summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/rtp_rtcp/source/tmmbr_help.cc
blob: 569ed4d8e00fe117fdd6b364d1c2b7c757fe2c7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/rtp_rtcp/source/tmmbr_help.h"

#include <stddef.h>

#include <limits>

#include "absl/algorithm/container.h"
#include "rtc_base/checks.h"

namespace webrtc {
std::vector<rtcp::TmmbItem> TMMBRHelp::FindBoundingSet(
    std::vector<rtcp::TmmbItem> candidates) {
  // Filter out candidates with 0 bitrate.
  for (auto it = candidates.begin(); it != candidates.end();) {
    if (!it->bitrate_bps())
      it = candidates.erase(it);
    else
      ++it;
  }

  if (candidates.size() <= 1)
    return candidates;

  size_t num_candidates = candidates.size();

  // 1. Sort by increasing packet overhead.
  absl::c_sort(candidates,
               [](const rtcp::TmmbItem& lhs, const rtcp::TmmbItem& rhs) {
                 return lhs.packet_overhead() < rhs.packet_overhead();
               });

  // 2. For tuples with same overhead, keep the one with the lowest bitrate.
  for (auto it = candidates.begin(); it != candidates.end();) {
    RTC_DCHECK(it->bitrate_bps());
    auto current_min = it;
    auto next_it = it + 1;
    // Use fact candidates are sorted by overhead, so candidates with same
    // overhead are adjusted.
    while (next_it != candidates.end() &&
           next_it->packet_overhead() == current_min->packet_overhead()) {
      if (next_it->bitrate_bps() < current_min->bitrate_bps()) {
        current_min->set_bitrate_bps(0);
        current_min = next_it;
      } else {
        next_it->set_bitrate_bps(0);
      }
      ++next_it;
      --num_candidates;
    }
    it = next_it;
  }

  // 3. Select and remove tuple with lowest bitrate.
  // (If more than 1, choose the one with highest overhead).
  auto min_bitrate_it = candidates.end();
  for (auto it = candidates.begin(); it != candidates.end(); ++it) {
    if (it->bitrate_bps()) {
      min_bitrate_it = it;
      break;
    }
  }

  for (auto it = min_bitrate_it; it != candidates.end(); ++it) {
    if (it->bitrate_bps() &&
        it->bitrate_bps() <= min_bitrate_it->bitrate_bps()) {
      // Get min bitrate.
      min_bitrate_it = it;
    }
  }

  std::vector<rtcp::TmmbItem> bounding_set;
  bounding_set.reserve(num_candidates);
  std::vector<float> intersection(num_candidates);
  std::vector<float> max_packet_rate(num_candidates);

  // First member of selected list.
  bounding_set.push_back(*min_bitrate_it);
  intersection[0] = 0;
  // Calculate its maximum packet rate (where its line crosses x-axis).
  uint16_t packet_overhead = bounding_set.back().packet_overhead();
  if (packet_overhead == 0) {
    // Avoid division by zero.
    max_packet_rate[0] = std::numeric_limits<float>::max();
  } else {
    max_packet_rate[0] =
        bounding_set.back().bitrate_bps() / static_cast<float>(packet_overhead);
  }
  // Remove from candidate list.
  min_bitrate_it->set_bitrate_bps(0);
  --num_candidates;

  // 4. Discard from candidate list all tuple with lower overhead
  // (next tuple must be steeper).
  for (auto it = candidates.begin(); it != candidates.end(); ++it) {
    if (it->bitrate_bps() &&
        it->packet_overhead() < bounding_set.front().packet_overhead()) {
      it->set_bitrate_bps(0);
      --num_candidates;
    }
  }

  bool get_new_candidate = true;
  rtcp::TmmbItem cur_candidate;
  while (num_candidates > 0) {
    if (get_new_candidate) {
      // 5. Remove first remaining tuple from candidate list.
      for (auto it = candidates.begin(); it != candidates.end(); ++it) {
        if (it->bitrate_bps()) {
          cur_candidate = *it;
          it->set_bitrate_bps(0);
          break;
        }
      }
    }

    // 6. Calculate packet rate and intersection of the current
    // line with line of last tuple in selected list.
    RTC_DCHECK_NE(cur_candidate.packet_overhead(),
                  bounding_set.back().packet_overhead());
    float packet_rate = static_cast<float>(cur_candidate.bitrate_bps() -
                                           bounding_set.back().bitrate_bps()) /
                        (cur_candidate.packet_overhead() -
                         bounding_set.back().packet_overhead());

    // 7. If the packet rate is equal or lower than intersection of
    //    last tuple in selected list,
    //    remove last tuple in selected list & go back to step 6.
    if (packet_rate <= intersection[bounding_set.size() - 1]) {
      // Remove last tuple and goto step 6.
      bounding_set.pop_back();
      get_new_candidate = false;
    } else {
      // 8. If packet rate is lower than maximum packet rate of
      // last tuple in selected list, add current tuple to selected
      // list.
      if (packet_rate < max_packet_rate[bounding_set.size() - 1]) {
        bounding_set.push_back(cur_candidate);
        intersection[bounding_set.size() - 1] = packet_rate;
        uint16_t packet_overhead = bounding_set.back().packet_overhead();
        RTC_DCHECK_NE(packet_overhead, 0);
        max_packet_rate[bounding_set.size() - 1] =
            bounding_set.back().bitrate_bps() /
            static_cast<float>(packet_overhead);
      }
      --num_candidates;
      get_new_candidate = true;
    }

    // 9. Go back to step 5 if any tuple remains in candidate list.
  }
  RTC_DCHECK(!bounding_set.empty());
  return bounding_set;
}

bool TMMBRHelp::IsOwner(const std::vector<rtcp::TmmbItem>& bounding,
                        uint32_t ssrc) {
  for (const rtcp::TmmbItem& item : bounding) {
    if (item.ssrc() == ssrc) {
      return true;
    }
  }
  return false;
}

uint64_t TMMBRHelp::CalcMinBitrateBps(
    const std::vector<rtcp::TmmbItem>& candidates) {
  RTC_DCHECK(!candidates.empty());
  uint64_t min_bitrate_bps = std::numeric_limits<uint64_t>::max();
  for (const rtcp::TmmbItem& item : candidates)
    if (item.bitrate_bps() < min_bitrate_bps)
      min_bitrate_bps = item.bitrate_bps();
  return min_bitrate_bps;
}
}  // namespace webrtc