and setters are called from the same thread as
//      ProcessStream(). More precisely, stream functions are never called
//      concurrently with ProcessStream().
//   2. Parameter getters are never called concurrently with the corresponding
//      setter.
//
// APM accepts only linear PCM audio data in chunks of ~10 ms (see
// AudioProcessing::GetFrameSize() for details) and sample rates ranging from
// 8000 Hz to 384000 Hz. The int16 interfaces use interleaved data, while the
// float interfaces use deinterleaved data.
//
// Usage example, omitting error checking:
// rtc::scoped_refptr<AudioProcessing> apm = AudioProcessingBuilder().Create();
//
// AudioProcessing::Config config;
// config.echo_canceller.enabled = true;
// config.echo_canceller.mobile_mode = false;
//
// config.gain_controller1.enabled = true;
// config.gain_controller1.mode =
// AudioProcessing::Config::GainController1::kAdaptiveAnalog;
// config.gain_controller1.analog_level_minimum = 0;
// config.gain_controller1.analog_level_maximum = 255;
//
// config.gain_controller2.enabled = true;
//
// config.high_pass_filter.enabled = true;
//
// apm->ApplyConfig(config)
//
// // Start a voice call...
//
// // ... Render frame arrives bound for the audio HAL ...
// apm->ProcessReverseStream(render_frame);
//
// // ... Capture frame arrives from the audio HAL ...
// // Call required set_stream_ functions.
// apm->set_stream_delay_ms(delay_ms);
// apm->set_stream_analog_level(analog_level);
//
// apm->ProcessStream(capture_frame);
//
// // Call required stream_ functions.
// analog_level = apm->recommended_stream_analog_level();
// has_voice = apm->stream_has_voice();
//
// // Repeat render and capture processing for the duration of the call...
// // Start a new call...
// apm->Initialize();
//
// // Close the application...
// apm.reset();
//
class RTC_EXPORT AudioProcessing : public RefCountInterface {
 public:
  // The struct below constitutes the new parameter scheme for the audio
  // processing. It is being introduced gradually and until it is fully
  // introduced, it is prone to change.
  // TODO(peah): Remove this comment once the new config scheme is fully rolled
  // out.
  //
  // The parameters and behavior of the audio processing module are controlled
  // by changing the default values in the AudioProcessing::Config struct.
  // The config is applied by passing the struct to the ApplyConfig method.
  //
  // This config is intended to be used during setup, and to enable/disable
  // top-level processing effects. Use during processing may cause undesired
  // submodule resets, affecting the audio quality. Use the RuntimeSetting
  // construct for runtime configuration.
  struct RTC_EXPORT Config {
    // Sets the properties of the audio processing pipeline.
    struct RTC_EXPORT Pipeline {
      // Ways to downmix a multi-channel track to mono.
      enum class DownmixMethod {
        kAverageChannels,  // Average across channels.
        kUseFirstChannel   // Use the first channel.
      };

      // Maximum allowed processing rate used internally. May only be set to
      // 32000 or 48000 and any differing values will be treated as 48000.
      int maximum_internal_processing_rate = 48000;
      // Allow multi-channel processing of render audio.
      bool multi_channel_render = false;
      // Allow multi-channel processing of capture audio when AEC3 is active
      // or a custom AEC is injected..
      bool multi_channel_capture = false;
      // Indicates how to downmix multi-channel capture audio to mono (when
      // needed).
      DownmixMethod capture_downmix_method = DownmixMethod::kAverageChannels;
    } pipeline;

    // Enabled the pre-amplifier. It amplifies the capture signal
    // before any other processing is done.
    // TODO(webrtc:5298): Deprecate and use the pre-gain functionality in
    // capture_level_adjustment instead.
    struct PreAmplifier {
      bool enabled = false;
      float fixed_gain_factor = 1.0f;
    } pre_amplifier;

    // Functionality for general level adjustment in the capture pipeline. This
    // should not be used together with the legacy PreAmplifier functionality.
    struct CaptureLevelAdjustment {
      bool operator==(const CaptureLevelAdjustment& rhs) const;
      bool operator!=(const CaptureLevelAdjustment& rhs) const {
        return !(*this == rhs);
      }
      bool enabled = false;
      // The `pre_gain_factor` scales the signal before any processing is done.
      float pre_gain_factor = 1.0f;
      // The `post_gain_factor` scales the signal after all processing is done.
      float post_gain_factor = 1.0f;
      struct AnalogMicGainEmulation {
        bool operator==(const AnalogMicGainEmulation& rhs) const;
        bool operator!=(const AnalogMicGainEmulation& rhs) const {
          return !(*this == rhs);
        }
        bool enabled = false;
        // Initial analog gain level to use for the emulated analog gain. Must
        // be in the range [0...255].
        int initial_level = 255;
      } analog_mic_gain_emulation;
    } capture_level_adjustment;

    struct HighPassFilter {
      bool enabled = false;
      bool apply_in_full_band = true;
    } high_pass_filter;

    struct EchoCanceller {
      bool enabled = false;
      bool mobile_mode = false;
      bool export_linear_aec_output = false;
      // Enforce the highpass filter to be on (has no effect for the mobile
      // mode).
      bool enforce_high_pass_filtering = true;
    } echo_canceller;

    // Enables background noise suppression.
    struct NoiseSuppression {
      bool enabled = false;
      enum Level { kLow, kModerate, kHigh, kVeryHigh };
      Level level = kModerate;
      bool analyze_linear_aec_output_when_available = false;
    } noise_suppression;

    // Enables transient suppression.
    struct TransientSuppression {
      bool enabled = false;
    } transient_suppression;

    // Enables automatic gain control (AGC) functionality.
    // The automatic gain control (AGC) component brings the signal to an
    // appropriate range. This is done by applying a digital gain directly and,
    // in the analog mode, prescribing an analog gain to be applied at the audio
    // HAL.
    // Recommended to be enabled on the client-side.
    struct RTC_EXPORT GainController1 {
      bool operator==(const GainController1& rhs) const;
      bool operator!=(const GainController1& rhs) const {
        return !(*this == rhs);
      }

      bool enabled = false;
      enum Mode {
        // Adaptive mode intended for use if an analog volume control is
        // available on the capture device. It will require the user to provide
        // coupling between the OS mixer controls and AGC through the
        // stream_analog_level() functions.
        // It consists of an analog gain prescription for the audio device and a
        // digital compression stage.
        kAdaptiveAnalog,
        // Adaptive mode intended for situations in which an analog volume
        // control is unavailable. It operates in a similar fashion to the
        // adaptive analog mode, but with scaling instead applied in the digital
        // domain. As with the analog mode, it additionally uses a digital
        // compression stage.
        kAdaptiveDigital,
        // Fixed mode which enables only the digital compression stage also used
        // by the two adaptive modes.
        // It is distinguished from the adaptive modes by considering only a
        // short time-window of the input signal. It applies a fixed gain
        // through most of the input level range, and compresses (gradually
        // reduces gain with increasing level) the input signal at higher
        // levels. This mode is preferred on embedded devices where the capture
        // signal level is predictable, so that a known gain can be applied.
        kFixedDigital
      };
      Mode mode = kAdaptiveAnalog;
      // Sets the target peak level (or envelope) of the AGC in dBFs (decibels
      // from digital full-scale). The convention is to use positive values. For
      // instance, passing in a value of 3 corresponds to -3 dBFs, or a target
      // level 3 dB below full-scale. Limited to [0, 31].
      int target_level_dbfs = 3;
      // Sets the maximum gain the digital compression stage may apply, in dB. A
      // higher number corresponds to greater compression, while a value of 0
      // will leave the signal uncompressed. Limited to [0, 90].
      // For updates after APM setup, use a RuntimeSetting instead.
      int compression_gain_db = 9;
      // When enabled, the compression stage will hard limit the signal to the
      // target level. Otherwise, the signal will be compressed but not limited
      // above the target level.
      bool enable_limiter = true;

      // Enables the analog gain controller functionality.
      struct AnalogGainController {
        bool enabled = true;
        // TODO(bugs.webrtc.org/7494): Deprecated. Stop using and remove.
        int startup_min_volume = 0;
        // Lowest analog microphone level that will be applied in response to
        // clipping.
        int clipped_level_min = 70;
        // If true, an adaptive digital gain is applied.
        bool enable_digital_adaptive = true;
        // Amount the microphone level is lowered with every clipping event.
        // Limited to (0, 255].
        int clipped_level_step = 15;
        // Proportion of clipped samples required to declare a clipping event.
        // Limited to (0.f, 1.f).
        float clipped_ratio_threshold = 0.1f;
        // Time in frames to wait after a clipping event before checking again.
        // Limited to values higher than 0.
        int clipped_wait_frames = 300;

        // Enables clipping prediction functionality.
        struct ClippingPredictor {
          bool enabled = false;
          enum Mode {
            // Clipping event prediction mode with fixed step estimation.
            kClippingEventPrediction,
            // Clipped peak estimation mode with adaptive step estimation.
            kAdaptiveStepClippingPeakPrediction,
            // Clipped peak estimation mode with fixed step estimation.
            kFixedStepClippingPeakPrediction,
          };
          Mode mode = kClippingEventPrediction;
          // Number of frames in the sliding analysis window.
          int window_length = 5;
          // Number of frames in the sliding reference window.
          int reference_window_length = 5;
          // Reference window delay (unit: number of frames).
          int reference_window_delay = 5;
          // Clipping prediction threshold (dBFS).
          float clipping_threshold = -1.0f;
          // Crest factor drop threshold (dB).
          float crest_factor_margin = 3.0f;
          // If true, the recommended clipped level step is used to modify the
          // analog gain. Otherwise, the predictor runs without affecting the
          // analog gain.
          bool use_predicted_step = true;
        } clipping_predictor;
      } analog_gain_controller;
    } gain_controller1;

    // Parameters for AGC2, an Automatic Gain Control (AGC) sub-module which
    // replaces the AGC sub-module parametrized by `gain_controller1`.
    // AGC2 brings the captured audio signal to the desired level by combining
    // three different controllers (namely, input volume controller, adapative
    // digital controller and fixed digital controller) and a limiter.
    // TODO(bugs.webrtc.org:7494): Name `GainController` when AGC1 removed.
    struct RTC_EXPORT GainController2 {
      bool operator==(const GainController2& rhs) const;
      bool operator!=(const GainController2& rhs) const {
        return !(*this == rhs);
      }

      // AGC2 must be created if and only if `enabled` is true.
      bool enabled = false;

      // Parameters for the input volume controller, which adjusts the input
      // volume applied when the audio is captured (e.g., microphone volume on
      // a soundcard, input volume on HAL).
      struct InputVolumeController {
        bool operator==(const InputVolumeController& rhs) const;
        bool operator!=(const InputVolumeController& rhs) const {
          return !(*this == rhs);
        }
        bool enabled = false;
      } input_volume_controller;

      // Parameters for the adaptive digital controller, which adjusts and
      // applies a digital gain after echo cancellation and after noise
      // suppression.
      struct RTC_EXPORT AdaptiveDigital {
        bool operator==(const AdaptiveDigital& rhs) const;
        bool operator!=(const AdaptiveDigital& rhs) const {
          return !(*this == rhs);
        }
        bool enabled = false;
        float headroom_db = 6.0f;
        float max_gain_db = 30.0f;
        float initial_gain_db = 8.0f;
        float max_gain_change_db_per_second = 3.0f;
        float max_output_noise_level_dbfs = -50.0f;
      } adaptive_digital;

      // Parameters for the fixed digital controller, which applies a fixed
      // digital gain after the adaptive digital controller and before the
      // limiter.
      struct FixedDigital {
        // By setting `gain_db` to a value greater than zero, the limiter can be
        // turned into a compressor that first applies a fixed gain.
        float gain_db = 0.0f;
      } fixed_digital;
    } gain_controller2;

    std::string ToString() const;
  };

  // Specifies the properties of a setting to be passed to AudioProcessing at
  // runtime.
  class RuntimeSetting {
   public:
    enum class Type {
      kNotSpecified,
      kCapturePreGain,
      kCaptureCompressionGain,
      kCaptureFixedPostGain,
      kPlayoutVolumeChange,
      kCustomRenderProcessingRuntimeSetting,
      kPlayoutAudioDeviceChange,
      kCapturePostGain,
      kCaptureOutputUsed
    };

    // Play-out audio device properties.
    struct PlayoutAudioDeviceInfo {
      int id;          // Identifies the audio device.
      int max_volume;  // Maximum play-out volume.
    };

    RuntimeSetting() : type_(Type::kNotSpecified), value_(0.0f) {}
    ~RuntimeSetting() = default;

    static RuntimeSetting CreateCapturePreGain(float gain) {
      return {Type::kCapturePreGain, gain};
    }

    static RuntimeSetting CreateCapturePostGain(float gain) {
      return {Type::kCapturePostGain, gain};
    }

    // Corresponds to Config::GainController1::compression_gain_db, but for
    // runtime configuration.
    static RuntimeSetting CreateCompressionGainDb(int gain_db) {
      RTC_DCHECK_GE(gain_db, 0);
      RTC_DCHECK_LE(gain_db, 90);
      return {Type::kCaptureCompressionGain, static_cast<float>(gain_db)};
    }

    // Corresponds to Config::GainController2::fixed_digital::gain_db, but for
    // runtime configuration.
    static RuntimeSetting CreateCaptureFixedPostGain(float gain_db) {
      RTC_DCHECK_GE(gain_db, 0.0f);
      RTC_DCHECK_LE(gain_db, 90.0f);
      return {Type::kCaptureFixedPostGain, gain_db};
    }

    // Creates a runtime setting to notify play-out (aka render) audio device
    // changes.
    static RuntimeSetting CreatePlayoutAudioDeviceChange(
        PlayoutAudioDeviceInfo audio_device) {
      return {Type::kPlayoutAudioDeviceChange, audio_device};
    }

    // Creates a runtime setting to notify play-out (aka render) volume changes.
    // `volume` is the unnormalized volume, the maximum of which
    static RuntimeSetting CreatePlayoutVolumeChange(int volume) {
      return {Type::kPlayoutVolumeChange, volume};
    }

    static RuntimeSetting CreateCustomRenderSetting(float payload) {
      return {Type::kCustomRenderProcessingRuntimeSetting, payload};
    }

    static RuntimeSetting CreateCaptureOutputUsedSetting(
        bool capture_output_used) {
      return {Type::kCaptureOutputUsed, capture_output_used};
    }

    Type type() const { return type_; }
    // Getters do not return a value but instead modify the argument to protect
    // from implicit casting.
    void GetFloat(float* value) const {
      RTC_DCHECK(value);
      *value = value_.float_value;
    }
    void GetInt(int* value) const {
      RTC_DCHECK(value);
      *value = value_.int_value;
    }
    void GetBool(bool* value) const {
      RTC_DCHECK(value);
      *value = value_.bool_value;
    }
    void GetPlayoutAudioDeviceInfo(PlayoutAudioDeviceInfo* value) const {
      RTC_DCHECK(value);
      *value = value_.playout_audio_device_info;
    }

   private:
    RuntimeSetting(Type id, float value) : type_(id), value_(value) {}
    RuntimeSetting(Type id, int value) : type_(id), value_(value) {}
    RuntimeSetting(Type id, PlayoutAudioDeviceInfo value)
        : type_(id), value_(value) {}
    Type type_;
    union U {
      U() {}
      U(int value) : int_value(value) {}
      U(float value) : float_value(value) {}
      U(PlayoutAudioDeviceInfo value) : playout_audio_device_info(value) {}
      float float_value;
      int int_value;
      bool bool_value;
      PlayoutAudioDeviceInfo playout_audio_device_info;
    } value_;
  };

  ~AudioProcessing() override {}

  // Initializes internal states, while retaining all user settings. This
  // should be called before beginning to process a new audio stream. However,
  // it is not necessary to call before processing the first stream after
  // creation.
  //
  // It is also not necessary to call if the audio parameters (sample
  // rate and number of channels) have changed. Passing updated parameters
  // directly to `ProcessStream()` and `ProcessReverseStream()` is permissible.
  // If the parameters are known at init-time though, they may be provided.
  // TODO(webrtc:5298): Change to return void.
  virtual int Initialize() = 0;

  // The int16 interfaces require:
  //   - only `NativeRate`s be used
  //   - that the input, output and reverse rates must match
  //   - that `processing_config.output_stream()` matches
  //     `processing_config.input_stream()`.
  //
  // The float interfaces accept arbitrary rates and support differing input and
  // output layouts, but the output must have either one channel or the same
  // number of channels as the input.
  virtual int Initialize(const ProcessingConfig& processing_config) = 0;

  // TODO(peah): This method is a temporary solution used to take control
  // over the parameters in the audio processing module and is likely to change.
  virtual void ApplyConfig(const Config& config) = 0;

  // TODO(ajm): Only intended for internal use. Make private and friend the
  // necessary classes?
  virtual int proc_sample_rate_hz() const = 0;
  virtual int proc_split_sample_rate_hz() const = 0;
  virtual size_t num_input_channels() const = 0;
  virtual size_t num_proc_channels() const = 0;
  virtual size_t num_output_channels() const = 0;
  virtual size_t num_reverse_channels() const = 0;

  // Set to true when the output of AudioProcessing will be muted or in some
  // other way not used. Ideally, the captured audio would still be processed,
  // but some components may change behavior based on this information.
  // Default false. This method takes a lock. To achieve this in a lock-less
  // manner the PostRuntimeSetting can instead be used.
  virtual void set_output_will_be_muted(bool muted) = 0;

  // Enqueues a runtime setting.
  virtual void SetRuntimeSetting(RuntimeSetting setting) = 0;

  // Enqueues a runtime setting. Returns a bool indicating whether the
  // enqueueing was successfull.
  virtual bool PostRuntimeSetting(RuntimeSetting setting) = 0;

  // Accepts and produces a ~10 ms frame of interleaved 16 bit integer audio as
  // specified in `input_config` and `output_config`. `src` and `dest` may use
  // the same memory, if desired.
  virtual int ProcessStream(const int16_t* const src,
                            const StreamConfig& input_config,
                            const StreamConfig& output_config,
                            int16_t* const dest) = 0;

  // Accepts deinterleaved float audio with the range [-1, 1]. Each element of
  // `src` points to a channel buffer, arranged according to `input_stream`. At
  // output, the channels will be arranged according to `output_stream` in
  // `dest`.
  //
  // The output must have one channel or as many channels as the input. `src`
  // and `dest` may use the same memory, if desired.
  virtual int ProcessStream(const float* const* src,
                            const StreamConfig& input_config,
                            const StreamConfig& output_config,
                            float* const* dest) = 0;

  // Accepts and produces a ~10 ms frame of interleaved 16 bit integer audio for
  // the reverse direction audio stream as specified in `input_config` and
  // `output_config`. `src` and `dest` may use the same memory, if desired.
  virtual int ProcessReverseStream(const int16_t* const src,
                                   const StreamConfig& input_config,
                                   const StreamConfig& output_config,
                                   int16_t* const dest) = 0;

  // Accepts deinterleaved float audio with the range [-1, 1]. Each element of
  // `data` points to a channel buffer, arranged according to `reverse_config`.
  virtual int ProcessReverseStream(const float* const* src,
                                   const StreamConfig& input_config,
                                   const StreamConfig& output_config,
                                   float* const* dest) = 0;

  // Accepts deinterleaved float audio with the range [-1, 1]. Each element
  // of `data` points to a channel buffer, arranged according to
  // `reverse_config`.
  virtual int AnalyzeReverseStream(const float* const* data,
                                   const StreamConfig& reverse_config) = 0;

  // Returns the most recently produced ~10 ms of the linear AEC output at a
  // rate of 16 kHz. If there is more than one capture channel, a mono
  // representation of the input is returned. Returns true/false to indicate
  // whether an output returned.
  virtual bool GetLinearAecOutput(
      rtc::ArrayView<std::array<float, 160>> linear_output) const = 0;

  // This must be called prior to ProcessStream() if and only if adaptive analog
  // gain control is enabled, to pass the current analog level from the audio
  // HAL. Must be within the range [0, 255].
  virtual void set_stream_analog_level(int level) = 0;

  // When an analog mode is set, this should be called after
  // `set_stream_analog_level()` and `ProcessStream()` to obtain the recommended
  // new analog level for the audio HAL. It is the user's responsibility to
  // apply this level.
  virtual int recommended_stream_analog_level() const = 0;

  // This must be called if and only if echo processing is enabled.
  //
  // Sets the `delay` in ms between ProcessReverseStream() receiving a far-end
  // frame and ProcessStream() receiving a near-end frame containing the
  // corresponding echo. On the client-side this can be expressed as
  //   delay = (t_render - t_analyze) + (t_process - t_capture)
  // where,
  //   - t_analyze is the time a frame is passed to ProcessReverseStream() and
  //     t_render is the time the first sample of the same frame is rendered by
  //     the audio hardware.
  //   - t_capture is the time the first sample of a frame is captured by the
  //     audio hardware and t_process is the time the same frame is passed to
  //     ProcessStream().
  virtual int set_stream_delay_ms(int delay) = 0;
  virtual int stream_delay_ms() const = 0;

  // Call to signal that a key press occurred (true) or did not occur (false)
  // with this chunk of audio.
  virtual void set_stream_key_pressed(bool key_pressed) = 0;

  // Creates and attaches an webrtc::AecDump for recording debugging
  // information.
  // The `worker_queue` may not be null and must outlive the created
  // AecDump instance. |max_log_size_bytes == -1| means the log size
  // will be unlimited. `handle` may not be null. The AecDump takes
  // responsibility for `handle` and closes it in the destructor. A
  // return value of true indicates that the file has been
  // sucessfully opened, while a value of false indicates that
  // opening the file failed.
  virtual bool CreateAndAttachAecDump(absl::string_view file_name,
                                      int64_t max_log_size_bytes,
                                      rtc::TaskQueue* worker_queue) = 0;
  virtual bool CreateAndAttachAecDump(FILE* handle,
                                      int64_t max_log_size_bytes,
                                      rtc::TaskQueue* worker_queue) = 0;

  // TODO(webrtc:5298) Deprecated variant.
  // Attaches provided webrtc::AecDump for recording debugging
  // information. Log file and maximum file size logic is supposed to
  // be handled by implementing instance of AecDump. Calling this
  // method when another AecDump is attached resets the active AecDump
  // with a new one. This causes the d-tor of the earlier AecDump to
  // be called. The d-tor call may block until all pending logging
  // tasks are completed.
  virtual void AttachAecDump(std::unique_ptr<AecDump> aec_dump) = 0;

  // If no AecDump is attached, this has no effect. If an AecDump is
  // attached, it's destructor is called. The d-tor may block until
  // all pending logging tasks are completed.
  virtual void DetachAecDump() = 0;

  // Get audio processing statistics.
  virtual AudioProcessingStats GetStatistics() = 0;
  // TODO(webrtc:5298) Deprecated variant. The `has_remote_tracks` argument
  // should be set if there are active remote tracks (this would usually be true
  // during a call). If there are no remote tracks some of the stats will not be
  // set by AudioProcessing, because they only make sense if there is at least
  // one remote track.
  virtual AudioProcessingStats GetStatistics(bool has_remote_tracks) = 0;

  // Returns the last applied configuration.
  virtual AudioProcessing::Config GetConfig() const = 0;

  enum Error {
    // Fatal errors.
    kNoError = 0,
    kUnspecifiedError = -1,
    kCreationFailedError = -2,
    kUnsupportedComponentError = -3,
    kUnsupportedFunctionError = -4,
    kNullPointerError = -5,
    kBadParameterError = -6,
    kBadSampleRateError = -7,
    kBadDataLengthError = -8,
    kBadNumberChannelsError = -9,
    kFileError = -10,
    kStreamParameterNotSetError = -11,
    kNotEnabledError = -12,

    // Warnings are non-fatal.
    // This results when a set_stream_ parameter is out of range. Processing
    // will continue, but the parameter may have been truncated.
    kBadStreamParameterWarning = -13
  };

  // Native rates supported by the integer interfaces.
  enum NativeRate {
    kSampleRate8kHz = 8000,
    kSampleRate16kHz = 16000,
    kSampleRate32kHz = 32000,
    kSampleRate48kHz = 48000
  };

  // TODO(kwiberg): We currently need to support a compiler (Visual C++) that
  // complains if we don't explicitly state the size of the array here. Remove
  // the size when that's no longer the case.
  static constexpr int kNativeSampleRatesHz[4] = {
      kSampleRate8kHz, kSampleRate16kHz, kSampleRate32kHz, kSampleRate48kHz};
  static constexpr size_t kNumNativeSampleRates =
      arraysize(kNativeSampleRatesHz);
  static constexpr int kMaxNativeSampleRateHz =
      kNativeSampleRatesHz[kNumNativeSampleRates - 1];

  // APM processes audio in chunks of about 10 ms. See GetFrameSize() for
  // details.
  static constexpr int kChunkSizeMs = 10;

  // Returns floor(sample_rate_hz/100): the number of samples per channel used
  // as input and output to the audio processing module in calls to
  // ProcessStream, ProcessReverseStream, AnalyzeReverseStream, and
  // GetLinearAecOutput.
  //
  // This is exactly 10 ms for sample rates divisible by 100. For example:
  //  - 48000 Hz (480 samples per channel),
  //  - 44100 Hz (441 samples per channel),
  //  - 16000 Hz (160 samples per channel).
  //
  // Sample rates not divisible by 100 are received/produced in frames of
  // approximately 10 ms. For example:
  //  - 22050 Hz (220 samples per channel, or ~9.98 ms per frame),
  //  - 11025 Hz (110 samples per channel, or ~9.98 ms per frame).
  // These nondivisible sample rates yield lower audio quality compared to
  // multiples of 100. Internal resampling to 10 ms frames causes a simulated
  // clock drift effect which impacts the performance of (for example) echo
  // cancellation.
  static int GetFrameSize(int sample_rate_hz) { return sample_rate_hz / 100; }
};

class RTC_EXPORT AudioProcessingBuilder {
 public:
  AudioProcessingBuilder();
  AudioProcessingBuilder(const AudioProcessingBuilder&) = delete;
  AudioProcessingBuilder& operator=(const AudioProcessingBuilder&) = delete;
  ~AudioProcessingBuilder();

  // Sets the APM configuration.
  AudioProcessingBuilder& SetConfig(const AudioProcessing::Config& config) {
    config_ = config;
    return *this;
  }

  // Sets the echo controller factory to inject when APM is created.
  AudioProcessingBuilder& SetEchoControlFactory(
      std::unique_ptr<EchoControlFactory> echo_control_factory) {
    echo_control_factory_ = std::move(echo_control_factory);
    return *this;
  }

  // Sets the capture post-processing sub-module to inject when APM is created.
  AudioProcessingBuilder& SetCapturePostProcessing(
      std::unique_ptr<CustomProcessing> capture_post_processing) {
    capture_post_processing_ = std::move(capture_post_processing);
    return *this;
  }

  // Sets the render pre-processing sub-module to inject when APM is created.
  AudioProcessingBuilder& SetRenderPreProcessing(
      std::unique_ptr<CustomProcessing> render_pre_processing) {
    render_pre_processing_ = std::move(render_pre_processing);
    return *this;
  }

  // Sets the echo detector to inject when APM is created.
  AudioProcessingBuilder& SetEchoDetector(
      rtc::scoped_refptr<EchoDetector> echo_detector) {
    echo_detector_ = std::move(echo_detector);
    return *this;
  }

  // Sets the capture analyzer sub-module to inject when APM is created.
  AudioProcessingBuilder& SetCaptureAnalyzer(
      std::unique_ptr<CustomAudioAnalyzer> capture_analyzer) {
    capture_analyzer_ = std::move(capture_analyzer);
    return *this;
  }

  // Creates an APM instance with the specified config or the default one if
  // unspecified. Injects the specified components transferring the ownership
  // to the newly created APM instance - i.e., except for the config, the
  // builder is reset to its initial state.
  rtc::scoped_refptr<AudioProcessing> Create();

 private:
  AudioProcessing::Config config_;
  std::unique_ptr<EchoControlFactory> echo_control_factory_;
  std::unique_ptr<CustomProcessing> capture_post_processing_;
  std::unique_ptr<CustomProcessing> render_pre_processing_;
  rtc::scoped_refptr<EchoDetector> echo_detector_;
  std::unique_ptr<CustomAudioAnalyzer> capture_analyzer_;
};

class StreamConfig {
 public:
  // sample_rate_hz: The sampling rate of the stream.
  // num_channels: The number of audio channels in the stream.
  StreamConfig(int sample_rate_hz = 0, size_t num_channels = 0)
      : sample_rate_hz_(sample_rate_hz),
        num_channels_(num_channels),
        num_frames_(calculate_frames(sample_rate_hz)) {}

  void set_sample_rate_hz(int value) {
    sample_rate_hz_ = value;
    num_frames_ = calculate_frames(value);
  }
  void set_num_channels(size_t value) { num_channels_ = value; }

  int sample_rate_hz() const { return sample_rate_hz_; }

  // The number of channels in the stream.
  size_t num_channels() const { return num_channels_; }

  size_t num_frames() const { return num_frames_; }
  size_t num_samples() const { return num_channels_ * num_frames_; }

  bool operator==(const StreamConfig& other) const {
    return sample_rate_hz_ == other.sample_rate_hz_ &&
           num_channels_ == other.num_channels_;
  }

  bool operator!=(const StreamConfig& other) const { return !(*this == other); }

 private:
  static size_t calculate_frames(int sample_rate_hz) {
    return static_cast<size_t>(AudioProcessing::GetFrameSize(sample_rate_hz));
  }

  int sample_rate_hz_;
  size_t num_channels_;
  size_t num_frames_;
};

class ProcessingConfig {
 public:
  enum StreamName {
    kInputStream,
    kOutputStream,
    kReverseInputStream,
    kReverseOutputStream,
    kNumStreamNames,
  };

  const StreamConfig& input_stream() const {
    return streams[StreamName::kInputStream];
  }
  const StreamConfig& output_stream() const {
    return streams[StreamName::kOutputStream];
  }
  const StreamConfig& reverse_input_stream() const {
    return streams[StreamName::kReverseInputStream];
  }
  const StreamConfig& reverse_output_stream() const {
    return streams[StreamName::kReverseOutputStream];
  }

  StreamConfig& input_stream() { return streams[StreamName::kInputStream]; }
  StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; }
  StreamConfig& reverse_input_stream() {
    return streams[StreamName::kReverseInputStream];
  }
  StreamConfig& reverse_output_stream() {
    return streams[StreamName::kReverseOutputStream];
  }

  bool operator==(const ProcessingConfig& other) const {
    for (int i = 0; i < StreamName::kNumStreamNames; ++i) {
      if (this->streams[i] != other.streams[i]) {
        return false;
      }
    }
    return true;
  }

  bool operator!=(const ProcessingConfig& other) const {
    return !(*this == other);
  }

  StreamConfig streams[StreamName::kNumStreamNames];
};

// Experimental interface for a custom analysis submodule.
class CustomAudioAnalyzer {
 public:
  // (Re-) Initializes the submodule.
  virtual void Initialize(int sample_rate_hz, int num_channels) = 0;
  // Analyzes the given capture or render signal.
  virtual void Analyze(const AudioBuffer* audio) = 0;
  // Returns a string representation of the module state.
  virtual std::string ToString() const = 0;

  virtual ~CustomAudioAnalyzer() {}
};

// Interface for a custom processing submodule.
class CustomProcessing {
 public:
  // (Re-)Initializes the submodule.
  virtual void Initialize(int sample_rate_hz, int num_channels) = 0;
  // Processes the given capture or render signal.
  virtual void Process(AudioBuffer* audio) = 0;
  // Returns a string representation of the module state.
  virtual std::string ToString() const = 0;
  // Handles RuntimeSettings. TODO(webrtc:9262): make pure virtual
  // after updating dependencies.
  virtual void SetRuntimeSetting(AudioProcessing::RuntimeSetting setting);

  virtual ~CustomProcessing() {}
};

// Interface for an echo detector submodule.
class EchoDetector : public RefCountInterface {
 public:
  // (Re-)Initializes the submodule.
  virtual void Initialize(int capture_sample_rate_hz,
                          int num_capture_channels,
                          int render_sample_rate_hz,
                          int num_render_channels) = 0;

  // Analysis (not changing) of the first channel of the render signal.
  virtual void AnalyzeRenderAudio(rtc::ArrayView<const float> render_audio) = 0;

  // Analysis (not changing) of the capture signal.
  virtual void AnalyzeCaptureAudio(
      rtc::ArrayView<const float> capture_audio) = 0;

  struct Metrics {
    absl::optional<double> echo_likelihood;
    absl::optional<double> echo_likelihood_recent_max;
  };

  // Collect current metrics from the echo detector.
  virtual Metrics GetMetrics() const = 0;
};

}  // namespace webrtc

#endif  // MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_