1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/utility/frame_dropper.h"
#include <algorithm>
namespace webrtc {
namespace {
const float kDefaultFrameSizeAlpha = 0.9f;
const float kDefaultKeyFrameRatioAlpha = 0.99f;
// 1 key frame every 10th second in 30 fps.
const float kDefaultKeyFrameRatioValue = 1 / 300.0f;
const float kDefaultDropRatioAlpha = 0.9f;
const float kDefaultDropRatioValue = 0.96f;
// Maximum duration over which frames are continuously dropped.
const float kDefaultMaxDropDurationSecs = 4.0f;
// Default target bitrate.
// TODO(isheriff): Should this be higher to avoid dropping too many packets when
// the bandwidth is unknown at the start ?
const float kDefaultTargetBitrateKbps = 300.0f;
const float kDefaultIncomingFrameRate = 30;
const float kLeakyBucketSizeSeconds = 0.5f;
// A delta frame that is bigger than `kLargeDeltaFactor` times the average
// delta frame is a large frame that is spread out for accumulation.
const int kLargeDeltaFactor = 3;
// Cap on the frame size accumulator to prevent excessive drops.
const float kAccumulatorCapBufferSizeSecs = 3.0f;
} // namespace
FrameDropper::FrameDropper()
: key_frame_ratio_(kDefaultKeyFrameRatioAlpha),
delta_frame_size_avg_kbits_(kDefaultFrameSizeAlpha),
drop_ratio_(kDefaultDropRatioAlpha, kDefaultDropRatioValue),
enabled_(true),
max_drop_duration_secs_(kDefaultMaxDropDurationSecs) {
Reset();
}
FrameDropper::~FrameDropper() = default;
void FrameDropper::Reset() {
key_frame_ratio_.Reset(kDefaultKeyFrameRatioAlpha);
key_frame_ratio_.Apply(1.0f, kDefaultKeyFrameRatioValue);
delta_frame_size_avg_kbits_.Reset(kDefaultFrameSizeAlpha);
accumulator_ = 0.0f;
accumulator_max_ = kDefaultTargetBitrateKbps / 2;
target_bitrate_ = kDefaultTargetBitrateKbps;
incoming_frame_rate_ = kDefaultIncomingFrameRate;
large_frame_accumulation_count_ = 0;
large_frame_accumulation_chunk_size_ = 0;
large_frame_accumulation_spread_ = 0.5 * kDefaultIncomingFrameRate;
drop_next_ = false;
drop_ratio_.Reset(0.9f);
drop_ratio_.Apply(0.0f, 0.0f);
drop_count_ = 0;
was_below_max_ = true;
}
void FrameDropper::Enable(bool enable) {
enabled_ = enable;
}
void FrameDropper::Fill(size_t framesize_bytes, bool delta_frame) {
if (!enabled_) {
return;
}
float framesize_kbits = 8.0f * static_cast<float>(framesize_bytes) / 1000.0f;
if (!delta_frame) {
key_frame_ratio_.Apply(1.0, 1.0);
// Do not spread if we are already doing it (or we risk dropping bits that
// need accumulation). Given we compute the key frame ratio and spread
// based on that, this should not normally happen.
if (large_frame_accumulation_count_ == 0) {
if (key_frame_ratio_.filtered() > 1e-5 &&
1 / key_frame_ratio_.filtered() < large_frame_accumulation_spread_) {
large_frame_accumulation_count_ =
static_cast<int32_t>(1 / key_frame_ratio_.filtered() + 0.5);
} else {
large_frame_accumulation_count_ =
static_cast<int32_t>(large_frame_accumulation_spread_ + 0.5);
}
large_frame_accumulation_chunk_size_ =
framesize_kbits / large_frame_accumulation_count_;
framesize_kbits = 0;
}
} else {
// Identify if it is an unusually large delta frame and spread accumulation
// if that is the case.
if (delta_frame_size_avg_kbits_.filtered() != -1 &&
(framesize_kbits >
kLargeDeltaFactor * delta_frame_size_avg_kbits_.filtered()) &&
large_frame_accumulation_count_ == 0) {
large_frame_accumulation_count_ =
static_cast<int32_t>(large_frame_accumulation_spread_ + 0.5);
large_frame_accumulation_chunk_size_ =
framesize_kbits / large_frame_accumulation_count_;
framesize_kbits = 0;
} else {
delta_frame_size_avg_kbits_.Apply(1, framesize_kbits);
}
key_frame_ratio_.Apply(1.0, 0.0);
}
// Change the level of the accumulator (bucket)
accumulator_ += framesize_kbits;
CapAccumulator();
}
void FrameDropper::Leak(uint32_t input_framerate) {
if (!enabled_) {
return;
}
if (input_framerate < 1) {
return;
}
if (target_bitrate_ < 0.0f) {
return;
}
// Add lower bound for large frame accumulation spread.
large_frame_accumulation_spread_ = std::max(0.5 * input_framerate, 5.0);
// Expected bits per frame based on current input frame rate.
float expected_bits_per_frame = target_bitrate_ / input_framerate;
if (large_frame_accumulation_count_ > 0) {
expected_bits_per_frame -= large_frame_accumulation_chunk_size_;
--large_frame_accumulation_count_;
}
accumulator_ -= expected_bits_per_frame;
if (accumulator_ < 0.0f) {
accumulator_ = 0.0f;
}
UpdateRatio();
}
void FrameDropper::UpdateRatio() {
if (accumulator_ > 1.3f * accumulator_max_) {
// Too far above accumulator max, react faster.
drop_ratio_.UpdateBase(0.8f);
} else {
// Go back to normal reaction.
drop_ratio_.UpdateBase(0.9f);
}
if (accumulator_ > accumulator_max_) {
// We are above accumulator max, and should ideally drop a frame. Increase
// the drop_ratio_ and drop the frame later.
if (was_below_max_) {
drop_next_ = true;
}
drop_ratio_.Apply(1.0f, 1.0f);
drop_ratio_.UpdateBase(0.9f);
} else {
drop_ratio_.Apply(1.0f, 0.0f);
}
was_below_max_ = accumulator_ < accumulator_max_;
}
// This function signals when to drop frames to the caller. It makes use of the
// drop_ratio_ to smooth out the drops over time.
bool FrameDropper::DropFrame() {
if (!enabled_) {
return false;
}
if (drop_next_) {
drop_next_ = false;
drop_count_ = 0;
}
if (drop_ratio_.filtered() >= 0.5f) { // Drops per keep
// Limit is the number of frames we should drop between each kept frame
// to keep our drop ratio. limit is positive in this case.
float denom = 1.0f - drop_ratio_.filtered();
if (denom < 1e-5) {
denom = 1e-5f;
}
int32_t limit = static_cast<int32_t>(1.0f / denom - 1.0f + 0.5f);
// Put a bound on the max amount of dropped frames between each kept
// frame, in terms of frame rate and window size (secs).
int max_limit =
static_cast<int>(incoming_frame_rate_ * max_drop_duration_secs_);
if (limit > max_limit) {
limit = max_limit;
}
if (drop_count_ < 0) {
// Reset the drop_count_ since it was negative and should be positive.
drop_count_ = -drop_count_;
}
if (drop_count_ < limit) {
// As long we are below the limit we should drop frames.
drop_count_++;
return true;
} else {
// Only when we reset drop_count_ a frame should be kept.
drop_count_ = 0;
return false;
}
} else if (drop_ratio_.filtered() > 0.0f &&
drop_ratio_.filtered() < 0.5f) { // Keeps per drop
// Limit is the number of frames we should keep between each drop
// in order to keep the drop ratio. limit is negative in this case,
// and the drop_count_ is also negative.
float denom = drop_ratio_.filtered();
if (denom < 1e-5) {
denom = 1e-5f;
}
int32_t limit = -static_cast<int32_t>(1.0f / denom - 1.0f + 0.5f);
if (drop_count_ > 0) {
// Reset the drop_count_ since we have a positive
// drop_count_, and it should be negative.
drop_count_ = -drop_count_;
}
if (drop_count_ > limit) {
if (drop_count_ == 0) {
// Drop frames when we reset drop_count_.
drop_count_--;
return true;
} else {
// Keep frames as long as we haven't reached limit.
drop_count_--;
return false;
}
} else {
drop_count_ = 0;
return false;
}
}
drop_count_ = 0;
return false;
}
void FrameDropper::SetRates(float bitrate, float incoming_frame_rate) {
// Bit rate of -1 means infinite bandwidth.
accumulator_max_ = bitrate * kLeakyBucketSizeSeconds;
if (target_bitrate_ > 0.0f && bitrate < target_bitrate_ &&
accumulator_ > accumulator_max_) {
// Rescale the accumulator level if the accumulator max decreases
accumulator_ = bitrate / target_bitrate_ * accumulator_;
}
target_bitrate_ = bitrate;
CapAccumulator();
incoming_frame_rate_ = incoming_frame_rate;
}
// Put a cap on the accumulator, i.e., don't let it grow beyond some level.
// This is a temporary fix for screencasting where very large frames from
// encoder will cause very slow response (too many frame drops).
// TODO(isheriff): Remove this now that large delta frames are also spread out ?
void FrameDropper::CapAccumulator() {
float max_accumulator = target_bitrate_ * kAccumulatorCapBufferSizeSecs;
if (accumulator_ > max_accumulator) {
accumulator_ = max_accumulator;
}
}
} // namespace webrtc
|