summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/rtp_rtcp/test/testFec/test_fec.cc
blob: 5ac8feca21c034a5c30321d231147ec99536949e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

/*
 * Test application for core FEC algorithm. Calls encoding and decoding
 * functions in ForwardErrorCorrection directly.
 */

#include <string.h>
#include <time.h>

#include <list>

#include "modules/rtp_rtcp/source/byte_io.h"
#include "modules/rtp_rtcp/source/forward_error_correction.h"
#include "modules/rtp_rtcp/source/forward_error_correction_internal.h"
#include "rtc_base/random.h"
#include "test/gtest.h"
#include "test/testsupport/file_utils.h"

// #define VERBOSE_OUTPUT

namespace webrtc {
namespace fec_private_tables {
extern const uint8_t** kPacketMaskBurstyTbl[12];
}
namespace test {
using fec_private_tables::kPacketMaskBurstyTbl;

void ReceivePackets(
    std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>*
        to_decode_list,
    std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>*
        received_packet_list,
    size_t num_packets_to_decode,
    float reorder_rate,
    float duplicate_rate,
    Random* random) {
  RTC_DCHECK(to_decode_list->empty());
  RTC_DCHECK_LE(num_packets_to_decode, received_packet_list->size());

  for (size_t i = 0; i < num_packets_to_decode; i++) {
    auto it = received_packet_list->begin();
    // Reorder packets.
    float random_variable = random->Rand<float>();
    while (random_variable < reorder_rate) {
      ++it;
      if (it == received_packet_list->end()) {
        --it;
        break;
      }
      random_variable = random->Rand<float>();
    }
    to_decode_list->push_back(std::move(*it));
    received_packet_list->erase(it);

    // Duplicate packets.
    ForwardErrorCorrection::ReceivedPacket* received_packet =
        to_decode_list->back().get();
    random_variable = random->Rand<float>();
    while (random_variable < duplicate_rate) {
      std::unique_ptr<ForwardErrorCorrection::ReceivedPacket> duplicate_packet(
          new ForwardErrorCorrection::ReceivedPacket());
      *duplicate_packet = *received_packet;
      duplicate_packet->pkt = new ForwardErrorCorrection::Packet();
      duplicate_packet->pkt->data = received_packet->pkt->data;

      to_decode_list->push_back(std::move(duplicate_packet));
      random_variable = random->Rand<float>();
    }
  }
}

void RunTest(bool use_flexfec) {
  // TODO(marpan): Split this function into subroutines/helper functions.
  enum { kMaxNumberMediaPackets = 48 };
  enum { kMaxNumberFecPackets = 48 };

  const uint32_t kNumMaskBytesL0 = 2;
  const uint32_t kNumMaskBytesL1 = 6;

  // FOR UEP
  const bool kUseUnequalProtection = true;

  // FEC mask types.
  const FecMaskType kMaskTypes[] = {kFecMaskRandom, kFecMaskBursty};
  const int kNumFecMaskTypes = sizeof(kMaskTypes) / sizeof(*kMaskTypes);

  // Maximum number of media packets allowed for the mask type.
  const uint16_t kMaxMediaPackets[] = {
      kMaxNumberMediaPackets,
      sizeof(kPacketMaskBurstyTbl) / sizeof(*kPacketMaskBurstyTbl)};

  ASSERT_EQ(12, kMaxMediaPackets[1]) << "Max media packets for bursty mode not "
                                        "equal to 12.";

  ForwardErrorCorrection::PacketList media_packet_list;
  std::list<ForwardErrorCorrection::Packet*> fec_packet_list;
  std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>
      to_decode_list;
  std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>
      received_packet_list;
  ForwardErrorCorrection::RecoveredPacketList recovered_packet_list;
  std::list<uint8_t*> fec_mask_list;

  // Running over only two loss rates to limit execution time.
  const float loss_rate[] = {0.05f, 0.01f};
  const uint32_t loss_rate_size = sizeof(loss_rate) / sizeof(*loss_rate);
  const float reorder_rate = 0.1f;
  const float duplicate_rate = 0.1f;

  uint8_t media_loss_mask[kMaxNumberMediaPackets];
  uint8_t fec_loss_mask[kMaxNumberFecPackets];
  uint8_t fec_packet_masks[kMaxNumberFecPackets][kMaxNumberMediaPackets];

  // Seed the random number generator, storing the seed to file in order to
  // reproduce past results.
  const unsigned int random_seed = static_cast<unsigned int>(time(nullptr));
  Random random(random_seed);
  std::string filename = webrtc::test::OutputPath() + "randomSeedLog.txt";
  FILE* random_seed_file = fopen(filename.c_str(), "a");
  fprintf(random_seed_file, "%u\n", random_seed);
  fclose(random_seed_file);
  random_seed_file = nullptr;

  uint16_t seq_num = 0;
  uint32_t timestamp = random.Rand<uint32_t>();
  const uint32_t media_ssrc = random.Rand(1u, 0xfffffffe);
  uint32_t fec_ssrc;
  uint16_t fec_seq_num_offset;
  if (use_flexfec) {
    fec_ssrc = random.Rand(1u, 0xfffffffe);
    fec_seq_num_offset = random.Rand(0, 1 << 15);
  } else {
    fec_ssrc = media_ssrc;
    fec_seq_num_offset = 0;
  }

  std::unique_ptr<ForwardErrorCorrection> fec;
  if (use_flexfec) {
    fec = ForwardErrorCorrection::CreateFlexfec(fec_ssrc, media_ssrc);
  } else {
    RTC_DCHECK_EQ(media_ssrc, fec_ssrc);
    fec = ForwardErrorCorrection::CreateUlpfec(fec_ssrc);
  }

  // Loop over the mask types: random and bursty.
  for (int mask_type_idx = 0; mask_type_idx < kNumFecMaskTypes;
       ++mask_type_idx) {
    for (uint32_t loss_rate_idx = 0; loss_rate_idx < loss_rate_size;
         ++loss_rate_idx) {
      printf("Loss rate: %.2f, Mask type %d \n", loss_rate[loss_rate_idx],
             mask_type_idx);

      const uint32_t packet_mask_max = kMaxMediaPackets[mask_type_idx];
      std::unique_ptr<uint8_t[]> packet_mask(
          new uint8_t[packet_mask_max * kNumMaskBytesL1]);

      FecMaskType fec_mask_type = kMaskTypes[mask_type_idx];

      for (uint32_t num_media_packets = 1; num_media_packets <= packet_mask_max;
           num_media_packets++) {
        internal::PacketMaskTable mask_table(fec_mask_type, num_media_packets);

        for (uint32_t num_fec_packets = 1;
             num_fec_packets <= num_media_packets &&
             num_fec_packets <= packet_mask_max;
             num_fec_packets++) {
          // Loop over num_imp_packets: usually <= (0.3*num_media_packets).
          // For this test we check up to ~ (num_media_packets / 4).
          uint32_t max_num_imp_packets = num_media_packets / 4 + 1;
          for (uint32_t num_imp_packets = 0;
               num_imp_packets <= max_num_imp_packets &&
               num_imp_packets <= packet_mask_max;
               num_imp_packets++) {
            uint8_t protection_factor =
                static_cast<uint8_t>(num_fec_packets * 255 / num_media_packets);

            const uint32_t mask_bytes_per_fec_packet =
                (num_media_packets > 16) ? kNumMaskBytesL1 : kNumMaskBytesL0;

            memset(packet_mask.get(), 0,
                   num_media_packets * mask_bytes_per_fec_packet);

            // Transfer packet masks from bit-mask to byte-mask.
            internal::GeneratePacketMasks(
                num_media_packets, num_fec_packets, num_imp_packets,
                kUseUnequalProtection, &mask_table, packet_mask.get());

#ifdef VERBOSE_OUTPUT
            printf(
                "%u media packets, %u FEC packets, %u num_imp_packets, "
                "loss rate = %.2f \n",
                num_media_packets, num_fec_packets, num_imp_packets,
                loss_rate[loss_rate_idx]);
            printf("Packet mask matrix \n");
#endif

            for (uint32_t i = 0; i < num_fec_packets; i++) {
              for (uint32_t j = 0; j < num_media_packets; j++) {
                const uint8_t byte_mask =
                    packet_mask[i * mask_bytes_per_fec_packet + j / 8];
                const uint32_t bit_position = (7 - j % 8);
                fec_packet_masks[i][j] =
                    (byte_mask & (1 << bit_position)) >> bit_position;
#ifdef VERBOSE_OUTPUT
                printf("%u ", fec_packet_masks[i][j]);
#endif
              }
#ifdef VERBOSE_OUTPUT
              printf("\n");
#endif
            }
#ifdef VERBOSE_OUTPUT
            printf("\n");
#endif
            // Check for all zero rows or columns: indicates incorrect mask.
            uint32_t row_limit = num_media_packets;
            for (uint32_t i = 0; i < num_fec_packets; ++i) {
              uint32_t row_sum = 0;
              for (uint32_t j = 0; j < row_limit; ++j) {
                row_sum += fec_packet_masks[i][j];
              }
              ASSERT_NE(0u, row_sum) << "Row is all zero " << i;
            }
            for (uint32_t j = 0; j < row_limit; ++j) {
              uint32_t column_sum = 0;
              for (uint32_t i = 0; i < num_fec_packets; ++i) {
                column_sum += fec_packet_masks[i][j];
              }
              ASSERT_NE(0u, column_sum) << "Column is all zero " << j;
            }

            // Construct media packets.
            // Reset the sequence number here for each FEC code/mask tested
            // below, to avoid sequence number wrap-around. In actual decoding,
            // old FEC packets in list are dropped if sequence number wrap
            // around is detected. This case is currently not handled below.
            seq_num = 0;
            for (uint32_t i = 0; i < num_media_packets; ++i) {
              std::unique_ptr<ForwardErrorCorrection::Packet> media_packet(
                  new ForwardErrorCorrection::Packet());
              const uint32_t kMinPacketSize = 12;
              const uint32_t kMaxPacketSize = static_cast<uint32_t>(
                  IP_PACKET_SIZE - 12 - 28 - fec->MaxPacketOverhead());
              size_t packet_length =
                  random.Rand(kMinPacketSize, kMaxPacketSize);
              media_packet->data.SetSize(packet_length);

              uint8_t* data = media_packet->data.MutableData();
              // Generate random values for the first 2 bytes.
              data[0] = random.Rand<uint8_t>();
              data[1] = random.Rand<uint8_t>();

              // The first two bits are assumed to be 10 by the
              // FEC encoder. In fact the FEC decoder will set the
              // two first bits to 10 regardless of what they
              // actually were. Set the first two bits to 10
              // so that a memcmp can be performed for the
              // whole restored packet.
              data[0] |= 0x80;
              data[0] &= 0xbf;

              // FEC is applied to a whole frame.
              // A frame is signaled by multiple packets without
              // the marker bit set followed by the last packet of
              // the frame for which the marker bit is set.
              // Only push one (fake) frame to the FEC.
              data[1] &= 0x7f;

              ByteWriter<uint16_t>::WriteBigEndian(&data[2], seq_num);
              ByteWriter<uint32_t>::WriteBigEndian(&data[4], timestamp);
              ByteWriter<uint32_t>::WriteBigEndian(&data[8], media_ssrc);
              // Generate random values for payload
              for (size_t j = 12; j < packet_length; ++j) {
                data[j] = random.Rand<uint8_t>();
              }
              media_packet_list.push_back(std::move(media_packet));
              seq_num++;
            }
            media_packet_list.back()->data.MutableData()[1] |= 0x80;

            ASSERT_EQ(0, fec->EncodeFec(media_packet_list, protection_factor,
                                        num_imp_packets, kUseUnequalProtection,
                                        fec_mask_type, &fec_packet_list))
                << "EncodeFec() failed";

            ASSERT_EQ(num_fec_packets, fec_packet_list.size())
                << "We requested " << num_fec_packets
                << " FEC packets, but "
                   "EncodeFec() produced "
                << fec_packet_list.size();

            memset(media_loss_mask, 0, sizeof(media_loss_mask));
            uint32_t media_packet_idx = 0;
            for (const auto& media_packet : media_packet_list) {
              // We want a value between 0 and 1.
              const float loss_random_variable = random.Rand<float>();

              if (loss_random_variable >= loss_rate[loss_rate_idx]) {
                media_loss_mask[media_packet_idx] = 1;
                std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>
                    received_packet(
                        new ForwardErrorCorrection::ReceivedPacket());
                received_packet->pkt = new ForwardErrorCorrection::Packet();
                received_packet->pkt->data = media_packet->data;
                received_packet->ssrc = media_ssrc;
                received_packet->seq_num = ByteReader<uint16_t>::ReadBigEndian(
                    media_packet->data.data() + 2);
                received_packet->is_fec = false;
                received_packet_list.push_back(std::move(received_packet));
              }
              media_packet_idx++;
            }

            memset(fec_loss_mask, 0, sizeof(fec_loss_mask));
            uint32_t fec_packet_idx = 0;
            for (auto* fec_packet : fec_packet_list) {
              const float loss_random_variable = random.Rand<float>();
              if (loss_random_variable >= loss_rate[loss_rate_idx]) {
                fec_loss_mask[fec_packet_idx] = 1;
                std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>
                    received_packet(
                        new ForwardErrorCorrection::ReceivedPacket());
                received_packet->pkt = new ForwardErrorCorrection::Packet();
                received_packet->pkt->data = fec_packet->data;
                received_packet->seq_num = fec_seq_num_offset + seq_num;
                received_packet->is_fec = true;
                received_packet->ssrc = fec_ssrc;
                received_packet_list.push_back(std::move(received_packet));

                fec_mask_list.push_back(fec_packet_masks[fec_packet_idx]);
              }
              ++fec_packet_idx;
              ++seq_num;
            }

#ifdef VERBOSE_OUTPUT
            printf("Media loss mask:\n");
            for (uint32_t i = 0; i < num_media_packets; i++) {
              printf("%u ", media_loss_mask[i]);
            }
            printf("\n\n");

            printf("FEC loss mask:\n");
            for (uint32_t i = 0; i < num_fec_packets; i++) {
              printf("%u ", fec_loss_mask[i]);
            }
            printf("\n\n");
#endif

            auto fec_mask_it = fec_mask_list.begin();
            while (fec_mask_it != fec_mask_list.end()) {
              uint32_t hamming_dist = 0;
              uint32_t recovery_position = 0;
              for (uint32_t i = 0; i < num_media_packets; i++) {
                if (media_loss_mask[i] == 0 && (*fec_mask_it)[i] == 1) {
                  recovery_position = i;
                  ++hamming_dist;
                }
              }
              auto item_to_delete = fec_mask_it;
              ++fec_mask_it;

              if (hamming_dist == 1) {
                // Recovery possible. Restart search.
                media_loss_mask[recovery_position] = 1;
                fec_mask_it = fec_mask_list.begin();
              } else if (hamming_dist == 0) {
                // FEC packet cannot provide further recovery.
                fec_mask_list.erase(item_to_delete);
              }
            }
#ifdef VERBOSE_OUTPUT
            printf("Recovery mask:\n");
            for (uint32_t i = 0; i < num_media_packets; ++i) {
              printf("%u ", media_loss_mask[i]);
            }
            printf("\n\n");
#endif
            // For error-checking frame completion.
            bool fec_packet_received = false;
            while (!received_packet_list.empty()) {
              size_t num_packets_to_decode = random.Rand(
                  1u, static_cast<uint32_t>(received_packet_list.size()));
              ReceivePackets(&to_decode_list, &received_packet_list,
                             num_packets_to_decode, reorder_rate,
                             duplicate_rate, &random);

              if (fec_packet_received == false) {
                for (const auto& received_packet : to_decode_list) {
                  if (received_packet->is_fec) {
                    fec_packet_received = true;
                  }
                }
              }
              for (const auto& received_packet : to_decode_list) {
                fec->DecodeFec(*received_packet, &recovered_packet_list);
              }
              to_decode_list.clear();
            }
            media_packet_idx = 0;
            for (const auto& media_packet : media_packet_list) {
              if (media_loss_mask[media_packet_idx] == 1) {
                // Should have recovered this packet.
                auto recovered_packet_list_it = recovered_packet_list.cbegin();

                ASSERT_FALSE(recovered_packet_list_it ==
                             recovered_packet_list.end())
                    << "Insufficient number of recovered packets.";
                ForwardErrorCorrection::RecoveredPacket* recovered_packet =
                    recovered_packet_list_it->get();

                ASSERT_EQ(recovered_packet->pkt->data.size(),
                          media_packet->data.size())
                    << "Recovered packet length not identical to original "
                       "media packet";
                ASSERT_EQ(0, memcmp(recovered_packet->pkt->data.cdata(),
                                    media_packet->data.cdata(),
                                    media_packet->data.size()))
                    << "Recovered packet payload not identical to original "
                       "media packet";
                recovered_packet_list.pop_front();
              }
              ++media_packet_idx;
            }
            fec->ResetState(&recovered_packet_list);
            ASSERT_TRUE(recovered_packet_list.empty())
                << "Excessive number of recovered packets.\t size is: "
                << recovered_packet_list.size();
            // -- Teardown --
            media_packet_list.clear();

            // Clear FEC packet list, so we don't pass in a non-empty
            // list in the next call to DecodeFec().
            fec_packet_list.clear();

            // Delete received packets we didn't pass to DecodeFec(), due to
            // early frame completion.
            received_packet_list.clear();

            while (!fec_mask_list.empty()) {
              fec_mask_list.pop_front();
            }
            timestamp += 90000 / 30;
          }  // loop over num_imp_packets
        }    // loop over FecPackets
      }      // loop over num_media_packets
    }        // loop over loss rates
  }          // loop over mask types

  // Have DecodeFec clear the recovered packet list.
  fec->ResetState(&recovered_packet_list);
  ASSERT_TRUE(recovered_packet_list.empty())
      << "Recovered packet list is not empty";
}

TEST(FecTest, UlpfecTest) {
  RunTest(false);
}

TEST(FecTest, FlexfecTest) {
  RunTest(true);
}

}  // namespace test
}  // namespace webrtc