summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/p2p/base/p2p_transport_channel_unittest.cc
blob: 44b1bfc5e38ce87ced38336d01a94e86d526b356 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
/*
 *  Copyright 2009 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "p2p/base/p2p_transport_channel.h"

#include <list>
#include <memory>
#include <string>
#include <tuple>
#include <utility>

#include "absl/algorithm/container.h"
#include "absl/strings/string_view.h"
#include "api/test/mock_async_dns_resolver.h"
#include "p2p/base/active_ice_controller_factory_interface.h"
#include "p2p/base/active_ice_controller_interface.h"
#include "p2p/base/basic_ice_controller.h"
#include "p2p/base/connection.h"
#include "p2p/base/fake_port_allocator.h"
#include "p2p/base/ice_transport_internal.h"
#include "p2p/base/mock_active_ice_controller.h"
#include "p2p/base/mock_ice_controller.h"
#include "p2p/base/packet_transport_internal.h"
#include "p2p/base/test_stun_server.h"
#include "p2p/base/test_turn_server.h"
#include "p2p/client/basic_port_allocator.h"
#include "rtc_base/checks.h"
#include "rtc_base/dscp.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/fake_mdns_responder.h"
#include "rtc_base/fake_network.h"
#include "rtc_base/firewall_socket_server.h"
#include "rtc_base/gunit.h"
#include "rtc_base/helpers.h"
#include "rtc_base/internal/default_socket_server.h"
#include "rtc_base/logging.h"
#include "rtc_base/mdns_responder_interface.h"
#include "rtc_base/nat_server.h"
#include "rtc_base/nat_socket_factory.h"
#include "rtc_base/network/received_packet.h"
#include "rtc_base/proxy_server.h"
#include "rtc_base/socket_address.h"
#include "rtc_base/ssl_adapter.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/thread.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/virtual_socket_server.h"
#include "system_wrappers/include/metrics.h"
#include "test/scoped_key_value_config.h"

namespace {

using rtc::SocketAddress;
using ::testing::_;
using ::testing::Assign;
using ::testing::Combine;
using ::testing::Contains;
using ::testing::DoAll;
using ::testing::InSequence;
using ::testing::InvokeWithoutArgs;
using ::testing::MockFunction;
using ::testing::Return;
using ::testing::ReturnRef;
using ::testing::SaveArg;
using ::testing::SetArgPointee;
using ::testing::SizeIs;
using ::testing::Values;
using ::testing::WithParamInterface;
using ::webrtc::PendingTaskSafetyFlag;
using ::webrtc::SafeTask;

// Default timeout for tests in this file.
// Should be large enough for slow buildbots to run the tests reliably.
static const int kDefaultTimeout = 10000;
static const int kMediumTimeout = 3000;
static const int kShortTimeout = 1000;

static const int kOnlyLocalPorts = cricket::PORTALLOCATOR_DISABLE_STUN |
                                   cricket::PORTALLOCATOR_DISABLE_RELAY |
                                   cricket::PORTALLOCATOR_DISABLE_TCP;
static const int LOW_RTT = 20;
// Addresses on the public internet.
static const SocketAddress kPublicAddrs[2] = {SocketAddress("11.11.11.11", 0),
                                              SocketAddress("22.22.22.22", 0)};
// IPv6 Addresses on the public internet.
static const SocketAddress kIPv6PublicAddrs[2] = {
    SocketAddress("2400:4030:1:2c00:be30:abcd:efab:cdef", 0),
    SocketAddress("2600:0:1000:1b03:2e41:38ff:fea6:f2a4", 0)};
// For configuring multihomed clients.
static const SocketAddress kAlternateAddrs[2] = {
    SocketAddress("101.101.101.101", 0), SocketAddress("202.202.202.202", 0)};
static const SocketAddress kIPv6AlternateAddrs[2] = {
    SocketAddress("2401:4030:1:2c00:be30:abcd:efab:cdef", 0),
    SocketAddress("2601:0:1000:1b03:2e41:38ff:fea6:f2a4", 0)};
// Addresses for HTTP proxy servers.
static const SocketAddress kHttpsProxyAddrs[2] = {
    SocketAddress("11.11.11.1", 443), SocketAddress("22.22.22.1", 443)};
// Addresses for SOCKS proxy servers.
static const SocketAddress kSocksProxyAddrs[2] = {
    SocketAddress("11.11.11.1", 1080), SocketAddress("22.22.22.1", 1080)};
// Internal addresses for NAT boxes.
static const SocketAddress kNatAddrs[2] = {SocketAddress("192.168.1.1", 0),
                                           SocketAddress("192.168.2.1", 0)};
// Private addresses inside the NAT private networks.
static const SocketAddress kPrivateAddrs[2] = {
    SocketAddress("192.168.1.11", 0), SocketAddress("192.168.2.22", 0)};
// For cascaded NATs, the internal addresses of the inner NAT boxes.
static const SocketAddress kCascadedNatAddrs[2] = {
    SocketAddress("192.168.10.1", 0), SocketAddress("192.168.20.1", 0)};
// For cascaded NATs, private addresses inside the inner private networks.
static const SocketAddress kCascadedPrivateAddrs[2] = {
    SocketAddress("192.168.10.11", 0), SocketAddress("192.168.20.22", 0)};
// The address of the public STUN server.
static const SocketAddress kStunAddr("99.99.99.1", cricket::STUN_SERVER_PORT);
// The addresses for the public turn server.
static const SocketAddress kTurnUdpIntAddr("99.99.99.3",
                                           cricket::STUN_SERVER_PORT);
static const SocketAddress kTurnTcpIntAddr("99.99.99.4",
                                           cricket::STUN_SERVER_PORT + 1);
static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
static const cricket::RelayCredentials kRelayCredentials("test", "test");

// Based on ICE_UFRAG_LENGTH
const char* kIceUfrag[4] = {"UF00", "UF01", "UF02", "UF03"};
// Based on ICE_PWD_LENGTH
const char* kIcePwd[4] = {
    "TESTICEPWD00000000000000", "TESTICEPWD00000000000001",
    "TESTICEPWD00000000000002", "TESTICEPWD00000000000003"};
const cricket::IceParameters kIceParams[4] = {
    {kIceUfrag[0], kIcePwd[0], false},
    {kIceUfrag[1], kIcePwd[1], false},
    {kIceUfrag[2], kIcePwd[2], false},
    {kIceUfrag[3], kIcePwd[3], false}};

const uint64_t kLowTiebreaker = 11111;
const uint64_t kHighTiebreaker = 22222;
const uint64_t kTiebreakerDefault = 44444;

cricket::IceConfig CreateIceConfig(
    int receiving_timeout,
    cricket::ContinualGatheringPolicy continual_gathering_policy,
    absl::optional<int> backup_ping_interval = absl::nullopt) {
  cricket::IceConfig config;
  config.receiving_timeout = receiving_timeout;
  config.continual_gathering_policy = continual_gathering_policy;
  config.backup_connection_ping_interval = backup_ping_interval;
  return config;
}

cricket::Candidate CreateUdpCandidate(absl::string_view type,
                                      absl::string_view ip,
                                      int port,
                                      int priority,
                                      absl::string_view ufrag = "") {
  cricket::Candidate c;
  c.set_address(rtc::SocketAddress(ip, port));
  c.set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
  c.set_protocol(cricket::UDP_PROTOCOL_NAME);
  c.set_priority(priority);
  c.set_username(ufrag);
  c.set_type(type);
  return c;
}

cricket::BasicPortAllocator* CreateBasicPortAllocator(
    rtc::NetworkManager* network_manager,
    rtc::PacketSocketFactory* socket_factory,
    const cricket::ServerAddresses& stun_servers,
    const rtc::SocketAddress& turn_server_udp,
    const rtc::SocketAddress& turn_server_tcp) {
  cricket::RelayServerConfig turn_server;
  turn_server.credentials = kRelayCredentials;
  if (!turn_server_udp.IsNil()) {
    turn_server.ports.push_back(
        cricket::ProtocolAddress(turn_server_udp, cricket::PROTO_UDP));
  }
  if (!turn_server_tcp.IsNil()) {
    turn_server.ports.push_back(
        cricket::ProtocolAddress(turn_server_tcp, cricket::PROTO_TCP));
  }
  std::vector<cricket::RelayServerConfig> turn_servers(1, turn_server);

  std::unique_ptr<cricket::BasicPortAllocator> allocator =
      std::make_unique<cricket::BasicPortAllocator>(network_manager,
                                                    socket_factory);
  allocator->Initialize();
  allocator->SetConfiguration(stun_servers, turn_servers, 0, webrtc::NO_PRUNE);
  return allocator.release();
}

// An one-shot resolver factory with default return arguments.
// Resolution is immediate, always succeeds, and returns nonsense.
class ResolverFactoryFixture : public webrtc::MockAsyncDnsResolverFactory {
 public:
  ResolverFactoryFixture() {
    mock_async_dns_resolver_ = std::make_unique<webrtc::MockAsyncDnsResolver>();
    EXPECT_CALL(*mock_async_dns_resolver_, Start(_, _))
        .WillRepeatedly(
            [](const rtc::SocketAddress& addr,
               absl::AnyInvocable<void()> callback) { callback(); });
    EXPECT_CALL(*mock_async_dns_resolver_, result())
        .WillOnce(ReturnRef(mock_async_dns_resolver_result_));

    // A default action for GetResolvedAddress. Will be overruled
    // by SetAddressToReturn.
    EXPECT_CALL(mock_async_dns_resolver_result_, GetResolvedAddress(_, _))
        .WillRepeatedly(Return(true));

    EXPECT_CALL(mock_async_dns_resolver_result_, GetError())
        .WillOnce(Return(0));
    EXPECT_CALL(*this, Create()).WillOnce([this]() {
      return std::move(mock_async_dns_resolver_);
    });
  }

  void SetAddressToReturn(rtc::SocketAddress address_to_return) {
    EXPECT_CALL(mock_async_dns_resolver_result_, GetResolvedAddress(_, _))
        .WillOnce(DoAll(SetArgPointee<1>(address_to_return), Return(true)));
  }
  void DelayResolution() {
    // This function must be called before Create().
    ASSERT_TRUE(!!mock_async_dns_resolver_);
    EXPECT_CALL(*mock_async_dns_resolver_, Start(_, _))
        .WillOnce([this](const rtc::SocketAddress& addr,
                         absl::AnyInvocable<void()> callback) {
          saved_callback_ = std::move(callback);
        });
  }
  void FireDelayedResolution() {
    // This function must be called after Create().
    ASSERT_TRUE(saved_callback_);
    saved_callback_();
  }

 private:
  std::unique_ptr<webrtc::MockAsyncDnsResolver> mock_async_dns_resolver_;
  webrtc::MockAsyncDnsResolverResult mock_async_dns_resolver_result_;
  absl::AnyInvocable<void()> saved_callback_;
};

bool HasLocalAddress(const cricket::CandidatePairInterface* pair,
                     const SocketAddress& address) {
  return pair->local_candidate().address().EqualIPs(address);
}

bool HasRemoteAddress(const cricket::CandidatePairInterface* pair,
                      const SocketAddress& address) {
  return pair->remote_candidate().address().EqualIPs(address);
}

}  // namespace

namespace cricket {

// This test simulates 2 P2P endpoints that want to establish connectivity
// with each other over various network topologies and conditions, which can be
// specified in each individial test.
// A virtual network (via VirtualSocketServer) along with virtual firewalls and
// NATs (via Firewall/NATSocketServer) are used to simulate the various network
// conditions. We can configure the IP addresses of the endpoints,
// block various types of connectivity, or add arbitrary levels of NAT.
// We also run a STUN server and a relay server on the virtual network to allow
// our typical P2P mechanisms to do their thing.
// For each case, we expect the P2P stack to eventually settle on a specific
// form of connectivity to the other side. The test checks that the P2P
// negotiation successfully establishes connectivity within a certain time,
// and that the result is what we expect.
// Note that this class is a base class for use by other tests, who will provide
// specialized test behavior.
class P2PTransportChannelTestBase : public ::testing::Test,
                                    public sigslot::has_slots<> {
 public:
  explicit P2PTransportChannelTestBase(absl::string_view field_trials)
      : field_trials_(field_trials),
        vss_(new rtc::VirtualSocketServer()),
        nss_(new rtc::NATSocketServer(vss_.get())),
        ss_(new rtc::FirewallSocketServer(nss_.get())),
        socket_factory_(new rtc::BasicPacketSocketFactory(ss_.get())),
        main_(ss_.get()),
        stun_server_(TestStunServer::Create(ss_.get(), kStunAddr, main_)),
        turn_server_(&main_, ss_.get(), kTurnUdpIntAddr, kTurnUdpExtAddr),
        socks_server1_(ss_.get(),
                       kSocksProxyAddrs[0],
                       ss_.get(),
                       kSocksProxyAddrs[0]),
        socks_server2_(ss_.get(),
                       kSocksProxyAddrs[1],
                       ss_.get(),
                       kSocksProxyAddrs[1]),
        force_relay_(false) {
    ep1_.role_ = ICEROLE_CONTROLLING;
    ep2_.role_ = ICEROLE_CONTROLLED;

    ServerAddresses stun_servers;
    stun_servers.insert(kStunAddr);
    ep1_.allocator_.reset(CreateBasicPortAllocator(
        &ep1_.network_manager_, socket_factory_.get(), stun_servers,
        kTurnUdpIntAddr, rtc::SocketAddress()));
    ep2_.allocator_.reset(CreateBasicPortAllocator(
        &ep2_.network_manager_, socket_factory_.get(), stun_servers,
        kTurnUdpIntAddr, rtc::SocketAddress()));

    ep1_.SetIceTiebreaker(kTiebreakerDefault);
    ep1_.allocator_->SetIceTiebreaker(kTiebreakerDefault);
    ep2_.SetIceTiebreaker(kTiebreakerDefault);
    ep2_.allocator_->SetIceTiebreaker(kTiebreakerDefault);
    webrtc::metrics::Reset();
  }

  P2PTransportChannelTestBase()
      : P2PTransportChannelTestBase(absl::string_view()) {}

 protected:
  enum Config {
    OPEN,                         // Open to the Internet
    NAT_FULL_CONE,                // NAT, no filtering
    NAT_ADDR_RESTRICTED,          // NAT, must send to an addr to recv
    NAT_PORT_RESTRICTED,          // NAT, must send to an addr+port to recv
    NAT_SYMMETRIC,                // NAT, endpoint-dependent bindings
    NAT_DOUBLE_CONE,              // Double NAT, both cone
    NAT_SYMMETRIC_THEN_CONE,      // Double NAT, symmetric outer, cone inner
    BLOCK_UDP,                    // Firewall, UDP in/out blocked
    BLOCK_UDP_AND_INCOMING_TCP,   // Firewall, UDP in/out and TCP in blocked
    BLOCK_ALL_BUT_OUTGOING_HTTP,  // Firewall, only TCP out on 80/443
    PROXY_HTTPS,                  // All traffic through HTTPS proxy
    PROXY_SOCKS,                  // All traffic through SOCKS proxy
    NUM_CONFIGS
  };

  struct Result {
    Result(absl::string_view controlling_type,
           absl::string_view controlling_protocol,
           absl::string_view controlled_type,
           absl::string_view controlled_protocol,
           int wait)
        : controlling_type(controlling_type),
          controlling_protocol(controlling_protocol),
          controlled_type(controlled_type),
          controlled_protocol(controlled_protocol),
          connect_wait(wait) {}

    // The expected candidate type and protocol of the controlling ICE agent.
    std::string controlling_type;
    std::string controlling_protocol;
    // The expected candidate type and protocol of the controlled ICE agent.
    std::string controlled_type;
    std::string controlled_protocol;
    // How long to wait before the correct candidate pair is selected.
    int connect_wait;
  };

  struct ChannelData {
    bool CheckData(const char* data, int len) {
      bool ret = false;
      if (!ch_packets_.empty()) {
        std::string packet = ch_packets_.front();
        ret = (packet == std::string(data, len));
        ch_packets_.pop_front();
      }
      return ret;
    }

    std::string name_;  // TODO(?) - Currently not used.
    std::list<std::string> ch_packets_;
    std::unique_ptr<P2PTransportChannel> ch_;
  };

  struct CandidateData {
    IceTransportInternal* channel;
    Candidate candidate;
  };

  struct Endpoint : public sigslot::has_slots<> {
    Endpoint()
        : role_(ICEROLE_UNKNOWN),
          tiebreaker_(0),
          role_conflict_(false),
          save_candidates_(false) {}
    bool HasTransport(const rtc::PacketTransportInternal* transport) {
      return (transport == cd1_.ch_.get() || transport == cd2_.ch_.get());
    }
    ChannelData* GetChannelData(rtc::PacketTransportInternal* transport) {
      if (!HasTransport(transport))
        return NULL;
      if (cd1_.ch_.get() == transport)
        return &cd1_;
      else
        return &cd2_;
    }

    void SetIceRole(IceRole role) { role_ = role; }
    IceRole ice_role() { return role_; }
    void SetIceTiebreaker(uint64_t tiebreaker) { tiebreaker_ = tiebreaker; }
    uint64_t GetIceTiebreaker() { return tiebreaker_; }
    void OnRoleConflict(bool role_conflict) { role_conflict_ = role_conflict; }
    bool role_conflict() { return role_conflict_; }
    void SetAllocationStepDelay(uint32_t delay) {
      allocator_->set_step_delay(delay);
    }
    void SetAllowTcpListen(bool allow_tcp_listen) {
      allocator_->set_allow_tcp_listen(allow_tcp_listen);
    }

    void OnIceRegathering(PortAllocatorSession*, IceRegatheringReason reason) {
      ++ice_regathering_counter_[reason];
    }

    int GetIceRegatheringCountForReason(IceRegatheringReason reason) {
      return ice_regathering_counter_[reason];
    }

    rtc::FakeNetworkManager network_manager_;
    std::unique_ptr<BasicPortAllocator> allocator_;
    webrtc::AsyncDnsResolverFactoryInterface* async_dns_resolver_factory_ =
        nullptr;
    ChannelData cd1_;
    ChannelData cd2_;
    IceRole role_;
    uint64_t tiebreaker_;
    bool role_conflict_;
    bool save_candidates_;
    std::vector<CandidateData> saved_candidates_;
    bool ready_to_send_ = false;
    std::map<IceRegatheringReason, int> ice_regathering_counter_;
  };

  ChannelData* GetChannelData(rtc::PacketTransportInternal* transport) {
    if (ep1_.HasTransport(transport))
      return ep1_.GetChannelData(transport);
    else
      return ep2_.GetChannelData(transport);
  }

  IceParameters IceParamsWithRenomination(const IceParameters& ice,
                                          bool renomination) {
    IceParameters new_ice = ice;
    new_ice.renomination = renomination;
    return new_ice;
  }

  void CreateChannels(const IceConfig& ep1_config,
                      const IceConfig& ep2_config,
                      bool renomination = false) {
    IceParameters ice_ep1_cd1_ch =
        IceParamsWithRenomination(kIceParams[0], renomination);
    IceParameters ice_ep2_cd1_ch =
        IceParamsWithRenomination(kIceParams[1], renomination);
    ep1_.cd1_.ch_ = CreateChannel(0, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                  ice_ep1_cd1_ch, ice_ep2_cd1_ch);
    ep2_.cd1_.ch_ = CreateChannel(1, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                  ice_ep2_cd1_ch, ice_ep1_cd1_ch);
    ep1_.cd1_.ch_->SetIceConfig(ep1_config);
    ep2_.cd1_.ch_->SetIceConfig(ep2_config);
    ep1_.cd1_.ch_->MaybeStartGathering();
    ep2_.cd1_.ch_->MaybeStartGathering();
    ep1_.cd1_.ch_->allocator_session()->SignalIceRegathering.connect(
        &ep1_, &Endpoint::OnIceRegathering);
    ep2_.cd1_.ch_->allocator_session()->SignalIceRegathering.connect(
        &ep2_, &Endpoint::OnIceRegathering);
  }

  void CreateChannels() {
    IceConfig default_config;
    CreateChannels(default_config, default_config, false);
  }

  std::unique_ptr<P2PTransportChannel> CreateChannel(
      int endpoint,
      int component,
      const IceParameters& local_ice,
      const IceParameters& remote_ice) {
    webrtc::IceTransportInit init;
    init.set_port_allocator(GetAllocator(endpoint));
    init.set_async_dns_resolver_factory(
        GetEndpoint(endpoint)->async_dns_resolver_factory_);
    init.set_field_trials(&field_trials_);
    auto channel = P2PTransportChannel::Create("test content name", component,
                                               std::move(init));
    channel->SignalReadyToSend.connect(
        this, &P2PTransportChannelTestBase::OnReadyToSend);
    channel->SignalCandidateGathered.connect(
        this, &P2PTransportChannelTestBase::OnCandidateGathered);
    channel->SetCandidatesRemovedCallback(
        [this](IceTransportInternal* transport, const Candidates& candidates) {
          OnCandidatesRemoved(transport, candidates);
        });
    channel->SignalReadPacket.connect(
        this, &P2PTransportChannelTestBase::OnReadPacket);
    channel->SignalRoleConflict.connect(
        this, &P2PTransportChannelTestBase::OnRoleConflict);
    channel->SignalNetworkRouteChanged.connect(
        this, &P2PTransportChannelTestBase::OnNetworkRouteChanged);
    channel->SignalSentPacket.connect(
        this, &P2PTransportChannelTestBase::OnSentPacket);
    channel->SetIceParameters(local_ice);
    if (remote_ice_parameter_source_ == FROM_SETICEPARAMETERS) {
      channel->SetRemoteIceParameters(remote_ice);
    }
    channel->SetIceRole(GetEndpoint(endpoint)->ice_role());
    channel->SetIceTiebreaker(GetEndpoint(endpoint)->GetIceTiebreaker());
    return channel;
  }

  void DestroyChannels() {
    safety_->SetNotAlive();
    ep1_.cd1_.ch_.reset();
    ep2_.cd1_.ch_.reset();
    ep1_.cd2_.ch_.reset();
    ep2_.cd2_.ch_.reset();
    // Process pending tasks that need to run for cleanup purposes such as
    // pending deletion of Connection objects (see Connection::Destroy).
    rtc::Thread::Current()->ProcessMessages(0);
  }
  P2PTransportChannel* ep1_ch1() { return ep1_.cd1_.ch_.get(); }
  P2PTransportChannel* ep1_ch2() { return ep1_.cd2_.ch_.get(); }
  P2PTransportChannel* ep2_ch1() { return ep2_.cd1_.ch_.get(); }
  P2PTransportChannel* ep2_ch2() { return ep2_.cd2_.ch_.get(); }

  TestTurnServer* test_turn_server() { return &turn_server_; }
  rtc::VirtualSocketServer* virtual_socket_server() { return vss_.get(); }

  // Common results.
  static const Result kLocalUdpToLocalUdp;
  static const Result kLocalUdpToStunUdp;
  static const Result kLocalUdpToPrflxUdp;
  static const Result kPrflxUdpToLocalUdp;
  static const Result kStunUdpToLocalUdp;
  static const Result kStunUdpToStunUdp;
  static const Result kStunUdpToPrflxUdp;
  static const Result kPrflxUdpToStunUdp;
  static const Result kLocalUdpToRelayUdp;
  static const Result kPrflxUdpToRelayUdp;
  static const Result kRelayUdpToPrflxUdp;
  static const Result kLocalTcpToLocalTcp;
  static const Result kLocalTcpToPrflxTcp;
  static const Result kPrflxTcpToLocalTcp;

  rtc::NATSocketServer* nat() { return nss_.get(); }
  rtc::FirewallSocketServer* fw() { return ss_.get(); }

  Endpoint* GetEndpoint(int endpoint) {
    if (endpoint == 0) {
      return &ep1_;
    } else if (endpoint == 1) {
      return &ep2_;
    } else {
      return NULL;
    }
  }
  BasicPortAllocator* GetAllocator(int endpoint) {
    return GetEndpoint(endpoint)->allocator_.get();
  }
  void AddAddress(int endpoint, const SocketAddress& addr) {
    GetEndpoint(endpoint)->network_manager_.AddInterface(addr);
  }
  void AddAddress(int endpoint,
                  const SocketAddress& addr,
                  absl::string_view ifname,
                  rtc::AdapterType adapter_type,
                  absl::optional<rtc::AdapterType> underlying_vpn_adapter_type =
                      absl::nullopt) {
    GetEndpoint(endpoint)->network_manager_.AddInterface(
        addr, ifname, adapter_type, underlying_vpn_adapter_type);
  }
  void RemoveAddress(int endpoint, const SocketAddress& addr) {
    GetEndpoint(endpoint)->network_manager_.RemoveInterface(addr);
    fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, addr);
  }
  void SetProxy(int endpoint, rtc::ProxyType type) {
    rtc::ProxyInfo info;
    info.type = type;
    info.address = (type == rtc::PROXY_HTTPS) ? kHttpsProxyAddrs[endpoint]
                                              : kSocksProxyAddrs[endpoint];
    GetAllocator(endpoint)->set_proxy("unittest/1.0", info);
  }
  void SetAllocatorFlags(int endpoint, int flags) {
    GetAllocator(endpoint)->set_flags(flags);
  }
  void SetIceRole(int endpoint, IceRole role) {
    GetEndpoint(endpoint)->SetIceRole(role);
  }
  void SetIceTiebreaker(int endpoint, uint64_t tiebreaker) {
    GetEndpoint(endpoint)->SetIceTiebreaker(tiebreaker);
  }
  bool GetRoleConflict(int endpoint) {
    return GetEndpoint(endpoint)->role_conflict();
  }
  void SetAllocationStepDelay(int endpoint, uint32_t delay) {
    return GetEndpoint(endpoint)->SetAllocationStepDelay(delay);
  }
  void SetAllowTcpListen(int endpoint, bool allow_tcp_listen) {
    return GetEndpoint(endpoint)->SetAllowTcpListen(allow_tcp_listen);
  }

  // Return true if the approprite parts of the expected Result, based
  // on the local and remote candidate of ep1_ch1, match.  This can be
  // used in an EXPECT_TRUE_WAIT.
  bool CheckCandidate1(const Result& expected) {
    const std::string& local_type = LocalCandidate(ep1_ch1())->type();
    const std::string& local_protocol = LocalCandidate(ep1_ch1())->protocol();
    const std::string& remote_type = RemoteCandidate(ep1_ch1())->type();
    const std::string& remote_protocol = RemoteCandidate(ep1_ch1())->protocol();
    return (local_protocol == expected.controlling_protocol &&
            remote_protocol == expected.controlled_protocol &&
            local_type == expected.controlling_type &&
            remote_type == expected.controlled_type);
  }

  // EXPECT_EQ on the approprite parts of the expected Result, based
  // on the local and remote candidate of ep1_ch1.  This is like
  // CheckCandidate1, except that it will provide more detail about
  // what didn't match.
  void ExpectCandidate1(const Result& expected) {
    if (CheckCandidate1(expected)) {
      return;
    }

    const std::string& local_type = LocalCandidate(ep1_ch1())->type();
    const std::string& local_protocol = LocalCandidate(ep1_ch1())->protocol();
    const std::string& remote_type = RemoteCandidate(ep1_ch1())->type();
    const std::string& remote_protocol = RemoteCandidate(ep1_ch1())->protocol();
    EXPECT_EQ(expected.controlling_type, local_type);
    EXPECT_EQ(expected.controlled_type, remote_type);
    EXPECT_EQ(expected.controlling_protocol, local_protocol);
    EXPECT_EQ(expected.controlled_protocol, remote_protocol);
  }

  // Return true if the approprite parts of the expected Result, based
  // on the local and remote candidate of ep2_ch1, match.  This can be
  // used in an EXPECT_TRUE_WAIT.
  bool CheckCandidate2(const Result& expected) {
    const std::string& local_type = LocalCandidate(ep2_ch1())->type();
    const std::string& local_protocol = LocalCandidate(ep2_ch1())->protocol();
    const std::string& remote_type = RemoteCandidate(ep2_ch1())->type();
    const std::string& remote_protocol = RemoteCandidate(ep2_ch1())->protocol();
    return (local_protocol == expected.controlled_protocol &&
            remote_protocol == expected.controlling_protocol &&
            local_type == expected.controlled_type &&
            remote_type == expected.controlling_type);
  }

  // EXPECT_EQ on the approprite parts of the expected Result, based
  // on the local and remote candidate of ep2_ch1.  This is like
  // CheckCandidate2, except that it will provide more detail about
  // what didn't match.
  void ExpectCandidate2(const Result& expected) {
    if (CheckCandidate2(expected)) {
      return;
    }

    const std::string& local_type = LocalCandidate(ep2_ch1())->type();
    const std::string& local_protocol = LocalCandidate(ep2_ch1())->protocol();
    const std::string& remote_type = RemoteCandidate(ep2_ch1())->type();
    const std::string& remote_protocol = RemoteCandidate(ep2_ch1())->protocol();
    EXPECT_EQ(expected.controlled_type, local_type);
    EXPECT_EQ(expected.controlling_type, remote_type);
    EXPECT_EQ(expected.controlled_protocol, local_protocol);
    EXPECT_EQ(expected.controlling_protocol, remote_protocol);
  }

  static bool CheckCandidate(P2PTransportChannel* channel,
                             SocketAddress from,
                             SocketAddress to) {
    auto local_candidate = LocalCandidate(channel);
    auto remote_candidate = RemoteCandidate(channel);
    return local_candidate != nullptr &&
           local_candidate->address().EqualIPs(from) &&
           remote_candidate != nullptr &&
           remote_candidate->address().EqualIPs(to);
  }

  static bool CheckCandidatePair(P2PTransportChannel* ch1,
                                 P2PTransportChannel* ch2,
                                 SocketAddress from,
                                 SocketAddress to) {
    return CheckCandidate(ch1, from, to) && CheckCandidate(ch2, to, from);
  }

  static bool CheckConnected(P2PTransportChannel* ch1,
                             P2PTransportChannel* ch2) {
    return ch1 != nullptr && ch1->receiving() && ch1->writable() &&
           ch2 != nullptr && ch2->receiving() && ch2->writable();
  }

  static bool CheckCandidatePairAndConnected(P2PTransportChannel* ch1,
                                             P2PTransportChannel* ch2,
                                             SocketAddress from,
                                             SocketAddress to) {
    return CheckConnected(ch1, ch2) && CheckCandidatePair(ch1, ch2, from, to);
  }

  virtual void Test(const Result& expected) {
    rtc::ScopedFakeClock clock;
    int64_t connect_start = rtc::TimeMillis();
    int64_t connect_time;

    // Create the channels and wait for them to connect.
    CreateChannels();
    EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                               expected.connect_wait + kShortTimeout, clock);
    connect_time = rtc::TimeMillis() - connect_start;
    if (connect_time < expected.connect_wait) {
      RTC_LOG(LS_INFO) << "Connect time: " << connect_time << " ms";
    } else {
      RTC_LOG(LS_INFO) << "Connect time: TIMEOUT (" << expected.connect_wait
                       << " ms)";
    }

    // Allow a few turns of the crank for the selected connections to emerge.
    // This may take up to 2 seconds.
    if (ep1_ch1()->selected_connection() && ep2_ch1()->selected_connection()) {
      int64_t converge_start = rtc::TimeMillis();
      int64_t converge_time;
      // Verifying local and remote channel selected connection information.
      // This is done only for the RFC 5245 as controlled agent will use
      // USE-CANDIDATE from controlling (ep1) agent. We can easily predict from
      // EP1 result matrix.
      EXPECT_TRUE_SIMULATED_WAIT(
          CheckCandidate1(expected) && CheckCandidate2(expected),
          kDefaultTimeout, clock);
      // Also do EXPECT_EQ on each part so that failures are more verbose.
      ExpectCandidate1(expected);
      ExpectCandidate2(expected);

      converge_time = rtc::TimeMillis() - converge_start;
      int64_t converge_wait = 2000;
      if (converge_time < converge_wait) {
        RTC_LOG(LS_INFO) << "Converge time: " << converge_time << " ms";
      } else {
        RTC_LOG(LS_INFO) << "Converge time: TIMEOUT (" << converge_time
                         << " ms)";
      }
    }
    // Try sending some data to other end.
    TestSendRecv(&clock);

    // Destroy the channels, and wait for them to be fully cleaned up.
    DestroyChannels();
  }

  void TestSendRecv(rtc::ThreadProcessingFakeClock* clock) {
    for (int i = 0; i < 10; ++i) {
      const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
      int len = static_cast<int>(strlen(data));
      // local_channel1 <==> remote_channel1
      EXPECT_EQ_SIMULATED_WAIT(len, SendData(ep1_ch1(), data, len),
                               kMediumTimeout, *clock);
      EXPECT_TRUE_SIMULATED_WAIT(CheckDataOnChannel(ep2_ch1(), data, len),
                                 kMediumTimeout, *clock);
      EXPECT_EQ_SIMULATED_WAIT(len, SendData(ep2_ch1(), data, len),
                               kMediumTimeout, *clock);
      EXPECT_TRUE_SIMULATED_WAIT(CheckDataOnChannel(ep1_ch1(), data, len),
                                 kMediumTimeout, *clock);
    }
  }

  // This test waits for the transport to become receiving and writable on both
  // end points. Once they are, the end points set new local ice parameters and
  // restart the ice gathering. Finally it waits for the transport to select a
  // new connection using the newly generated ice candidates.
  // Before calling this function the end points must be configured.
  void TestHandleIceUfragPasswordChanged() {
    rtc::ScopedFakeClock clock;
    ep1_ch1()->SetRemoteIceParameters(kIceParams[1]);
    ep2_ch1()->SetRemoteIceParameters(kIceParams[0]);
    EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                               kMediumTimeout, clock);

    const Candidate* old_local_candidate1 = LocalCandidate(ep1_ch1());
    const Candidate* old_local_candidate2 = LocalCandidate(ep2_ch1());
    const Candidate* old_remote_candidate1 = RemoteCandidate(ep1_ch1());
    const Candidate* old_remote_candidate2 = RemoteCandidate(ep2_ch1());

    ep1_ch1()->SetIceParameters(kIceParams[2]);
    ep1_ch1()->SetRemoteIceParameters(kIceParams[3]);
    ep1_ch1()->MaybeStartGathering();
    ep2_ch1()->SetIceParameters(kIceParams[3]);

    ep2_ch1()->SetRemoteIceParameters(kIceParams[2]);
    ep2_ch1()->MaybeStartGathering();

    EXPECT_TRUE_SIMULATED_WAIT(LocalCandidate(ep1_ch1())->generation() !=
                                   old_local_candidate1->generation(),
                               kMediumTimeout, clock);
    EXPECT_TRUE_SIMULATED_WAIT(LocalCandidate(ep2_ch1())->generation() !=
                                   old_local_candidate2->generation(),
                               kMediumTimeout, clock);
    EXPECT_TRUE_SIMULATED_WAIT(RemoteCandidate(ep1_ch1())->generation() !=
                                   old_remote_candidate1->generation(),
                               kMediumTimeout, clock);
    EXPECT_TRUE_SIMULATED_WAIT(RemoteCandidate(ep2_ch1())->generation() !=
                                   old_remote_candidate2->generation(),
                               kMediumTimeout, clock);
    EXPECT_EQ(1u, RemoteCandidate(ep2_ch1())->generation());
    EXPECT_EQ(1u, RemoteCandidate(ep1_ch1())->generation());
  }

  void TestSignalRoleConflict() {
    rtc::ScopedFakeClock clock;
    // Default EP1 is in controlling state.
    SetIceTiebreaker(0, kLowTiebreaker);

    SetIceRole(1, ICEROLE_CONTROLLING);
    SetIceTiebreaker(1, kHighTiebreaker);

    // Creating channels with both channels role set to CONTROLLING.
    CreateChannels();
    // Since both the channels initiated with controlling state and channel2
    // has higher tiebreaker value, channel1 should receive SignalRoleConflict.
    EXPECT_TRUE_SIMULATED_WAIT(GetRoleConflict(0), kShortTimeout, clock);
    EXPECT_FALSE(GetRoleConflict(1));

    EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                               kShortTimeout, clock);

    EXPECT_TRUE(ep1_ch1()->selected_connection() &&
                ep2_ch1()->selected_connection());

    TestSendRecv(&clock);
    DestroyChannels();
  }

  void TestPacketInfoIsSet(rtc::PacketInfo info) {
    EXPECT_NE(info.packet_type, rtc::PacketType::kUnknown);
    EXPECT_NE(info.protocol, rtc::PacketInfoProtocolType::kUnknown);
    EXPECT_TRUE(info.network_id.has_value());
  }

  void OnReadyToSend(rtc::PacketTransportInternal* transport) {
    GetEndpoint(transport)->ready_to_send_ = true;
  }

  // We pass the candidates directly to the other side.
  void OnCandidateGathered(IceTransportInternal* ch, const Candidate& c) {
    if (force_relay_ && c.type() != RELAY_PORT_TYPE)
      return;

    if (GetEndpoint(ch)->save_candidates_) {
      GetEndpoint(ch)->saved_candidates_.push_back(
          {.channel = ch, .candidate = c});
    } else {
      main_.PostTask(SafeTask(
          safety_, [this, ch, c = c]() mutable { AddCandidate(ch, c); }));
    }
  }

  void OnNetworkRouteChanged(absl::optional<rtc::NetworkRoute> network_route) {
    // If the `network_route` is unset, don't count. This is used in the case
    // when the network on remote side is down, the signal will be fired with an
    // unset network route and it shouldn't trigger a connection switch.
    if (network_route) {
      ++selected_candidate_pair_switches_;
    }
  }

  int reset_selected_candidate_pair_switches() {
    int switches = selected_candidate_pair_switches_;
    selected_candidate_pair_switches_ = 0;
    return switches;
  }

  void PauseCandidates(int endpoint) {
    GetEndpoint(endpoint)->save_candidates_ = true;
  }

  void OnCandidatesRemoved(IceTransportInternal* ch,
                           const std::vector<Candidate>& candidates) {
    // Candidate removals are not paused.
    main_.PostTask(SafeTask(safety_, [this, ch, candidates]() mutable {
      P2PTransportChannel* rch = GetRemoteChannel(ch);
      if (rch == nullptr) {
        return;
      }
      for (const Candidate& c : candidates) {
        RTC_LOG(LS_INFO) << "Removed remote candidate " << c.ToString();
        rch->RemoveRemoteCandidate(c);
      }
    }));
  }

  // Tcp candidate verification has to be done when they are generated.
  void VerifySavedTcpCandidates(int endpoint, absl::string_view tcptype) {
    for (auto& data : GetEndpoint(endpoint)->saved_candidates_) {
      EXPECT_EQ(data.candidate.protocol(), TCP_PROTOCOL_NAME);
      EXPECT_EQ(data.candidate.tcptype(), tcptype);
      if (data.candidate.tcptype() == TCPTYPE_ACTIVE_STR) {
        EXPECT_EQ(data.candidate.address().port(), DISCARD_PORT);
      } else if (data.candidate.tcptype() == TCPTYPE_PASSIVE_STR) {
        EXPECT_NE(data.candidate.address().port(), DISCARD_PORT);
      } else {
        FAIL() << "Unknown tcptype: " << data.candidate.tcptype();
      }
    }
  }

  void ResumeCandidates(int endpoint) {
    Endpoint* ed = GetEndpoint(endpoint);
    std::vector<CandidateData> candidates = std::move(ed->saved_candidates_);
    if (!candidates.empty()) {
      main_.PostTask(SafeTask(
          safety_, [this, candidates = std::move(candidates)]() mutable {
            for (CandidateData& data : candidates) {
              AddCandidate(data.channel, data.candidate);
            }
          }));
    }
    ed->saved_candidates_.clear();
    ed->save_candidates_ = false;
  }

  void AddCandidate(IceTransportInternal* channel, Candidate& candidate) {
    P2PTransportChannel* rch = GetRemoteChannel(channel);
    if (rch == nullptr) {
      return;
    }
    if (remote_ice_parameter_source_ != FROM_CANDIDATE) {
      candidate.set_username("");
      candidate.set_password("");
    }
    RTC_LOG(LS_INFO) << "Candidate(" << channel->component() << "->"
                     << rch->component() << "): " << candidate.ToString();
    rch->AddRemoteCandidate(candidate);
  }

  void OnReadPacket(rtc::PacketTransportInternal* transport,
                    const char* data,
                    size_t len,
                    const int64_t& /* packet_time_us */,
                    int flags) {
    std::list<std::string>& packets = GetPacketList(transport);
    packets.push_front(std::string(data, len));
  }

  void OnRoleConflict(IceTransportInternal* channel) {
    GetEndpoint(channel)->OnRoleConflict(true);
    IceRole new_role = GetEndpoint(channel)->ice_role() == ICEROLE_CONTROLLING
                           ? ICEROLE_CONTROLLED
                           : ICEROLE_CONTROLLING;
    channel->SetIceRole(new_role);
  }

  void OnSentPacket(rtc::PacketTransportInternal* transport,
                    const rtc::SentPacket& packet) {
    TestPacketInfoIsSet(packet.info);
  }

  int SendData(IceTransportInternal* channel, const char* data, size_t len) {
    rtc::PacketOptions options;
    return channel->SendPacket(data, len, options, 0);
  }
  bool CheckDataOnChannel(IceTransportInternal* channel,
                          const char* data,
                          int len) {
    return GetChannelData(channel)->CheckData(data, len);
  }
  static const Candidate* LocalCandidate(P2PTransportChannel* ch) {
    return (ch && ch->selected_connection())
               ? &ch->selected_connection()->local_candidate()
               : NULL;
  }
  static const Candidate* RemoteCandidate(P2PTransportChannel* ch) {
    return (ch && ch->selected_connection())
               ? &ch->selected_connection()->remote_candidate()
               : NULL;
  }
  Endpoint* GetEndpoint(rtc::PacketTransportInternal* transport) {
    if (ep1_.HasTransport(transport)) {
      return &ep1_;
    } else if (ep2_.HasTransport(transport)) {
      return &ep2_;
    } else {
      return NULL;
    }
  }
  P2PTransportChannel* GetRemoteChannel(IceTransportInternal* ch) {
    if (ch == ep1_ch1())
      return ep2_ch1();
    else if (ch == ep1_ch2())
      return ep2_ch2();
    else if (ch == ep2_ch1())
      return ep1_ch1();
    else if (ch == ep2_ch2())
      return ep1_ch2();
    else
      return NULL;
  }
  std::list<std::string>& GetPacketList(
      rtc::PacketTransportInternal* transport) {
    return GetChannelData(transport)->ch_packets_;
  }

  enum RemoteIceParameterSource { FROM_CANDIDATE, FROM_SETICEPARAMETERS };

  // How does the test pass ICE parameters to the P2PTransportChannel?
  // On the candidate itself, or through SetRemoteIceParameters?
  // Goes through the candidate itself by default.
  void set_remote_ice_parameter_source(RemoteIceParameterSource source) {
    remote_ice_parameter_source_ = source;
  }

  void set_force_relay(bool relay) { force_relay_ = relay; }

  void ConnectSignalNominated(Connection* conn) {
    conn->SignalNominated.connect(this,
                                  &P2PTransportChannelTestBase::OnNominated);
  }

  void OnNominated(Connection* conn) { nominated_ = true; }
  bool nominated() { return nominated_; }

  webrtc::test::ScopedKeyValueConfig field_trials_;

 private:
  std::unique_ptr<rtc::VirtualSocketServer> vss_;
  std::unique_ptr<rtc::NATSocketServer> nss_;
  std::unique_ptr<rtc::FirewallSocketServer> ss_;
  std::unique_ptr<rtc::BasicPacketSocketFactory> socket_factory_;

  rtc::AutoSocketServerThread main_;
  rtc::scoped_refptr<PendingTaskSafetyFlag> safety_ =
      PendingTaskSafetyFlag::Create();
  TestStunServer::StunServerPtr stun_server_;
  TestTurnServer turn_server_;
  rtc::SocksProxyServer socks_server1_;
  rtc::SocksProxyServer socks_server2_;
  Endpoint ep1_;
  Endpoint ep2_;
  RemoteIceParameterSource remote_ice_parameter_source_ = FROM_CANDIDATE;
  bool force_relay_;
  int selected_candidate_pair_switches_ = 0;

  bool nominated_ = false;
};

// The tests have only a few outcomes, which we predefine.
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kLocalUdpToLocalUdp("local",
                                                     "udp",
                                                     "local",
                                                     "udp",
                                                     1000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kLocalUdpToStunUdp("local",
                                                    "udp",
                                                    "stun",
                                                    "udp",
                                                    1000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kLocalUdpToPrflxUdp("local",
                                                     "udp",
                                                     "prflx",
                                                     "udp",
                                                     1000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kPrflxUdpToLocalUdp("prflx",
                                                     "udp",
                                                     "local",
                                                     "udp",
                                                     1000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kStunUdpToLocalUdp("stun",
                                                    "udp",
                                                    "local",
                                                    "udp",
                                                    1000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kStunUdpToStunUdp("stun",
                                                   "udp",
                                                   "stun",
                                                   "udp",
                                                   1000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kStunUdpToPrflxUdp("stun",
                                                    "udp",
                                                    "prflx",
                                                    "udp",
                                                    1000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kPrflxUdpToStunUdp("prflx",
                                                    "udp",
                                                    "stun",
                                                    "udp",
                                                    1000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kLocalUdpToRelayUdp("local",
                                                     "udp",
                                                     "relay",
                                                     "udp",
                                                     2000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kPrflxUdpToRelayUdp("prflx",
                                                     "udp",
                                                     "relay",
                                                     "udp",
                                                     2000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kRelayUdpToPrflxUdp("relay",
                                                     "udp",
                                                     "prflx",
                                                     "udp",
                                                     2000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kLocalTcpToLocalTcp("local",
                                                     "tcp",
                                                     "local",
                                                     "tcp",
                                                     3000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kLocalTcpToPrflxTcp("local",
                                                     "tcp",
                                                     "prflx",
                                                     "tcp",
                                                     3000);
const P2PTransportChannelTestBase::Result
    P2PTransportChannelTestBase::kPrflxTcpToLocalTcp("prflx",
                                                     "tcp",
                                                     "local",
                                                     "tcp",
                                                     3000);

// Test the matrix of all the connectivity types we expect to see in the wild.
// Just test every combination of the configs in the Config enum.
class P2PTransportChannelTest : public P2PTransportChannelTestBase {
 public:
  P2PTransportChannelTest() : P2PTransportChannelTestBase() {}
  explicit P2PTransportChannelTest(absl::string_view field_trials)
      : P2PTransportChannelTestBase(field_trials) {}

 protected:
  void ConfigureEndpoints(Config config1,
                          Config config2,
                          int allocator_flags1,
                          int allocator_flags2) {
    ConfigureEndpoint(0, config1);
    SetAllocatorFlags(0, allocator_flags1);
    SetAllocationStepDelay(0, kMinimumStepDelay);
    ConfigureEndpoint(1, config2);
    SetAllocatorFlags(1, allocator_flags2);
    SetAllocationStepDelay(1, kMinimumStepDelay);

    set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);
  }
  void ConfigureEndpoint(int endpoint, Config config) {
    switch (config) {
      case OPEN:
        AddAddress(endpoint, kPublicAddrs[endpoint]);
        break;
      case NAT_FULL_CONE:
      case NAT_ADDR_RESTRICTED:
      case NAT_PORT_RESTRICTED:
      case NAT_SYMMETRIC:
        AddAddress(endpoint, kPrivateAddrs[endpoint]);
        // Add a single NAT of the desired type
        nat()
            ->AddTranslator(kPublicAddrs[endpoint], kNatAddrs[endpoint],
                            static_cast<rtc::NATType>(config - NAT_FULL_CONE))
            ->AddClient(kPrivateAddrs[endpoint]);
        break;
      case NAT_DOUBLE_CONE:
      case NAT_SYMMETRIC_THEN_CONE:
        AddAddress(endpoint, kCascadedPrivateAddrs[endpoint]);
        // Add a two cascaded NATs of the desired types
        nat()
            ->AddTranslator(kPublicAddrs[endpoint], kNatAddrs[endpoint],
                            (config == NAT_DOUBLE_CONE) ? rtc::NAT_OPEN_CONE
                                                        : rtc::NAT_SYMMETRIC)
            ->AddTranslator(kPrivateAddrs[endpoint],
                            kCascadedNatAddrs[endpoint], rtc::NAT_OPEN_CONE)
            ->AddClient(kCascadedPrivateAddrs[endpoint]);
        break;
      case BLOCK_UDP:
      case BLOCK_UDP_AND_INCOMING_TCP:
      case BLOCK_ALL_BUT_OUTGOING_HTTP:
      case PROXY_HTTPS:
      case PROXY_SOCKS:
        AddAddress(endpoint, kPublicAddrs[endpoint]);
        // Block all UDP
        fw()->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kPublicAddrs[endpoint]);
        if (config == BLOCK_UDP_AND_INCOMING_TCP) {
          // Block TCP inbound to the endpoint
          fw()->AddRule(false, rtc::FP_TCP, SocketAddress(),
                        kPublicAddrs[endpoint]);
        } else if (config == BLOCK_ALL_BUT_OUTGOING_HTTP) {
          // Block all TCP to/from the endpoint except 80/443 out
          fw()->AddRule(true, rtc::FP_TCP, kPublicAddrs[endpoint],
                        SocketAddress(rtc::IPAddress(INADDR_ANY), 80));
          fw()->AddRule(true, rtc::FP_TCP, kPublicAddrs[endpoint],
                        SocketAddress(rtc::IPAddress(INADDR_ANY), 443));
          fw()->AddRule(false, rtc::FP_TCP, rtc::FD_ANY,
                        kPublicAddrs[endpoint]);
        } else if (config == PROXY_HTTPS) {
          // Block all TCP to/from the endpoint except to the proxy server
          fw()->AddRule(true, rtc::FP_TCP, kPublicAddrs[endpoint],
                        kHttpsProxyAddrs[endpoint]);
          fw()->AddRule(false, rtc::FP_TCP, rtc::FD_ANY,
                        kPublicAddrs[endpoint]);
          SetProxy(endpoint, rtc::PROXY_HTTPS);
        } else if (config == PROXY_SOCKS) {
          // Block all TCP to/from the endpoint except to the proxy server
          fw()->AddRule(true, rtc::FP_TCP, kPublicAddrs[endpoint],
                        kSocksProxyAddrs[endpoint]);
          fw()->AddRule(false, rtc::FP_TCP, rtc::FD_ANY,
                        kPublicAddrs[endpoint]);
          SetProxy(endpoint, rtc::PROXY_SOCKS5);
        }
        break;
      default:
        RTC_DCHECK_NOTREACHED();
        break;
    }
  }
};

class P2PTransportChannelMatrixTest : public P2PTransportChannelTest,
                                      public WithParamInterface<std::string> {
 protected:
  P2PTransportChannelMatrixTest() : P2PTransportChannelTest(GetParam()) {}

  static const Result* kMatrix[NUM_CONFIGS][NUM_CONFIGS];
};

// Shorthands for use in the test matrix.
#define LULU &kLocalUdpToLocalUdp
#define LUSU &kLocalUdpToStunUdp
#define LUPU &kLocalUdpToPrflxUdp
#define PULU &kPrflxUdpToLocalUdp
#define SULU &kStunUdpToLocalUdp
#define SUSU &kStunUdpToStunUdp
#define SUPU &kStunUdpToPrflxUdp
#define PUSU &kPrflxUdpToStunUdp
#define LURU &kLocalUdpToRelayUdp
#define PURU &kPrflxUdpToRelayUdp
#define RUPU &kRelayUdpToPrflxUdp
#define LTLT &kLocalTcpToLocalTcp
#define LTPT &kLocalTcpToPrflxTcp
#define PTLT &kPrflxTcpToLocalTcp
// TODO(?): Enable these once TestRelayServer can accept external TCP.
#define LTRT NULL
#define LSRS NULL

// Test matrix. Originator behavior defined by rows, receiever by columns.

// TODO(?): Fix NULLs caused by lack of TCP support in NATSocket.
// TODO(?): Fix NULLs caused by no HTTP proxy support.
// TODO(?): Rearrange rows/columns from best to worst.
const P2PTransportChannelMatrixTest::Result*
    P2PTransportChannelMatrixTest::kMatrix[NUM_CONFIGS][NUM_CONFIGS] = {
        //      OPEN  CONE  ADDR  PORT  SYMM  2CON  SCON  !UDP  !TCP  HTTP  PRXH
        //      PRXS
        /*OP*/ {LULU, LUSU, LUSU, LUSU, LUPU, LUSU, LUPU, LTPT, LTPT, LSRS,
                NULL, LTPT},
        /*CO*/
        {SULU, SUSU, SUSU, SUSU, SUPU, SUSU, SUPU, NULL, NULL, LSRS, NULL,
         LTRT},
        /*AD*/
        {SULU, SUSU, SUSU, SUSU, SUPU, SUSU, SUPU, NULL, NULL, LSRS, NULL,
         LTRT},
        /*PO*/
        {SULU, SUSU, SUSU, SUSU, RUPU, SUSU, RUPU, NULL, NULL, LSRS, NULL,
         LTRT},
        /*SY*/
        {PULU, PUSU, PUSU, PURU, PURU, PUSU, PURU, NULL, NULL, LSRS, NULL,
         LTRT},
        /*2C*/
        {SULU, SUSU, SUSU, SUSU, SUPU, SUSU, SUPU, NULL, NULL, LSRS, NULL,
         LTRT},
        /*SC*/
        {PULU, PUSU, PUSU, PURU, PURU, PUSU, PURU, NULL, NULL, LSRS, NULL,
         LTRT},
        /*!U*/
        {LTPT, NULL, NULL, NULL, NULL, NULL, NULL, LTPT, LTPT, LSRS, NULL,
         LTRT},
        /*!T*/
        {PTLT, NULL, NULL, NULL, NULL, NULL, NULL, PTLT, LTRT, LSRS, NULL,
         LTRT},
        /*HT*/
        {LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, NULL,
         LSRS},
        /*PR*/
        {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
         NULL},
        /*PR*/
        {LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LSRS, NULL,
         LTRT},
};

// The actual tests that exercise all the various configurations.
// Test names are of the form P2PTransportChannelTest_TestOPENToNAT_FULL_CONE
#define P2P_TEST_DECLARATION(x, y, z)                            \
  TEST_P(P2PTransportChannelMatrixTest, z##Test##x##To##y) {     \
    ConfigureEndpoints(x, y, PORTALLOCATOR_ENABLE_SHARED_SOCKET, \
                       PORTALLOCATOR_ENABLE_SHARED_SOCKET);      \
    if (kMatrix[x][y] != NULL)                                   \
      Test(*kMatrix[x][y]);                                      \
    else                                                         \
      RTC_LOG(LS_WARNING) << "Not yet implemented";              \
  }

#define P2P_TEST(x, y) P2P_TEST_DECLARATION(x, y, /* empty argument */)

#define P2P_TEST_SET(x)                    \
  P2P_TEST(x, OPEN)                        \
  P2P_TEST(x, NAT_FULL_CONE)               \
  P2P_TEST(x, NAT_ADDR_RESTRICTED)         \
  P2P_TEST(x, NAT_PORT_RESTRICTED)         \
  P2P_TEST(x, NAT_SYMMETRIC)               \
  P2P_TEST(x, NAT_DOUBLE_CONE)             \
  P2P_TEST(x, NAT_SYMMETRIC_THEN_CONE)     \
  P2P_TEST(x, BLOCK_UDP)                   \
  P2P_TEST(x, BLOCK_UDP_AND_INCOMING_TCP)  \
  P2P_TEST(x, BLOCK_ALL_BUT_OUTGOING_HTTP) \
  P2P_TEST(x, PROXY_HTTPS)                 \
  P2P_TEST(x, PROXY_SOCKS)

P2P_TEST_SET(OPEN)
P2P_TEST_SET(NAT_FULL_CONE)
P2P_TEST_SET(NAT_ADDR_RESTRICTED)
P2P_TEST_SET(NAT_PORT_RESTRICTED)
P2P_TEST_SET(NAT_SYMMETRIC)
P2P_TEST_SET(NAT_DOUBLE_CONE)
P2P_TEST_SET(NAT_SYMMETRIC_THEN_CONE)
P2P_TEST_SET(BLOCK_UDP)
P2P_TEST_SET(BLOCK_UDP_AND_INCOMING_TCP)
P2P_TEST_SET(BLOCK_ALL_BUT_OUTGOING_HTTP)
P2P_TEST_SET(PROXY_HTTPS)
P2P_TEST_SET(PROXY_SOCKS)

INSTANTIATE_TEST_SUITE_P(
    All,
    P2PTransportChannelMatrixTest,
    // Each field-trial is ~144 tests (some return not-yet-implemented).
    Values("", "WebRTC-IceFieldTrials/enable_goog_ping:true/"));

// Test that we restart candidate allocation when local ufrag&pwd changed.
// Standard Ice protocol is used.
TEST_F(P2PTransportChannelTest, HandleUfragPwdChange) {
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  CreateChannels();
  TestHandleIceUfragPasswordChanged();
  DestroyChannels();
}

// Same as above test, but with a symmetric NAT.
// We should end up with relay<->prflx candidate pairs, with generation "1".
TEST_F(P2PTransportChannelTest, HandleUfragPwdChangeSymmetricNat) {
  ConfigureEndpoints(NAT_SYMMETRIC, NAT_SYMMETRIC, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  CreateChannels();
  TestHandleIceUfragPasswordChanged();
  DestroyChannels();
}

// Test the operation of GetStats.
TEST_F(P2PTransportChannelTest, GetStats) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  CreateChannels();
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->receiving() && ep1_ch1()->writable() &&
                                 ep2_ch1()->receiving() &&
                                 ep2_ch1()->writable(),
                             kMediumTimeout, clock);
  // Sends and receives 10 packets.
  TestSendRecv(&clock);

  // Try sending a packet which is discarded due to the socket being blocked.
  virtual_socket_server()->SetSendingBlocked(true);
  const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
  int len = static_cast<int>(strlen(data));
  EXPECT_EQ(-1, SendData(ep1_ch1(), data, len));

  IceTransportStats ice_transport_stats;
  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats));
  ASSERT_GE(ice_transport_stats.connection_infos.size(), 1u);
  ASSERT_GE(ice_transport_stats.candidate_stats_list.size(), 1u);
  EXPECT_EQ(ice_transport_stats.selected_candidate_pair_changes, 1u);
  ConnectionInfo* best_conn_info = nullptr;
  for (ConnectionInfo& info : ice_transport_stats.connection_infos) {
    if (info.best_connection) {
      best_conn_info = &info;
      break;
    }
  }
  ASSERT_TRUE(best_conn_info != nullptr);
  EXPECT_TRUE(best_conn_info->receiving);
  EXPECT_TRUE(best_conn_info->writable);
  EXPECT_FALSE(best_conn_info->timeout);
  // Note that discarded packets are counted in sent_total_packets but not
  // sent_total_bytes.
  EXPECT_EQ(11U, best_conn_info->sent_total_packets);
  EXPECT_EQ(1U, best_conn_info->sent_discarded_packets);
  EXPECT_EQ(10 * 36U, best_conn_info->sent_total_bytes);
  EXPECT_EQ(36U, best_conn_info->sent_discarded_bytes);
  EXPECT_EQ(10 * 36U, best_conn_info->recv_total_bytes);
  EXPECT_EQ(10U, best_conn_info->packets_received);

  EXPECT_EQ(10 * 36U, ice_transport_stats.bytes_sent);
  EXPECT_EQ(10 * 36U, ice_transport_stats.bytes_received);

  DestroyChannels();
}

TEST_F(P2PTransportChannelTest, GetStatsSwitchConnection) {
  rtc::ScopedFakeClock clock;
  IceConfig continual_gathering_config =
      CreateIceConfig(1000, GATHER_CONTINUALLY);

  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);

  AddAddress(0, kAlternateAddrs[1], "rmnet0", rtc::ADAPTER_TYPE_CELLULAR);

  CreateChannels(continual_gathering_config, continual_gathering_config);
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->receiving() && ep1_ch1()->writable() &&
                                 ep2_ch1()->receiving() &&
                                 ep2_ch1()->writable(),
                             kMediumTimeout, clock);
  // Sends and receives 10 packets.
  TestSendRecv(&clock);

  IceTransportStats ice_transport_stats;
  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats));
  ASSERT_GE(ice_transport_stats.connection_infos.size(), 2u);
  ASSERT_GE(ice_transport_stats.candidate_stats_list.size(), 2u);
  EXPECT_EQ(ice_transport_stats.selected_candidate_pair_changes, 1u);

  ConnectionInfo* best_conn_info = nullptr;
  for (ConnectionInfo& info : ice_transport_stats.connection_infos) {
    if (info.best_connection) {
      best_conn_info = &info;
      break;
    }
  }
  ASSERT_TRUE(best_conn_info != nullptr);
  EXPECT_TRUE(best_conn_info->receiving);
  EXPECT_TRUE(best_conn_info->writable);
  EXPECT_FALSE(best_conn_info->timeout);

  EXPECT_EQ(10 * 36U, best_conn_info->sent_total_bytes);
  EXPECT_EQ(10 * 36U, best_conn_info->recv_total_bytes);
  EXPECT_EQ(10 * 36U, ice_transport_stats.bytes_sent);
  EXPECT_EQ(10 * 36U, ice_transport_stats.bytes_received);

  auto old_selected_connection = ep1_ch1()->selected_connection();
  ep1_ch1()->RemoveConnectionForTest(
      const_cast<Connection*>(old_selected_connection));

  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection() != nullptr,
                             kMediumTimeout, clock);

  // Sends and receives 10 packets.
  TestSendRecv(&clock);

  IceTransportStats ice_transport_stats2;
  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats2));

  int64_t sum_bytes_sent = 0;
  int64_t sum_bytes_received = 0;
  for (ConnectionInfo& info : ice_transport_stats.connection_infos) {
    sum_bytes_sent += info.sent_total_bytes;
    sum_bytes_received += info.recv_total_bytes;
  }

  EXPECT_EQ(10 * 36U, sum_bytes_sent);
  EXPECT_EQ(10 * 36U, sum_bytes_received);

  EXPECT_EQ(20 * 36U, ice_transport_stats2.bytes_sent);
  EXPECT_EQ(20 * 36U, ice_transport_stats2.bytes_received);

  DestroyChannels();
}

// Tests that UMAs are recorded when ICE restarts while the channel
// is disconnected.
TEST_F(P2PTransportChannelTest, TestUMAIceRestartWhileDisconnected) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);

  CreateChannels();
  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kDefaultTimeout, clock);

  // Drop all packets so that both channels become not writable.
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kPublicAddrs[0]);
  const int kWriteTimeoutDelay = 8000;
  EXPECT_TRUE_SIMULATED_WAIT(!ep1_ch1()->writable() && !ep2_ch1()->writable(),
                             kWriteTimeoutDelay, clock);

  ep1_ch1()->SetIceParameters(kIceParams[2]);
  ep1_ch1()->SetRemoteIceParameters(kIceParams[3]);
  ep1_ch1()->MaybeStartGathering();
  EXPECT_METRIC_EQ(1, webrtc::metrics::NumEvents(
                          "WebRTC.PeerConnection.IceRestartState",
                          static_cast<int>(IceRestartState::DISCONNECTED)));

  ep2_ch1()->SetIceParameters(kIceParams[3]);
  ep2_ch1()->SetRemoteIceParameters(kIceParams[2]);
  ep2_ch1()->MaybeStartGathering();
  EXPECT_METRIC_EQ(2, webrtc::metrics::NumEvents(
                          "WebRTC.PeerConnection.IceRestartState",
                          static_cast<int>(IceRestartState::DISCONNECTED)));

  DestroyChannels();
}

// Tests that UMAs are recorded when ICE restarts while the channel
// is connected.
TEST_F(P2PTransportChannelTest, TestUMAIceRestartWhileConnected) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);

  CreateChannels();
  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kDefaultTimeout, clock);

  ep1_ch1()->SetIceParameters(kIceParams[2]);
  ep1_ch1()->SetRemoteIceParameters(kIceParams[3]);
  ep1_ch1()->MaybeStartGathering();
  EXPECT_METRIC_EQ(1, webrtc::metrics::NumEvents(
                          "WebRTC.PeerConnection.IceRestartState",
                          static_cast<int>(IceRestartState::CONNECTED)));

  ep2_ch1()->SetIceParameters(kIceParams[3]);
  ep2_ch1()->SetRemoteIceParameters(kIceParams[2]);
  ep2_ch1()->MaybeStartGathering();
  EXPECT_METRIC_EQ(2, webrtc::metrics::NumEvents(
                          "WebRTC.PeerConnection.IceRestartState",
                          static_cast<int>(IceRestartState::CONNECTED)));

  DestroyChannels();
}

// Tests that UMAs are recorded when ICE restarts while the channel
// is connecting.
TEST_F(P2PTransportChannelTest, TestUMAIceRestartWhileConnecting) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);

  // Create the channels without waiting for them to become connected.
  CreateChannels();

  ep1_ch1()->SetIceParameters(kIceParams[2]);
  ep1_ch1()->SetRemoteIceParameters(kIceParams[3]);
  ep1_ch1()->MaybeStartGathering();
  EXPECT_METRIC_EQ(1, webrtc::metrics::NumEvents(
                          "WebRTC.PeerConnection.IceRestartState",
                          static_cast<int>(IceRestartState::CONNECTING)));

  ep2_ch1()->SetIceParameters(kIceParams[3]);
  ep2_ch1()->SetRemoteIceParameters(kIceParams[2]);
  ep2_ch1()->MaybeStartGathering();
  EXPECT_METRIC_EQ(2, webrtc::metrics::NumEvents(
                          "WebRTC.PeerConnection.IceRestartState",
                          static_cast<int>(IceRestartState::CONNECTING)));

  DestroyChannels();
}

// Tests that a UMA on ICE regathering is recorded when there is a network
// change if and only if continual gathering is enabled.
TEST_F(P2PTransportChannelTest,
       TestIceRegatheringReasonContinualGatheringByNetworkChange) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);

  // ep1 gathers continually but ep2 does not.
  IceConfig continual_gathering_config =
      CreateIceConfig(1000, GATHER_CONTINUALLY);
  IceConfig default_config;
  CreateChannels(continual_gathering_config, default_config);

  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kDefaultTimeout, clock);

  // Adding address in ep1 will trigger continual gathering.
  AddAddress(0, kAlternateAddrs[0]);
  EXPECT_EQ_SIMULATED_WAIT(1,
                           GetEndpoint(0)->GetIceRegatheringCountForReason(
                               IceRegatheringReason::NETWORK_CHANGE),
                           kDefaultTimeout, clock);

  ep2_ch1()->SetIceParameters(kIceParams[3]);
  ep2_ch1()->SetRemoteIceParameters(kIceParams[2]);
  ep2_ch1()->MaybeStartGathering();

  AddAddress(1, kAlternateAddrs[1]);
  SIMULATED_WAIT(false, kDefaultTimeout, clock);
  // ep2 has not enabled continual gathering.
  EXPECT_EQ(0, GetEndpoint(1)->GetIceRegatheringCountForReason(
                   IceRegatheringReason::NETWORK_CHANGE));

  DestroyChannels();
}

// Tests that a UMA on ICE regathering is recorded when there is a network
// failure if and only if continual gathering is enabled.
TEST_F(P2PTransportChannelTest,
       TestIceRegatheringReasonContinualGatheringByNetworkFailure) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);

  // ep1 gathers continually but ep2 does not.
  IceConfig config1 = CreateIceConfig(1000, GATHER_CONTINUALLY);
  config1.regather_on_failed_networks_interval = 2000;
  IceConfig config2;
  config2.regather_on_failed_networks_interval = 2000;
  CreateChannels(config1, config2);

  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kDefaultTimeout, clock);

  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kPublicAddrs[0]);
  // Timeout value such that all connections are deleted.
  const int kNetworkFailureTimeout = 35000;
  SIMULATED_WAIT(false, kNetworkFailureTimeout, clock);
  EXPECT_LE(1, GetEndpoint(0)->GetIceRegatheringCountForReason(
                   IceRegatheringReason::NETWORK_FAILURE));
  EXPECT_METRIC_LE(
      1, webrtc::metrics::NumEvents(
             "WebRTC.PeerConnection.IceRegatheringReason",
             static_cast<int>(IceRegatheringReason::NETWORK_FAILURE)));
  EXPECT_EQ(0, GetEndpoint(1)->GetIceRegatheringCountForReason(
                   IceRegatheringReason::NETWORK_FAILURE));

  DestroyChannels();
}

// Test that we properly create a connection on a STUN ping from unknown address
// when the signaling is slow.
TEST_F(P2PTransportChannelTest, PeerReflexiveCandidateBeforeSignaling) {
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  // Emulate no remote parameters coming in.
  set_remote_ice_parameter_source(FROM_CANDIDATE);
  CreateChannels();
  // Only have remote parameters come in for ep2, not ep1.
  ep2_ch1()->SetRemoteIceParameters(kIceParams[0]);

  // Pause sending ep2's candidates to ep1 until ep1 receives the peer reflexive
  // candidate.
  PauseCandidates(1);

  // Wait until the callee becomes writable to make sure that a ping request is
  // received by the caller before their remote ICE credentials are set.
  ASSERT_TRUE_WAIT(ep2_ch1()->selected_connection() != nullptr, kMediumTimeout);
  // Add two sets of remote ICE credentials, so that the ones used by the
  // candidate will be generation 1 instead of 0.
  ep1_ch1()->SetRemoteIceParameters(kIceParams[3]);
  ep1_ch1()->SetRemoteIceParameters(kIceParams[1]);
  // The caller should have the selected connection connected to the peer
  // reflexive candidate.
  const Connection* selected_connection = nullptr;
  ASSERT_TRUE_WAIT(
      (selected_connection = ep1_ch1()->selected_connection()) != nullptr,
      kMediumTimeout);
  EXPECT_EQ(PRFLX_PORT_TYPE, selected_connection->remote_candidate().type());
  EXPECT_EQ(kIceUfrag[1], selected_connection->remote_candidate().username());
  EXPECT_EQ(kIcePwd[1], selected_connection->remote_candidate().password());
  EXPECT_EQ(1u, selected_connection->remote_candidate().generation());

  ResumeCandidates(1);
  // Verify ep1's selected connection is updated to use the 'local' candidate.
  EXPECT_EQ_WAIT(LOCAL_PORT_TYPE,
                 ep1_ch1()->selected_connection()->remote_candidate().type(),
                 kMediumTimeout);
  EXPECT_EQ(selected_connection, ep1_ch1()->selected_connection());
  DestroyChannels();
}

// Test that if we learn a prflx remote candidate, its address is concealed in
// 1. the selected candidate pair accessed via the public API, and
// 2. the candidate pair stats
// until we learn the same address from signaling.
TEST_F(P2PTransportChannelTest, PeerReflexiveRemoteCandidateIsSanitized) {
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);
  // Emulate no remote parameters coming in.
  set_remote_ice_parameter_source(FROM_CANDIDATE);
  CreateChannels();
  // Only have remote parameters come in for ep2, not ep1.
  ep2_ch1()->SetRemoteIceParameters(kIceParams[0]);

  // Pause sending ep2's candidates to ep1 until ep1 receives the peer reflexive
  // candidate.
  PauseCandidates(1);

  ASSERT_TRUE_WAIT(ep2_ch1()->selected_connection() != nullptr, kMediumTimeout);
  ep1_ch1()->SetRemoteIceParameters(kIceParams[1]);
  ASSERT_TRUE_WAIT(ep1_ch1()->selected_connection() != nullptr, kMediumTimeout);

  // Check the selected candidate pair.
  auto pair_ep1 = ep1_ch1()->GetSelectedCandidatePair();
  ASSERT_TRUE(pair_ep1.has_value());
  EXPECT_EQ(PRFLX_PORT_TYPE, pair_ep1->remote_candidate().type());
  EXPECT_TRUE(pair_ep1->remote_candidate().address().ipaddr().IsNil());

  IceTransportStats ice_transport_stats;
  ep1_ch1()->GetStats(&ice_transport_stats);
  // Check the candidate pair stats.
  ASSERT_EQ(1u, ice_transport_stats.connection_infos.size());
  EXPECT_EQ(PRFLX_PORT_TYPE,
            ice_transport_stats.connection_infos[0].remote_candidate.type());
  EXPECT_TRUE(ice_transport_stats.connection_infos[0]
                  .remote_candidate.address()
                  .ipaddr()
                  .IsNil());

  // Let ep1 receive the remote candidate to update its type from prflx to host.
  ResumeCandidates(1);
  ASSERT_TRUE_WAIT(
      ep1_ch1()->selected_connection() != nullptr &&
          ep1_ch1()->selected_connection()->remote_candidate().type() ==
              LOCAL_PORT_TYPE,
      kMediumTimeout);

  // We should be able to reveal the address after it is learnt via
  // AddIceCandidate.
  //
  // Check the selected candidate pair.
  auto updated_pair_ep1 = ep1_ch1()->GetSelectedCandidatePair();
  ASSERT_TRUE(updated_pair_ep1.has_value());
  EXPECT_EQ(LOCAL_PORT_TYPE, updated_pair_ep1->remote_candidate().type());
  EXPECT_TRUE(HasRemoteAddress(&updated_pair_ep1.value(), kPublicAddrs[1]));

  ep1_ch1()->GetStats(&ice_transport_stats);
  // Check the candidate pair stats.
  ASSERT_EQ(1u, ice_transport_stats.connection_infos.size());
  EXPECT_EQ(LOCAL_PORT_TYPE,
            ice_transport_stats.connection_infos[0].remote_candidate.type());
  EXPECT_TRUE(ice_transport_stats.connection_infos[0]
                  .remote_candidate.address()
                  .EqualIPs(kPublicAddrs[1]));

  DestroyChannels();
}

// Test that we properly create a connection on a STUN ping from unknown address
// when the signaling is slow and the end points are behind NAT.
TEST_F(P2PTransportChannelTest, PeerReflexiveCandidateBeforeSignalingWithNAT) {
  ConfigureEndpoints(OPEN, NAT_SYMMETRIC, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  // Emulate no remote parameters coming in.
  set_remote_ice_parameter_source(FROM_CANDIDATE);
  CreateChannels();
  // Only have remote parameters come in for ep2, not ep1.
  ep2_ch1()->SetRemoteIceParameters(kIceParams[0]);
  // Pause sending ep2's candidates to ep1 until ep1 receives the peer reflexive
  // candidate.
  PauseCandidates(1);

  // Wait until the callee becomes writable to make sure that a ping request is
  // received by the caller before their remote ICE credentials are set.
  ASSERT_TRUE_WAIT(ep2_ch1()->selected_connection() != nullptr, kMediumTimeout);
  // Add two sets of remote ICE credentials, so that the ones used by the
  // candidate will be generation 1 instead of 0.
  ep1_ch1()->SetRemoteIceParameters(kIceParams[3]);
  ep1_ch1()->SetRemoteIceParameters(kIceParams[1]);

  // The caller's selected connection should be connected to the peer reflexive
  // candidate.
  const Connection* selected_connection = nullptr;
  ASSERT_TRUE_WAIT(
      (selected_connection = ep1_ch1()->selected_connection()) != nullptr,
      kMediumTimeout);
  EXPECT_EQ(PRFLX_PORT_TYPE, selected_connection->remote_candidate().type());
  EXPECT_EQ(kIceUfrag[1], selected_connection->remote_candidate().username());
  EXPECT_EQ(kIcePwd[1], selected_connection->remote_candidate().password());
  EXPECT_EQ(1u, selected_connection->remote_candidate().generation());

  ResumeCandidates(1);

  EXPECT_EQ_WAIT(PRFLX_PORT_TYPE,
                 ep1_ch1()->selected_connection()->remote_candidate().type(),
                 kMediumTimeout);
  EXPECT_EQ(selected_connection, ep1_ch1()->selected_connection());
  DestroyChannels();
}

// Test that we properly create a connection on a STUN ping from unknown address
// when the signaling is slow, even if the new candidate is created due to the
// remote peer doing an ICE restart, pairing this candidate across generations.
//
// Previously this wasn't working due to a bug where the peer reflexive
// candidate was only updated for the newest generation candidate pairs, and
// not older-generation candidate pairs created by pairing candidates across
// generations. This resulted in the old-generation prflx candidate being
// prioritized above new-generation candidate pairs.
TEST_F(P2PTransportChannelTest,
       PeerReflexiveCandidateBeforeSignalingWithIceRestart) {
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  // Only gather relay candidates, so that when the prflx candidate arrives
  // it's prioritized above the current candidate pair.
  GetEndpoint(0)->allocator_->SetCandidateFilter(CF_RELAY);
  GetEndpoint(1)->allocator_->SetCandidateFilter(CF_RELAY);
  // Setting this allows us to control when SetRemoteIceParameters is called.
  set_remote_ice_parameter_source(FROM_CANDIDATE);
  CreateChannels();
  // Wait for the initial connection to be made.
  ep1_ch1()->SetRemoteIceParameters(kIceParams[1]);
  ep2_ch1()->SetRemoteIceParameters(kIceParams[0]);
  EXPECT_TRUE_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()), kDefaultTimeout);

  // Simulate an ICE restart on ep2, but don't signal the candidate or new
  // ICE parameters until after a prflx connection has been made.
  PauseCandidates(1);
  ep2_ch1()->SetIceParameters(kIceParams[3]);

  ep1_ch1()->SetRemoteIceParameters(kIceParams[3]);
  ep2_ch1()->MaybeStartGathering();

  // The caller should have the selected connection connected to the peer
  // reflexive candidate.
  EXPECT_EQ_WAIT(PRFLX_PORT_TYPE,
                 ep1_ch1()->selected_connection()->remote_candidate().type(),
                 kDefaultTimeout);
  const Connection* prflx_selected_connection =
      ep1_ch1()->selected_connection();

  // Now simulate the ICE restart on ep1.
  ep1_ch1()->SetIceParameters(kIceParams[2]);

  ep2_ch1()->SetRemoteIceParameters(kIceParams[2]);
  ep1_ch1()->MaybeStartGathering();

  // Finally send the candidates from ep2's ICE restart and verify that ep1 uses
  // their information to update the peer reflexive candidate.
  ResumeCandidates(1);

  EXPECT_EQ_WAIT(RELAY_PORT_TYPE,
                 ep1_ch1()->selected_connection()->remote_candidate().type(),
                 kDefaultTimeout);
  EXPECT_EQ(prflx_selected_connection, ep1_ch1()->selected_connection());
  DestroyChannels();
}

// Test that if remote candidates don't have ufrag and pwd, we still work.
TEST_F(P2PTransportChannelTest, RemoteCandidatesWithoutUfragPwd) {
  rtc::ScopedFakeClock clock;
  set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  CreateChannels();
  const Connection* selected_connection = NULL;
  // Wait until the callee's connections are created.
  EXPECT_TRUE_SIMULATED_WAIT(
      (selected_connection = ep2_ch1()->selected_connection()) != NULL,
      kMediumTimeout, clock);
  // Wait to make sure the selected connection is not changed.
  SIMULATED_WAIT(ep2_ch1()->selected_connection() != selected_connection,
                 kShortTimeout, clock);
  EXPECT_TRUE(ep2_ch1()->selected_connection() == selected_connection);
  DestroyChannels();
}

// Test that a host behind NAT cannot be reached when incoming_only
// is set to true.
TEST_F(P2PTransportChannelTest, IncomingOnlyBlocked) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(NAT_FULL_CONE, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);

  SetAllocatorFlags(0, kOnlyLocalPorts);
  CreateChannels();
  ep1_ch1()->set_incoming_only(true);

  // Pump for 1 second and verify that the channels are not connected.
  SIMULATED_WAIT(false, kShortTimeout, clock);

  EXPECT_FALSE(ep1_ch1()->receiving());
  EXPECT_FALSE(ep1_ch1()->writable());
  EXPECT_FALSE(ep2_ch1()->receiving());
  EXPECT_FALSE(ep2_ch1()->writable());

  DestroyChannels();
}

// Test that a peer behind NAT can connect to a peer that has
// incoming_only flag set.
TEST_F(P2PTransportChannelTest, IncomingOnlyOpen) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, NAT_FULL_CONE, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);

  SetAllocatorFlags(0, kOnlyLocalPorts);
  CreateChannels();
  ep1_ch1()->set_incoming_only(true);

  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kMediumTimeout, clock);

  DestroyChannels();
}

// Test that two peers can connect when one can only make outgoing TCP
// connections. This has been observed in some scenarios involving
// VPNs/firewalls.
TEST_F(P2PTransportChannelTest, CanOnlyMakeOutgoingTcpConnections) {
  // The PORTALLOCATOR_ENABLE_ANY_ADDRESS_PORTS flag is required if the
  // application needs this use case to work, since the application must accept
  // the tradeoff that more candidates need to be allocated.
  //
  // TODO(deadbeef): Later, make this flag the default, and do more elegant
  // things to ensure extra candidates don't waste resources?
  ConfigureEndpoints(
      OPEN, OPEN,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_ANY_ADDRESS_PORTS,
      kDefaultPortAllocatorFlags);
  // In order to simulate nothing working but outgoing TCP connections, prevent
  // the endpoint from binding to its interface's address as well as the
  // "any" addresses. It can then only make a connection by using "Connect()".
  fw()->SetUnbindableIps({rtc::GetAnyIP(AF_INET), rtc::GetAnyIP(AF_INET6),
                          kPublicAddrs[0].ipaddr()});
  CreateChannels();
  // Expect a "prflx" candidate on the side that can only make outgoing
  // connections, endpoint 0.
  Test(kPrflxTcpToLocalTcp);
  DestroyChannels();
}

TEST_F(P2PTransportChannelTest, TestTcpConnectionsFromActiveToPassive) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0]);
  AddAddress(1, kPublicAddrs[1]);

  SetAllocationStepDelay(0, kMinimumStepDelay);
  SetAllocationStepDelay(1, kMinimumStepDelay);

  int kOnlyLocalTcpPorts = PORTALLOCATOR_DISABLE_UDP |
                           PORTALLOCATOR_DISABLE_STUN |
                           PORTALLOCATOR_DISABLE_RELAY;
  // Disable all protocols except TCP.
  SetAllocatorFlags(0, kOnlyLocalTcpPorts);
  SetAllocatorFlags(1, kOnlyLocalTcpPorts);

  SetAllowTcpListen(0, true);   // actpass.
  SetAllowTcpListen(1, false);  // active.

  // We want SetRemoteIceParameters to be called as it normally would.
  // Otherwise we won't know what parameters to use for the expected
  // prflx TCP candidates.
  set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);

  // Pause candidate so we could verify the candidate properties.
  PauseCandidates(0);
  PauseCandidates(1);
  CreateChannels();

  // Verify tcp candidates.
  VerifySavedTcpCandidates(0, TCPTYPE_PASSIVE_STR);
  VerifySavedTcpCandidates(1, TCPTYPE_ACTIVE_STR);

  // Resume candidates.
  ResumeCandidates(0);
  ResumeCandidates(1);

  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kPublicAddrs[0],
                                     kPublicAddrs[1]),
      kShortTimeout, clock);

  TestSendRecv(&clock);
  DestroyChannels();
}

// Test that tcptype is set on all candidates for a connection running over TCP.
TEST_F(P2PTransportChannelTest, TestTcpConnectionTcptypeSet) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(BLOCK_UDP_AND_INCOMING_TCP, OPEN,
                     PORTALLOCATOR_ENABLE_SHARED_SOCKET,
                     PORTALLOCATOR_ENABLE_SHARED_SOCKET);

  SetAllowTcpListen(0, false);  // active.
  SetAllowTcpListen(1, true);   // actpass.
  CreateChannels();

  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kMediumTimeout, clock);
  SIMULATED_WAIT(false, kDefaultTimeout, clock);

  EXPECT_EQ(RemoteCandidate(ep1_ch1())->tcptype(), "passive");
  EXPECT_EQ(LocalCandidate(ep1_ch1())->tcptype(), "active");
  EXPECT_EQ(RemoteCandidate(ep2_ch1())->tcptype(), "active");
  EXPECT_EQ(LocalCandidate(ep2_ch1())->tcptype(), "passive");

  DestroyChannels();
}

TEST_F(P2PTransportChannelTest, TestIceRoleConflict) {
  AddAddress(0, kPublicAddrs[0]);
  AddAddress(1, kPublicAddrs[1]);
  TestSignalRoleConflict();
}

// Tests that the ice configs (protocol, tiebreaker and role) can be passed
// down to ports.
TEST_F(P2PTransportChannelTest, TestIceConfigWillPassDownToPort) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0]);
  AddAddress(1, kPublicAddrs[1]);

  // Give the first connection the higher tiebreaker so its role won't
  // change unless we tell it to.
  SetIceRole(0, ICEROLE_CONTROLLING);
  SetIceTiebreaker(0, kHighTiebreaker);
  SetIceRole(1, ICEROLE_CONTROLLING);
  SetIceTiebreaker(1, kLowTiebreaker);

  CreateChannels();

  EXPECT_EQ_SIMULATED_WAIT(2u, ep1_ch1()->ports().size(), kShortTimeout, clock);

  const std::vector<PortInterface*> ports_before = ep1_ch1()->ports();
  for (size_t i = 0; i < ports_before.size(); ++i) {
    EXPECT_EQ(ICEROLE_CONTROLLING, ports_before[i]->GetIceRole());
    EXPECT_EQ(kHighTiebreaker, ports_before[i]->IceTiebreaker());
  }

  ep1_ch1()->SetIceRole(ICEROLE_CONTROLLED);
  ep1_ch1()->SetIceTiebreaker(kLowTiebreaker);

  const std::vector<PortInterface*> ports_after = ep1_ch1()->ports();
  for (size_t i = 0; i < ports_after.size(); ++i) {
    EXPECT_EQ(ICEROLE_CONTROLLED, ports_before[i]->GetIceRole());
    // SetIceTiebreaker after ports have been created will fail. So expect the
    // original value.
    EXPECT_EQ(kHighTiebreaker, ports_before[i]->IceTiebreaker());
  }

  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kShortTimeout, clock);

  EXPECT_TRUE(ep1_ch1()->selected_connection() &&
              ep2_ch1()->selected_connection());

  TestSendRecv(&clock);
  DestroyChannels();
}

// Verify that we can set DSCP value and retrieve properly from P2PTC.
TEST_F(P2PTransportChannelTest, TestDefaultDscpValue) {
  AddAddress(0, kPublicAddrs[0]);
  AddAddress(1, kPublicAddrs[1]);

  CreateChannels();
  EXPECT_EQ(rtc::DSCP_NO_CHANGE, GetEndpoint(0)->cd1_.ch_->DefaultDscpValue());
  EXPECT_EQ(rtc::DSCP_NO_CHANGE, GetEndpoint(1)->cd1_.ch_->DefaultDscpValue());
  GetEndpoint(0)->cd1_.ch_->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6);
  GetEndpoint(1)->cd1_.ch_->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6);
  EXPECT_EQ(rtc::DSCP_CS6, GetEndpoint(0)->cd1_.ch_->DefaultDscpValue());
  EXPECT_EQ(rtc::DSCP_CS6, GetEndpoint(1)->cd1_.ch_->DefaultDscpValue());
  GetEndpoint(0)->cd1_.ch_->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF41);
  GetEndpoint(1)->cd1_.ch_->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF41);
  EXPECT_EQ(rtc::DSCP_AF41, GetEndpoint(0)->cd1_.ch_->DefaultDscpValue());
  EXPECT_EQ(rtc::DSCP_AF41, GetEndpoint(1)->cd1_.ch_->DefaultDscpValue());
  DestroyChannels();
}

// Verify IPv6 connection is preferred over IPv4.
TEST_F(P2PTransportChannelTest, TestIPv6Connections) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kIPv6PublicAddrs[0]);
  AddAddress(0, kPublicAddrs[0]);
  AddAddress(1, kIPv6PublicAddrs[1]);
  AddAddress(1, kPublicAddrs[1]);

  SetAllocationStepDelay(0, kMinimumStepDelay);
  SetAllocationStepDelay(1, kMinimumStepDelay);

  // Enable IPv6
  SetAllocatorFlags(
      0, PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
  SetAllocatorFlags(
      1, PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);

  CreateChannels();

  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kIPv6PublicAddrs[0],
                                     kIPv6PublicAddrs[1]),
      kShortTimeout, clock);

  TestSendRecv(&clock);
  DestroyChannels();
}

// Testing forceful TURN connections.
TEST_F(P2PTransportChannelTest, TestForceTurn) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(
      NAT_PORT_RESTRICTED, NAT_SYMMETRIC,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  set_force_relay(true);

  SetAllocationStepDelay(0, kMinimumStepDelay);
  SetAllocationStepDelay(1, kMinimumStepDelay);

  CreateChannels();

  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kMediumTimeout, clock);

  EXPECT_TRUE(ep1_ch1()->selected_connection() &&
              ep2_ch1()->selected_connection());

  EXPECT_EQ(RELAY_PORT_TYPE, RemoteCandidate(ep1_ch1())->type());
  EXPECT_EQ(RELAY_PORT_TYPE, LocalCandidate(ep1_ch1())->type());
  EXPECT_EQ(RELAY_PORT_TYPE, RemoteCandidate(ep2_ch1())->type());
  EXPECT_EQ(RELAY_PORT_TYPE, LocalCandidate(ep2_ch1())->type());

  TestSendRecv(&clock);
  DestroyChannels();
}

// Test that if continual gathering is set to true, ICE gathering state will
// not change to "Complete", and vice versa.
TEST_F(P2PTransportChannelTest, TestContinualGathering) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  SetAllocationStepDelay(0, kDefaultStepDelay);
  SetAllocationStepDelay(1, kDefaultStepDelay);
  IceConfig continual_gathering_config =
      CreateIceConfig(1000, GATHER_CONTINUALLY);
  // By default, ep2 does not gather continually.
  IceConfig default_config;
  CreateChannels(continual_gathering_config, default_config);

  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kMediumTimeout, clock);
  SIMULATED_WAIT(
      IceGatheringState::kIceGatheringComplete == ep1_ch1()->gathering_state(),
      kShortTimeout, clock);
  EXPECT_EQ(IceGatheringState::kIceGatheringGathering,
            ep1_ch1()->gathering_state());
  // By now, ep2 should have completed gathering.
  EXPECT_EQ(IceGatheringState::kIceGatheringComplete,
            ep2_ch1()->gathering_state());

  DestroyChannels();
}

// Test that a connection succeeds when the P2PTransportChannel uses a pooled
// PortAllocatorSession that has not yet finished gathering candidates.
TEST_F(P2PTransportChannelTest, TestUsingPooledSessionBeforeDoneGathering) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  // First create a pooled session for each endpoint.
  auto& allocator_1 = GetEndpoint(0)->allocator_;
  auto& allocator_2 = GetEndpoint(1)->allocator_;
  int pool_size = 1;
  allocator_1->SetConfiguration(allocator_1->stun_servers(),
                                allocator_1->turn_servers(), pool_size,
                                webrtc::NO_PRUNE);
  allocator_2->SetConfiguration(allocator_2->stun_servers(),
                                allocator_2->turn_servers(), pool_size,
                                webrtc::NO_PRUNE);
  const PortAllocatorSession* pooled_session_1 =
      allocator_1->GetPooledSession();
  const PortAllocatorSession* pooled_session_2 =
      allocator_2->GetPooledSession();
  ASSERT_NE(nullptr, pooled_session_1);
  ASSERT_NE(nullptr, pooled_session_2);
  // Sanity check that pooled sessions haven't gathered anything yet.
  EXPECT_TRUE(pooled_session_1->ReadyPorts().empty());
  EXPECT_TRUE(pooled_session_1->ReadyCandidates().empty());
  EXPECT_TRUE(pooled_session_2->ReadyPorts().empty());
  EXPECT_TRUE(pooled_session_2->ReadyCandidates().empty());
  // Now let the endpoints connect and try exchanging some data.
  CreateChannels();
  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kMediumTimeout, clock);
  TestSendRecv(&clock);
  // Make sure the P2PTransportChannels are actually using ports from the
  // pooled sessions.
  auto pooled_ports_1 = pooled_session_1->ReadyPorts();
  auto pooled_ports_2 = pooled_session_2->ReadyPorts();
  EXPECT_THAT(pooled_ports_1,
              Contains(ep1_ch1()->selected_connection()->PortForTest()));
  EXPECT_THAT(pooled_ports_2,
              Contains(ep2_ch1()->selected_connection()->PortForTest()));
  DestroyChannels();
}

// Test that a connection succeeds when the P2PTransportChannel uses a pooled
// PortAllocatorSession that already finished gathering candidates.
TEST_F(P2PTransportChannelTest, TestUsingPooledSessionAfterDoneGathering) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  // First create a pooled session for each endpoint.
  auto& allocator_1 = GetEndpoint(0)->allocator_;
  auto& allocator_2 = GetEndpoint(1)->allocator_;
  int pool_size = 1;
  allocator_1->SetConfiguration(allocator_1->stun_servers(),
                                allocator_1->turn_servers(), pool_size,
                                webrtc::NO_PRUNE);
  allocator_2->SetConfiguration(allocator_2->stun_servers(),
                                allocator_2->turn_servers(), pool_size,
                                webrtc::NO_PRUNE);
  const PortAllocatorSession* pooled_session_1 =
      allocator_1->GetPooledSession();
  const PortAllocatorSession* pooled_session_2 =
      allocator_2->GetPooledSession();
  ASSERT_NE(nullptr, pooled_session_1);
  ASSERT_NE(nullptr, pooled_session_2);
  // Wait for the pooled sessions to finish gathering before the
  // P2PTransportChannels try to use them.
  EXPECT_TRUE_SIMULATED_WAIT(pooled_session_1->CandidatesAllocationDone() &&
                                 pooled_session_2->CandidatesAllocationDone(),
                             kDefaultTimeout, clock);
  // Now let the endpoints connect and try exchanging some data.
  CreateChannels();
  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kMediumTimeout, clock);
  TestSendRecv(&clock);
  // Make sure the P2PTransportChannels are actually using ports from the
  // pooled sessions.
  auto pooled_ports_1 = pooled_session_1->ReadyPorts();
  auto pooled_ports_2 = pooled_session_2->ReadyPorts();
  EXPECT_THAT(pooled_ports_1,
              Contains(ep1_ch1()->selected_connection()->PortForTest()));
  EXPECT_THAT(pooled_ports_2,
              Contains(ep2_ch1()->selected_connection()->PortForTest()));
  DestroyChannels();
}

// Test that when the "presume_writable_when_fully_relayed" flag is set to
// true and there's a TURN-TURN candidate pair, it's presumed to be writable
// as soon as it's created.
// TODO(deadbeef): Move this and other "presumed writable" tests into a test
// class that operates on a single P2PTransportChannel, once an appropriate one
// (which supports TURN servers and TURN candidate gathering) is available.
TEST_F(P2PTransportChannelTest, TurnToTurnPresumedWritable) {
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  // Only configure one channel so we can control when the remote candidate
  // is added.
  GetEndpoint(0)->cd1_.ch_ = CreateChannel(0, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                           kIceParams[0], kIceParams[1]);
  IceConfig config;
  config.presume_writable_when_fully_relayed = true;
  ep1_ch1()->SetIceConfig(config);
  ep1_ch1()->MaybeStartGathering();
  EXPECT_EQ_WAIT(IceGatheringState::kIceGatheringComplete,
                 ep1_ch1()->gathering_state(), kDefaultTimeout);
  // Add two remote candidates; a host candidate (with higher priority)
  // and TURN candidate.
  ep1_ch1()->AddRemoteCandidate(
      CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 100));
  ep1_ch1()->AddRemoteCandidate(
      CreateUdpCandidate(RELAY_PORT_TYPE, "2.2.2.2", 2, 0));
  // Expect that the TURN-TURN candidate pair will be prioritized since it's
  // "probably writable".
  EXPECT_TRUE_WAIT(ep1_ch1()->selected_connection() != nullptr, kShortTimeout);
  EXPECT_EQ(RELAY_PORT_TYPE, LocalCandidate(ep1_ch1())->type());
  EXPECT_EQ(RELAY_PORT_TYPE, RemoteCandidate(ep1_ch1())->type());
  // Also expect that the channel instantly indicates that it's writable since
  // it has a TURN-TURN pair.
  EXPECT_TRUE(ep1_ch1()->writable());
  EXPECT_TRUE(GetEndpoint(0)->ready_to_send_);
  // Also make sure we can immediately send packets.
  const char* data = "test";
  int len = static_cast<int>(strlen(data));
  EXPECT_EQ(len, SendData(ep1_ch1(), data, len));
  // Prevent pending messages to access endpoints after their destruction.
  DestroyChannels();
}

// Test that a TURN/peer reflexive candidate pair is also presumed writable.
TEST_F(P2PTransportChannelTest, TurnToPrflxPresumedWritable) {
  rtc::ScopedFakeClock fake_clock;

  // We need to add artificial network delay to verify that the connection
  // is presumed writable before it's actually writable. Without this delay
  // it would become writable instantly.
  virtual_socket_server()->set_delay_mean(50);
  virtual_socket_server()->UpdateDelayDistribution();

  ConfigureEndpoints(NAT_SYMMETRIC, NAT_SYMMETRIC, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  // We want the remote TURN candidate to show up as prflx. To do this we need
  // to configure the server to accept packets from an address we haven't
  // explicitly installed permission for.
  test_turn_server()->set_enable_permission_checks(false);
  IceConfig config;
  config.presume_writable_when_fully_relayed = true;
  GetEndpoint(0)->cd1_.ch_ = CreateChannel(0, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                           kIceParams[0], kIceParams[1]);
  GetEndpoint(1)->cd1_.ch_ = CreateChannel(1, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                           kIceParams[1], kIceParams[0]);
  ep1_ch1()->SetIceConfig(config);
  ep2_ch1()->SetIceConfig(config);
  // Don't signal candidates from channel 2, so that channel 1 sees the TURN
  // candidate as peer reflexive.
  PauseCandidates(1);
  ep1_ch1()->MaybeStartGathering();
  ep2_ch1()->MaybeStartGathering();

  // Wait for the TURN<->prflx connection.
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->receiving() && ep1_ch1()->writable(),
                             kShortTimeout, fake_clock);
  ASSERT_NE(nullptr, ep1_ch1()->selected_connection());
  EXPECT_EQ(RELAY_PORT_TYPE, LocalCandidate(ep1_ch1())->type());
  EXPECT_EQ(PRFLX_PORT_TYPE, RemoteCandidate(ep1_ch1())->type());
  // Make sure that at this point the connection is only presumed writable,
  // not fully writable.
  EXPECT_FALSE(ep1_ch1()->selected_connection()->writable());

  // Now wait for it to actually become writable.
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection()->writable(),
                             kShortTimeout, fake_clock);

  // Explitly destroy channels, before fake clock is destroyed.
  DestroyChannels();
}

// Test that a presumed-writable TURN<->TURN connection is preferred above an
// unreliable connection (one that has failed to be pinged for some time).
TEST_F(P2PTransportChannelTest, PresumedWritablePreferredOverUnreliable) {
  rtc::ScopedFakeClock fake_clock;

  ConfigureEndpoints(NAT_SYMMETRIC, NAT_SYMMETRIC, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  IceConfig config;
  config.presume_writable_when_fully_relayed = true;
  GetEndpoint(0)->cd1_.ch_ = CreateChannel(0, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                           kIceParams[0], kIceParams[1]);
  GetEndpoint(1)->cd1_.ch_ = CreateChannel(1, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                           kIceParams[1], kIceParams[0]);
  ep1_ch1()->SetIceConfig(config);
  ep2_ch1()->SetIceConfig(config);
  ep1_ch1()->MaybeStartGathering();
  ep2_ch1()->MaybeStartGathering();
  // Wait for initial connection as usual.
  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kShortTimeout, fake_clock);
  const Connection* old_selected_connection = ep1_ch1()->selected_connection();
  // Destroy the second channel and wait for the current connection on the
  // first channel to become "unreliable", making it no longer writable.
  GetEndpoint(1)->cd1_.ch_.reset();
  EXPECT_TRUE_SIMULATED_WAIT(!ep1_ch1()->writable(), kDefaultTimeout,
                             fake_clock);
  EXPECT_NE(nullptr, ep1_ch1()->selected_connection());
  // Add a remote TURN candidate. The first channel should still have a TURN
  // port available to make a TURN<->TURN pair that's presumed writable.
  ep1_ch1()->AddRemoteCandidate(
      CreateUdpCandidate(RELAY_PORT_TYPE, "2.2.2.2", 2, 0));
  EXPECT_EQ(RELAY_PORT_TYPE, LocalCandidate(ep1_ch1())->type());
  EXPECT_EQ(RELAY_PORT_TYPE, RemoteCandidate(ep1_ch1())->type());
  EXPECT_TRUE(ep1_ch1()->writable());
  EXPECT_TRUE(GetEndpoint(0)->ready_to_send_);
  EXPECT_NE(old_selected_connection, ep1_ch1()->selected_connection());
  // Explitly destroy channels, before fake clock is destroyed.
  DestroyChannels();
}

// Ensure that "SignalReadyToSend" is fired as expected with a "presumed
// writable" connection. Previously this did not work.
TEST_F(P2PTransportChannelTest, SignalReadyToSendWithPresumedWritable) {
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  // Only test one endpoint, so we can ensure the connection doesn't receive a
  // binding response and advance beyond being "presumed" writable.
  GetEndpoint(0)->cd1_.ch_ = CreateChannel(0, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                           kIceParams[0], kIceParams[1]);
  IceConfig config;
  config.presume_writable_when_fully_relayed = true;
  ep1_ch1()->SetIceConfig(config);
  ep1_ch1()->MaybeStartGathering();
  EXPECT_EQ_WAIT(IceGatheringState::kIceGatheringComplete,
                 ep1_ch1()->gathering_state(), kDefaultTimeout);
  ep1_ch1()->AddRemoteCandidate(
      CreateUdpCandidate(RELAY_PORT_TYPE, "1.1.1.1", 1, 0));
  // Sanity checking the type of the connection.
  EXPECT_TRUE_WAIT(ep1_ch1()->selected_connection() != nullptr, kShortTimeout);
  EXPECT_EQ(RELAY_PORT_TYPE, LocalCandidate(ep1_ch1())->type());
  EXPECT_EQ(RELAY_PORT_TYPE, RemoteCandidate(ep1_ch1())->type());

  // Tell the socket server to block packets (returning EWOULDBLOCK).
  virtual_socket_server()->SetSendingBlocked(true);
  const char* data = "test";
  int len = static_cast<int>(strlen(data));
  EXPECT_EQ(-1, SendData(ep1_ch1(), data, len));

  // Reset `ready_to_send_` flag, which is set to true if the event fires as it
  // should.
  GetEndpoint(0)->ready_to_send_ = false;
  virtual_socket_server()->SetSendingBlocked(false);
  EXPECT_TRUE(GetEndpoint(0)->ready_to_send_);
  EXPECT_EQ(len, SendData(ep1_ch1(), data, len));
  DestroyChannels();
}

// Test that role conflict error responses are sent as expected when receiving a
// ping from an unknown address over a TURN connection. Regression test for
// crbug.com/webrtc/9034.
TEST_F(P2PTransportChannelTest,
       TurnToPrflxSelectedAfterResolvingIceControllingRoleConflict) {
  rtc::ScopedFakeClock clock;
  // Gather only relay candidates.
  ConfigureEndpoints(NAT_SYMMETRIC, NAT_SYMMETRIC,
                     kDefaultPortAllocatorFlags | PORTALLOCATOR_DISABLE_UDP |
                         PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_TCP,
                     kDefaultPortAllocatorFlags | PORTALLOCATOR_DISABLE_UDP |
                         PORTALLOCATOR_DISABLE_STUN |
                         PORTALLOCATOR_DISABLE_TCP);
  // With conflicting ICE roles, endpoint 1 has the higher tie breaker and will
  // send a binding error response.
  SetIceRole(0, ICEROLE_CONTROLLING);
  SetIceTiebreaker(0, kHighTiebreaker);
  SetIceRole(1, ICEROLE_CONTROLLING);
  SetIceTiebreaker(1, kLowTiebreaker);
  // We want the remote TURN candidate to show up as prflx. To do this we need
  // to configure the server to accept packets from an address we haven't
  // explicitly installed permission for.
  test_turn_server()->set_enable_permission_checks(false);
  GetEndpoint(0)->cd1_.ch_ = CreateChannel(0, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                           kIceParams[0], kIceParams[1]);
  GetEndpoint(1)->cd1_.ch_ = CreateChannel(1, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                           kIceParams[1], kIceParams[0]);
  // Don't signal candidates from channel 2, so that channel 1 sees the TURN
  // candidate as peer reflexive.
  PauseCandidates(1);
  ep1_ch1()->MaybeStartGathering();
  ep2_ch1()->MaybeStartGathering();

  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->receiving() && ep1_ch1()->writable(),
                             kMediumTimeout, clock);

  ASSERT_NE(nullptr, ep1_ch1()->selected_connection());

  EXPECT_EQ(RELAY_PORT_TYPE, LocalCandidate(ep1_ch1())->type());
  EXPECT_EQ(PRFLX_PORT_TYPE, RemoteCandidate(ep1_ch1())->type());

  DestroyChannels();
}

// Test that the writability can be established with the piggyback
// acknowledgement in the connectivity check from the remote peer.
TEST_F(P2PTransportChannelTest,
       CanConnectWithPiggybackCheckAcknowledgementWhenCheckResponseBlocked) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_, "WebRTC-PiggybackIceCheckAcknowledgement/Enabled/");
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);
  IceConfig ep1_config;
  IceConfig ep2_config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  // Let ep2 be tolerable of the loss of connectivity checks, so that it keeps
  // sending pings even after ep1 becomes unwritable as we configure the
  // firewall below.
  ep2_config.receiving_timeout = 30 * 1000;
  ep2_config.ice_unwritable_timeout = 30 * 1000;
  ep2_config.ice_unwritable_min_checks = 30;
  ep2_config.ice_inactive_timeout = 60 * 1000;

  CreateChannels(ep1_config, ep2_config);

  // Wait until both sides become writable for the first time.
  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kDefaultTimeout, clock);
  // Block the ingress traffic to ep1 so that there is no check response from
  // ep2.
  ASSERT_NE(nullptr, LocalCandidate(ep1_ch1()));
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_IN,
                LocalCandidate(ep1_ch1())->address());
  // Wait until ep1 becomes unwritable. At the same time ep2 should be still
  // fine so that it will keep sending pings.
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1() != nullptr && !ep1_ch1()->writable(),
                             kDefaultTimeout, clock);
  EXPECT_TRUE(ep2_ch1() != nullptr && ep2_ch1()->writable());
  // Now let the pings from ep2 to flow but block any pings from ep1, so that
  // ep1 can only become writable again after receiving an incoming ping from
  // ep2 with piggyback acknowledgement of its previously sent pings. Note
  // though that ep1 should have stopped sending pings after becoming unwritable
  // in the current design.
  fw()->ClearRules();
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_OUT,
                LocalCandidate(ep1_ch1())->address());
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1() != nullptr && ep1_ch1()->writable(),
                             kDefaultTimeout, clock);
  DestroyChannels();
}

// Test what happens when we have 2 users behind the same NAT. This can lead
// to interesting behavior because the STUN server will only give out the
// address of the outermost NAT.
class P2PTransportChannelSameNatTest : public P2PTransportChannelTestBase {
 protected:
  void ConfigureEndpoints(Config nat_type, Config config1, Config config2) {
    RTC_CHECK_GE(nat_type, NAT_FULL_CONE);
    RTC_CHECK_LE(nat_type, NAT_SYMMETRIC);
    rtc::NATSocketServer::Translator* outer_nat = nat()->AddTranslator(
        kPublicAddrs[0], kNatAddrs[0],
        static_cast<rtc::NATType>(nat_type - NAT_FULL_CONE));
    ConfigureEndpoint(outer_nat, 0, config1);
    ConfigureEndpoint(outer_nat, 1, config2);
    set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);
  }
  void ConfigureEndpoint(rtc::NATSocketServer::Translator* nat,
                         int endpoint,
                         Config config) {
    RTC_CHECK(config <= NAT_SYMMETRIC);
    if (config == OPEN) {
      AddAddress(endpoint, kPrivateAddrs[endpoint]);
      nat->AddClient(kPrivateAddrs[endpoint]);
    } else {
      AddAddress(endpoint, kCascadedPrivateAddrs[endpoint]);
      nat->AddTranslator(kPrivateAddrs[endpoint], kCascadedNatAddrs[endpoint],
                         static_cast<rtc::NATType>(config - NAT_FULL_CONE))
          ->AddClient(kCascadedPrivateAddrs[endpoint]);
    }
  }
};

TEST_F(P2PTransportChannelSameNatTest, TestConesBehindSameCone) {
  ConfigureEndpoints(NAT_FULL_CONE, NAT_FULL_CONE, NAT_FULL_CONE);
  Test(
      P2PTransportChannelTestBase::Result("prflx", "udp", "stun", "udp", 1000));
}

// Test what happens when we have multiple available pathways.
// In the future we will try different RTTs and configs for the different
// interfaces, so that we can simulate a user with Ethernet and VPN networks.
class P2PTransportChannelMultihomedTest : public P2PTransportChannelTest {
 public:
  const Connection* GetConnectionWithRemoteAddress(
      P2PTransportChannel* channel,
      const SocketAddress& address) {
    for (Connection* conn : channel->connections()) {
      if (HasRemoteAddress(conn, address)) {
        return conn;
      }
    }
    return nullptr;
  }

  Connection* GetConnectionWithLocalAddress(P2PTransportChannel* channel,
                                            const SocketAddress& address) {
    for (Connection* conn : channel->connections()) {
      if (HasLocalAddress(conn, address)) {
        return conn;
      }
    }
    return nullptr;
  }

  Connection* GetConnection(P2PTransportChannel* channel,
                            const SocketAddress& local,
                            const SocketAddress& remote) {
    for (Connection* conn : channel->connections()) {
      if (HasLocalAddress(conn, local) && HasRemoteAddress(conn, remote)) {
        return conn;
      }
    }
    return nullptr;
  }

  Connection* GetBestConnection(P2PTransportChannel* channel) {
    rtc::ArrayView<Connection* const> connections = channel->connections();
    auto it = absl::c_find(connections, channel->selected_connection());
    if (it == connections.end()) {
      return nullptr;
    }
    return *it;
  }

  Connection* GetBackupConnection(P2PTransportChannel* channel) {
    rtc::ArrayView<Connection* const> connections = channel->connections();
    auto it = absl::c_find_if_not(connections, [channel](Connection* conn) {
      return conn == channel->selected_connection();
    });
    if (it == connections.end()) {
      return nullptr;
    }
    return *it;
  }

  void DestroyAllButBestConnection(P2PTransportChannel* channel) {
    const Connection* selected_connection = channel->selected_connection();
    // Copy the list of connections since the original will be modified.
    rtc::ArrayView<Connection* const> view = channel->connections();
    std::vector<Connection*> connections(view.begin(), view.end());
    for (Connection* conn : connections) {
      if (conn != selected_connection)
        channel->RemoveConnectionForTest(conn);
    }
  }
};

// Test that we can establish connectivity when both peers are multihomed.
TEST_F(P2PTransportChannelMultihomedTest, TestBasic) {
  AddAddress(0, kPublicAddrs[0]);
  AddAddress(0, kAlternateAddrs[0]);
  AddAddress(1, kPublicAddrs[1]);
  AddAddress(1, kAlternateAddrs[1]);
  Test(kLocalUdpToLocalUdp);
}

// Test that we can quickly switch links if an interface goes down.
// The controlled side has two interfaces and one will die.
TEST_F(P2PTransportChannelMultihomedTest, TestFailoverControlledSide) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0]);
  // Simulate failing over from Wi-Fi to cell interface.
  AddAddress(1, kPublicAddrs[1], "eth0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(1, kAlternateAddrs[1], "wlan0", rtc::ADAPTER_TYPE_CELLULAR);

  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // Make the receiving timeout shorter for testing.
  IceConfig config = CreateIceConfig(1000, GATHER_ONCE);
  // Create channels and let them go writable, as usual.
  CreateChannels(config, config);

  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kPublicAddrs[0],
                                     kPublicAddrs[1]),
      kMediumTimeout, clock);

  // Blackhole any traffic to or from the public addrs.
  RTC_LOG(LS_INFO) << "Failing over...";
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kPublicAddrs[1]);
  // The selected connections may switch, so keep references to them.
  const Connection* selected_connection1 = ep1_ch1()->selected_connection();
  // We should detect loss of receiving within 1 second or so.
  EXPECT_TRUE_SIMULATED_WAIT(!selected_connection1->receiving(), kMediumTimeout,
                             clock);

  // We should switch over to use the alternate addr on both sides
  // when we are not receiving.
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection()->receiving() &&
                                 ep2_ch1()->selected_connection()->receiving(),
                             kMediumTimeout, clock);
  EXPECT_TRUE(LocalCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[0]));
  EXPECT_TRUE(
      RemoteCandidate(ep1_ch1())->address().EqualIPs(kAlternateAddrs[1]));
  EXPECT_TRUE(
      LocalCandidate(ep2_ch1())->address().EqualIPs(kAlternateAddrs[1]));

  DestroyChannels();
}

// Test that we can quickly switch links if an interface goes down.
// The controlling side has two interfaces and one will die.
TEST_F(P2PTransportChannelMultihomedTest, TestFailoverControllingSide) {
  rtc::ScopedFakeClock clock;
  // Simulate failing over from Wi-Fi to cell interface.
  AddAddress(0, kPublicAddrs[0], "eth0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(0, kAlternateAddrs[0], "wlan0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(1, kPublicAddrs[1]);

  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // Make the receiving timeout shorter for testing.
  IceConfig config = CreateIceConfig(1000, GATHER_ONCE);
  // Create channels and let them go writable, as usual.
  CreateChannels(config, config);
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kPublicAddrs[0],
                                     kPublicAddrs[1]),
      kMediumTimeout, clock);

  // Blackhole any traffic to or from the public addrs.
  RTC_LOG(LS_INFO) << "Failing over...";
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kPublicAddrs[0]);

  // We should detect loss of receiving within 1 second or so.
  // We should switch over to use the alternate addr on both sides
  // when we are not receiving.
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kAlternateAddrs[0],
                                     kPublicAddrs[1]),
      kMediumTimeout, clock);

  DestroyChannels();
}

// Tests that we can quickly switch links if an interface goes down when
// there are many connections.
TEST_F(P2PTransportChannelMultihomedTest, TestFailoverWithManyConnections) {
  rtc::ScopedFakeClock clock;
  test_turn_server()->AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
  RelayServerConfig turn_server;
  turn_server.credentials = kRelayCredentials;
  turn_server.ports.push_back(ProtocolAddress(kTurnTcpIntAddr, PROTO_TCP));
  GetAllocator(0)->AddTurnServerForTesting(turn_server);
  GetAllocator(1)->AddTurnServerForTesting(turn_server);
  // Enable IPv6
  SetAllocatorFlags(
      0, PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
  SetAllocatorFlags(
      1, PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
  SetAllocationStepDelay(0, kMinimumStepDelay);
  SetAllocationStepDelay(1, kMinimumStepDelay);

  auto& wifi = kPublicAddrs;
  auto& cellular = kAlternateAddrs;
  auto& wifiIpv6 = kIPv6PublicAddrs;
  auto& cellularIpv6 = kIPv6AlternateAddrs;
  AddAddress(0, wifi[0], "wifi0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(0, wifiIpv6[0], "wifi0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(0, cellular[0], "cellular0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(0, cellularIpv6[0], "cellular0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(1, wifi[1], "wifi1", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(1, wifiIpv6[1], "wifi1", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(1, cellular[1], "cellular1", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(1, cellularIpv6[1], "cellular1", rtc::ADAPTER_TYPE_CELLULAR);

  // Set smaller delay on the TCP TURN server so that TCP TURN candidates
  // will be created in time.
  virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 1);
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpExtAddr, 1);
  virtual_socket_server()->set_delay_mean(500);
  virtual_socket_server()->UpdateDelayDistribution();

  // Make the receiving timeout shorter for testing.
  IceConfig config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  // Create channels and let them go writable, as usual.
  CreateChannels(config, config, true /* ice_renomination */);
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), wifiIpv6[0],
                                     wifiIpv6[1]),
      kMediumTimeout, clock);

  // Blackhole any traffic to or from the wifi on endpoint 1.
  RTC_LOG(LS_INFO) << "Failing over...";
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, wifi[0]);
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, wifiIpv6[0]);

  // The selected connections may switch, so keep references to them.
  const Connection* selected_connection1 = ep1_ch1()->selected_connection();
  const Connection* selected_connection2 = ep2_ch1()->selected_connection();
  EXPECT_TRUE_SIMULATED_WAIT(
      !selected_connection1->receiving() && !selected_connection2->receiving(),
      kMediumTimeout, clock);

  // Per-network best connections will be pinged at relatively higher rate when
  // the selected connection becomes not receiving.
  Connection* per_network_best_connection1 =
      GetConnection(ep1_ch1(), cellularIpv6[0], wifiIpv6[1]);
  ASSERT_NE(nullptr, per_network_best_connection1);
  int64_t last_ping_sent1 = per_network_best_connection1->last_ping_sent();
  int num_pings_sent1 = per_network_best_connection1->num_pings_sent();
  EXPECT_TRUE_SIMULATED_WAIT(
      num_pings_sent1 < per_network_best_connection1->num_pings_sent(),
      kMediumTimeout, clock);
  ASSERT_GT(per_network_best_connection1->num_pings_sent() - num_pings_sent1,
            0);
  int64_t ping_interval1 =
      (per_network_best_connection1->last_ping_sent() - last_ping_sent1) /
      (per_network_best_connection1->num_pings_sent() - num_pings_sent1);
  constexpr int SCHEDULING_DELAY = 200;
  EXPECT_LT(
      ping_interval1,
      WEAK_OR_STABILIZING_WRITABLE_CONNECTION_PING_INTERVAL + SCHEDULING_DELAY);

  // It should switch over to use the cellular IPv6 addr on endpoint 1 before
  // it timed out on writing.
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), cellularIpv6[0],
                                     wifiIpv6[1]),
      kMediumTimeout, clock);

  DestroyChannels();
}

// Test that when the controlling side switches the selected connection,
// the nomination of the selected connection on the controlled side will
// increase.
TEST_F(P2PTransportChannelMultihomedTest, TestIceRenomination) {
  rtc::ScopedFakeClock clock;
  // Simulate failing over from Wi-Fi to cell interface.
  AddAddress(0, kPublicAddrs[0], "eth0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(0, kAlternateAddrs[0], "wlan0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(1, kPublicAddrs[1]);

  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // We want it to set the remote ICE parameters when creating channels.
  set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);
  // Make the receiving timeout shorter for testing.
  IceConfig config = CreateIceConfig(1000, GATHER_ONCE);
  // Create channels with ICE renomination and let them go writable as usual.
  CreateChannels(config, config, true);
  ASSERT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kMediumTimeout, clock);
  EXPECT_TRUE_SIMULATED_WAIT(
      ep2_ch1()->selected_connection()->remote_nomination() > 0 &&
          ep1_ch1()->selected_connection()->acked_nomination() > 0,
      kDefaultTimeout, clock);
  const Connection* selected_connection1 = ep1_ch1()->selected_connection();
  Connection* selected_connection2 =
      const_cast<Connection*>(ep2_ch1()->selected_connection());
  uint32_t remote_nomination2 = selected_connection2->remote_nomination();
  // `selected_connection2` should not be nominated any more since the previous
  // nomination has been acknowledged.
  ConnectSignalNominated(selected_connection2);
  SIMULATED_WAIT(nominated(), kMediumTimeout, clock);
  EXPECT_FALSE(nominated());

  // Blackhole any traffic to or from the public addrs.
  RTC_LOG(LS_INFO) << "Failing over...";
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kPublicAddrs[0]);

  // The selected connection on the controlling side should switch.
  EXPECT_TRUE_SIMULATED_WAIT(
      ep1_ch1()->selected_connection() != selected_connection1, kMediumTimeout,
      clock);
  // The connection on the controlled side should be nominated again
  // and have an increased nomination.
  EXPECT_TRUE_SIMULATED_WAIT(
      ep2_ch1()->selected_connection()->remote_nomination() >
          remote_nomination2,
      kDefaultTimeout, clock);

  DestroyChannels();
}

// Test that if an interface fails temporarily and then recovers quickly,
// the selected connection will not switch.
// The case that it will switch over to the backup connection if the selected
// connection does not recover after enough time is covered in
// TestFailoverControlledSide and TestFailoverControllingSide.
TEST_F(P2PTransportChannelMultihomedTest,
       TestConnectionSwitchDampeningControlledSide) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0]);
  // Simulate failing over from Wi-Fi to cell interface.
  AddAddress(1, kPublicAddrs[1], "eth0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(1, kAlternateAddrs[1], "wlan0", rtc::ADAPTER_TYPE_CELLULAR);

  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // Create channels and let them go writable, as usual.
  CreateChannels();

  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kPublicAddrs[0],
                                     kPublicAddrs[1]),
      kMediumTimeout, clock);

  // Make the receiving timeout shorter for testing.
  IceConfig config = CreateIceConfig(1000, GATHER_ONCE);
  ep1_ch1()->SetIceConfig(config);
  ep2_ch1()->SetIceConfig(config);
  reset_selected_candidate_pair_switches();

  // Blackhole any traffic to or from the public addrs.
  RTC_LOG(LS_INFO) << "Failing over...";
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kPublicAddrs[1]);

  // The selected connections may switch, so keep references to them.
  const Connection* selected_connection1 = ep1_ch1()->selected_connection();
  // We should detect loss of receiving within 1 second or so.
  EXPECT_TRUE_SIMULATED_WAIT(!selected_connection1->receiving(), kMediumTimeout,
                             clock);
  // After a short while, the link recovers itself.
  SIMULATED_WAIT(false, 10, clock);
  fw()->ClearRules();

  // We should remain on the public address on both sides and no connection
  // switches should have happened.
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection()->receiving() &&
                                 ep2_ch1()->selected_connection()->receiving(),
                             kMediumTimeout, clock);
  EXPECT_TRUE(RemoteCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[1]));
  EXPECT_TRUE(LocalCandidate(ep2_ch1())->address().EqualIPs(kPublicAddrs[1]));
  EXPECT_EQ(0, reset_selected_candidate_pair_switches());

  DestroyChannels();
}

// Test that if an interface fails temporarily and then recovers quickly,
// the selected connection will not switch.
TEST_F(P2PTransportChannelMultihomedTest,
       TestConnectionSwitchDampeningControllingSide) {
  rtc::ScopedFakeClock clock;
  // Simulate failing over from Wi-Fi to cell interface.
  AddAddress(0, kPublicAddrs[0], "eth0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(0, kAlternateAddrs[0], "wlan0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(1, kPublicAddrs[1]);

  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // Create channels and let them go writable, as usual.
  CreateChannels();
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kPublicAddrs[0],
                                     kPublicAddrs[1]),
      kMediumTimeout, clock);

  // Make the receiving timeout shorter for testing.
  IceConfig config = CreateIceConfig(1000, GATHER_ONCE);
  ep1_ch1()->SetIceConfig(config);
  ep2_ch1()->SetIceConfig(config);
  reset_selected_candidate_pair_switches();

  // Blackhole any traffic to or from the public addrs.
  RTC_LOG(LS_INFO) << "Failing over...";
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kPublicAddrs[0]);
  // The selected connections may switch, so keep references to them.
  const Connection* selected_connection1 = ep1_ch1()->selected_connection();
  // We should detect loss of receiving within 1 second or so.
  EXPECT_TRUE_SIMULATED_WAIT(!selected_connection1->receiving(), kMediumTimeout,
                             clock);
  // The link recovers after a short while.
  SIMULATED_WAIT(false, 10, clock);
  fw()->ClearRules();

  // We should not switch to the alternate addr on both sides because of the
  // dampening.
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kPublicAddrs[0],
                                     kPublicAddrs[1]),
      kMediumTimeout, clock);
  EXPECT_EQ(0, reset_selected_candidate_pair_switches());
  DestroyChannels();
}

// Tests that if the remote side's network failed, it won't cause the local
// side to switch connections and networks.
TEST_F(P2PTransportChannelMultihomedTest, TestRemoteFailover) {
  rtc::ScopedFakeClock clock;
  // The interface names are chosen so that `cellular` would have higher
  // candidate priority and higher cost.
  auto& wifi = kPublicAddrs;
  auto& cellular = kAlternateAddrs;
  AddAddress(0, wifi[0], "wifi0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(0, cellular[0], "cellular0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(1, wifi[1], "wifi0", rtc::ADAPTER_TYPE_WIFI);

  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);
  // Create channels and let them go writable, as usual.
  CreateChannels();
  // Make the receiving timeout shorter for testing.
  // Set the backup connection ping interval to 25s.
  IceConfig config = CreateIceConfig(1000, GATHER_ONCE, 25000);
  // Ping the best connection more frequently since we don't have traffic.
  config.stable_writable_connection_ping_interval = 900;
  ep1_ch1()->SetIceConfig(config);
  ep2_ch1()->SetIceConfig(config);
  // Need to wait to make sure the connections on both networks are writable.
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), wifi[0], wifi[1]),
      kDefaultTimeout, clock);
  Connection* backup_conn =
      GetConnectionWithLocalAddress(ep1_ch1(), cellular[0]);
  ASSERT_NE(nullptr, backup_conn);
  // After a short while, the backup connection will be writable but not
  // receiving because backup connection is pinged at a slower rate.
  EXPECT_TRUE_SIMULATED_WAIT(
      backup_conn->writable() && !backup_conn->receiving(), kDefaultTimeout,
      clock);
  reset_selected_candidate_pair_switches();
  // Blackhole any traffic to or from the remote WiFi networks.
  RTC_LOG(LS_INFO) << "Failing over...";
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, wifi[1]);

  int num_switches = 0;
  SIMULATED_WAIT((num_switches = reset_selected_candidate_pair_switches()) > 0,
                 20000, clock);
  EXPECT_EQ(0, num_switches);
  DestroyChannels();
}

// Tests that a Wifi-Wifi connection has the highest precedence.
TEST_F(P2PTransportChannelMultihomedTest, TestPreferWifiToWifiConnection) {
  // The interface names are chosen so that `cellular` would have higher
  // candidate priority if it is not for the network type.
  auto& wifi = kAlternateAddrs;
  auto& cellular = kPublicAddrs;
  AddAddress(0, wifi[0], "test0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(0, cellular[0], "test1", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(1, wifi[1], "test0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(1, cellular[1], "test1", rtc::ADAPTER_TYPE_CELLULAR);

  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // Create channels and let them go writable, as usual.
  CreateChannels();

  EXPECT_TRUE_WAIT_MARGIN(CheckConnected(ep1_ch1(), ep2_ch1()), 1000, 1000);
  // Need to wait to make sure the connections on both networks are writable.
  EXPECT_TRUE_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), wifi[0], wifi[1]),
      1000);
  DestroyChannels();
}

// Tests that a Wifi-Cellular connection has higher precedence than
// a Cellular-Cellular connection.
TEST_F(P2PTransportChannelMultihomedTest, TestPreferWifiOverCellularNetwork) {
  // The interface names are chosen so that `cellular` would have higher
  // candidate priority if it is not for the network type.
  auto& wifi = kAlternateAddrs;
  auto& cellular = kPublicAddrs;
  AddAddress(0, cellular[0], "test1", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(1, wifi[1], "test0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(1, cellular[1], "test1", rtc::ADAPTER_TYPE_CELLULAR);

  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // Create channels and let them go writable, as usual.
  CreateChannels();

  EXPECT_TRUE_WAIT_MARGIN(CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(),
                                                         cellular[0], wifi[1]),
                          1000, 1000);
  DestroyChannels();
}

// Test that the backup connection is pinged at a rate no faster than
// what was configured.
TEST_F(P2PTransportChannelMultihomedTest, TestPingBackupConnectionRate) {
  AddAddress(0, kPublicAddrs[0]);
  // Adding alternate address will make sure `kPublicAddrs` has the higher
  // priority than others. This is due to FakeNetwork::AddInterface method.
  AddAddress(1, kAlternateAddrs[1]);
  AddAddress(1, kPublicAddrs[1]);

  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // Create channels and let them go writable, as usual.
  CreateChannels();
  EXPECT_TRUE_WAIT_MARGIN(CheckConnected(ep1_ch1(), ep2_ch1()), 1000, 1000);
  int backup_ping_interval = 2000;
  ep2_ch1()->SetIceConfig(
      CreateIceConfig(2000, GATHER_ONCE, backup_ping_interval));
  // After the state becomes COMPLETED, the backup connection will be pinged
  // once every `backup_ping_interval` milliseconds.
  ASSERT_TRUE_WAIT(ep2_ch1()->GetState() == IceTransportState::STATE_COMPLETED,
                   1000);
  auto connections = ep2_ch1()->connections();
  ASSERT_EQ(2U, connections.size());
  Connection* backup_conn = GetBackupConnection(ep2_ch1());
  EXPECT_TRUE_WAIT(backup_conn->writable(), kMediumTimeout);
  int64_t last_ping_response_ms = backup_conn->last_ping_response_received();
  EXPECT_TRUE_WAIT(
      last_ping_response_ms < backup_conn->last_ping_response_received(),
      kDefaultTimeout);
  int time_elapsed =
      backup_conn->last_ping_response_received() - last_ping_response_ms;
  RTC_LOG(LS_INFO) << "Time elapsed: " << time_elapsed;
  EXPECT_GE(time_elapsed, backup_ping_interval);

  DestroyChannels();
}

// Test that the connection is pinged at a rate no faster than
// what was configured when stable and writable.
TEST_F(P2PTransportChannelMultihomedTest, TestStableWritableRate) {
  AddAddress(0, kPublicAddrs[0]);
  // Adding alternate address will make sure `kPublicAddrs` has the higher
  // priority than others. This is due to FakeNetwork::AddInterface method.
  AddAddress(1, kAlternateAddrs[1]);
  AddAddress(1, kPublicAddrs[1]);

  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // Create channels and let them go writable, as usual.
  CreateChannels();
  EXPECT_TRUE_WAIT_MARGIN(CheckConnected(ep1_ch1(), ep2_ch1()), 1000, 1000);
  // Set a value larger than the default value of 2500 ms
  int ping_interval_ms = 3456;
  IceConfig config = CreateIceConfig(2 * ping_interval_ms, GATHER_ONCE);
  config.stable_writable_connection_ping_interval = ping_interval_ms;
  ep2_ch1()->SetIceConfig(config);
  // After the state becomes COMPLETED and is stable and writable, the
  // connection will be pinged once every `ping_interval_ms` milliseconds.
  ASSERT_TRUE_WAIT(ep2_ch1()->GetState() == IceTransportState::STATE_COMPLETED,
                   1000);
  auto connections = ep2_ch1()->connections();
  ASSERT_EQ(2U, connections.size());
  Connection* conn = GetBestConnection(ep2_ch1());
  EXPECT_TRUE_WAIT(conn->writable(), kMediumTimeout);

  int64_t last_ping_response_ms;
  // Burn through some pings so the connection is stable.
  for (int i = 0; i < 5; i++) {
    last_ping_response_ms = conn->last_ping_response_received();
    EXPECT_TRUE_WAIT(
        last_ping_response_ms < conn->last_ping_response_received(),
        kDefaultTimeout);
  }
  EXPECT_TRUE(conn->stable(last_ping_response_ms)) << "Connection not stable";
  int time_elapsed =
      conn->last_ping_response_received() - last_ping_response_ms;
  RTC_LOG(LS_INFO) << "Time elapsed: " << time_elapsed;
  EXPECT_GE(time_elapsed, ping_interval_ms);

  DestroyChannels();
}

TEST_F(P2PTransportChannelMultihomedTest, TestGetState) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kAlternateAddrs[0]);
  AddAddress(0, kPublicAddrs[0]);
  AddAddress(1, kPublicAddrs[1]);
  // Create channels and let them go writable, as usual.
  CreateChannels();

  // Both transport channels will reach STATE_COMPLETED quickly.
  EXPECT_EQ_SIMULATED_WAIT(IceTransportState::STATE_COMPLETED,
                           ep1_ch1()->GetState(), kShortTimeout, clock);
  EXPECT_EQ_SIMULATED_WAIT(IceTransportState::STATE_COMPLETED,
                           ep2_ch1()->GetState(), kShortTimeout, clock);
  DestroyChannels();
}

// Tests that when a network interface becomes inactive, if Continual Gathering
// policy is GATHER_CONTINUALLY, the ports associated with that network
// will be removed from the port list of the channel, and the respective
// remote candidates on the other participant will be removed eventually.
TEST_F(P2PTransportChannelMultihomedTest, TestNetworkBecomesInactive) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0]);
  AddAddress(1, kPublicAddrs[1]);
  // Create channels and let them go writable, as usual.
  IceConfig ep1_config = CreateIceConfig(2000, GATHER_CONTINUALLY);
  IceConfig ep2_config = CreateIceConfig(2000, GATHER_ONCE);
  CreateChannels(ep1_config, ep2_config);

  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);
  ASSERT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kDefaultTimeout, clock);
  // More than one port has been created.
  EXPECT_LE(1U, ep1_ch1()->ports().size());
  // Endpoint 1 enabled continual gathering; the port will be removed
  // when the interface is removed.
  RemoveAddress(0, kPublicAddrs[0]);
  EXPECT_TRUE(ep1_ch1()->ports().empty());
  // The remote candidates will be removed eventually.
  EXPECT_TRUE_SIMULATED_WAIT(ep2_ch1()->remote_candidates().empty(), 1000,
                             clock);

  size_t num_ports = ep2_ch1()->ports().size();
  EXPECT_LE(1U, num_ports);
  size_t num_remote_candidates = ep1_ch1()->remote_candidates().size();
  // Endpoint 2 did not enable continual gathering; the local port will still be
  // removed when the interface is removed but the remote candidates on the
  // other participant will not be removed.
  RemoveAddress(1, kPublicAddrs[1]);

  EXPECT_EQ_SIMULATED_WAIT(0U, ep2_ch1()->ports().size(), kDefaultTimeout,
                           clock);
  SIMULATED_WAIT(0U == ep1_ch1()->remote_candidates().size(), 500, clock);
  EXPECT_EQ(num_remote_candidates, ep1_ch1()->remote_candidates().size());

  DestroyChannels();
}

// Tests that continual gathering will create new connections when a new
// interface is added.
TEST_F(P2PTransportChannelMultihomedTest,
       TestContinualGatheringOnNewInterface) {
  auto& wifi = kAlternateAddrs;
  auto& cellular = kPublicAddrs;
  AddAddress(0, wifi[0], "test_wifi0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(1, cellular[1], "test_cell1", rtc::ADAPTER_TYPE_CELLULAR);
  // Set continual gathering policy.
  IceConfig continual_gathering_config =
      CreateIceConfig(1000, GATHER_CONTINUALLY);
  CreateChannels(continual_gathering_config, continual_gathering_config);
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);
  EXPECT_TRUE_WAIT_MARGIN(CheckConnected(ep1_ch1(), ep2_ch1()), kDefaultTimeout,
                          kDefaultTimeout);

  // Add a new wifi interface on end point 2. We should expect a new connection
  // to be created and the new one will be the best connection.
  AddAddress(1, wifi[1], "test_wifi1", rtc::ADAPTER_TYPE_WIFI);
  const Connection* conn;
  EXPECT_TRUE_WAIT((conn = ep1_ch1()->selected_connection()) != nullptr &&
                       HasRemoteAddress(conn, wifi[1]),
                   kDefaultTimeout);
  EXPECT_TRUE_WAIT((conn = ep2_ch1()->selected_connection()) != nullptr &&
                       HasLocalAddress(conn, wifi[1]),
                   kDefaultTimeout);

  // Add a new cellular interface on end point 1, we should expect a new
  // backup connection created using this new interface.
  AddAddress(0, cellular[0], "test_cellular0", rtc::ADAPTER_TYPE_CELLULAR);
  EXPECT_TRUE_WAIT(
      ep1_ch1()->GetState() == IceTransportState::STATE_COMPLETED &&
          absl::c_any_of(ep1_ch1()->connections(),
                         [channel = ep1_ch1(),
                          address = cellular[0]](const Connection* conn) {
                           return HasLocalAddress(conn, address) &&
                                  conn != channel->selected_connection() &&
                                  conn->writable();
                         }),
      kDefaultTimeout);
  EXPECT_TRUE_WAIT(
      ep2_ch1()->GetState() == IceTransportState::STATE_COMPLETED &&
          absl::c_any_of(ep2_ch1()->connections(),
                         [channel = ep2_ch1(),
                          address = cellular[0]](const Connection* conn) {
                           return HasRemoteAddress(conn, address) &&
                                  conn != channel->selected_connection() &&
                                  conn->receiving();
                         }),
      kDefaultTimeout);

  DestroyChannels();
}

// Tests that we can switch links via continual gathering.
TEST_F(P2PTransportChannelMultihomedTest,
       TestSwitchLinksViaContinualGathering) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0]);
  AddAddress(1, kPublicAddrs[1]);
  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // Set continual gathering policy.
  IceConfig continual_gathering_config =
      CreateIceConfig(1000, GATHER_CONTINUALLY);
  // Create channels and let them go writable, as usual.
  CreateChannels(continual_gathering_config, continual_gathering_config);
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kPublicAddrs[0],
                                     kPublicAddrs[1]),
      kMediumTimeout, clock);

  // Add the new address first and then remove the other one.
  RTC_LOG(LS_INFO) << "Draining...";
  AddAddress(1, kAlternateAddrs[1]);
  RemoveAddress(1, kPublicAddrs[1]);
  // We should switch to use the alternate address after an exchange of pings.
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kPublicAddrs[0],
                                     kAlternateAddrs[1]),
      kMediumTimeout, clock);

  // Remove one address first and then add another address.
  RTC_LOG(LS_INFO) << "Draining again...";
  RemoveAddress(1, kAlternateAddrs[1]);
  AddAddress(1, kAlternateAddrs[0]);
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), kPublicAddrs[0],
                                     kAlternateAddrs[0]),
      kMediumTimeout, clock);

  DestroyChannels();
}

// Tests that the backup connection will be restored after it is destroyed.
TEST_F(P2PTransportChannelMultihomedTest, TestRestoreBackupConnection) {
  rtc::ScopedFakeClock clock;
  auto& wifi = kAlternateAddrs;
  auto& cellular = kPublicAddrs;
  AddAddress(0, wifi[0], "test_wifi0", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(0, cellular[0], "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(1, wifi[1], "test_wifi1", rtc::ADAPTER_TYPE_WIFI);
  AddAddress(1, cellular[1], "test_cell1", rtc::ADAPTER_TYPE_CELLULAR);
  // Use only local ports for simplicity.
  SetAllocatorFlags(0, kOnlyLocalPorts);
  SetAllocatorFlags(1, kOnlyLocalPorts);

  // Create channels and let them go writable, as usual.
  IceConfig config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  config.regather_on_failed_networks_interval = 2000;
  CreateChannels(config, config);
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckCandidatePairAndConnected(ep1_ch1(), ep2_ch1(), wifi[0], wifi[1]),
      kMediumTimeout, clock);

  // Destroy all backup connections.
  DestroyAllButBestConnection(ep1_ch1());
  // Ensure the backup connection is removed first.
  EXPECT_TRUE_SIMULATED_WAIT(
      GetConnectionWithLocalAddress(ep1_ch1(), cellular[0]) == nullptr,
      kDefaultTimeout, clock);
  const Connection* conn;
  EXPECT_TRUE_SIMULATED_WAIT(
      (conn = GetConnectionWithLocalAddress(ep1_ch1(), cellular[0])) !=
              nullptr &&
          conn != ep1_ch1()->selected_connection() && conn->writable(),
      kDefaultTimeout, clock);

  DestroyChannels();
}

TEST_F(P2PTransportChannelMultihomedTest, TestVpnDefault) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0], "eth0", rtc::ADAPTER_TYPE_ETHERNET);
  AddAddress(0, kAlternateAddrs[0], "vpn0", rtc::ADAPTER_TYPE_VPN);
  AddAddress(1, kPublicAddrs[1]);

  IceConfig config;
  CreateChannels(config, config, false);
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckConnected(ep1_ch1(), ep2_ch1()) &&
          !ep1_ch1()->selected_connection()->network()->IsVpn(),
      kDefaultTimeout, clock);
}

TEST_F(P2PTransportChannelMultihomedTest, TestVpnPreferVpn) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0], "eth0", rtc::ADAPTER_TYPE_ETHERNET);
  AddAddress(0, kAlternateAddrs[0], "vpn0", rtc::ADAPTER_TYPE_VPN,
             rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(1, kPublicAddrs[1]);

  IceConfig config;
  config.vpn_preference = webrtc::VpnPreference::kPreferVpn;
  RTC_LOG(LS_INFO) << "KESO: config.vpn_preference: " << config.vpn_preference;
  CreateChannels(config, config, false);
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckConnected(ep1_ch1(), ep2_ch1()) &&
          ep1_ch1()->selected_connection()->network()->IsVpn(),
      kDefaultTimeout, clock);

  // Block VPN.
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kAlternateAddrs[0]);

  // Check that it switches to non-VPN
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckConnected(ep1_ch1(), ep2_ch1()) &&
          !ep1_ch1()->selected_connection()->network()->IsVpn(),
      kDefaultTimeout, clock);
}

TEST_F(P2PTransportChannelMultihomedTest, TestVpnAvoidVpn) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0], "eth0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(0, kAlternateAddrs[0], "vpn0", rtc::ADAPTER_TYPE_VPN,
             rtc::ADAPTER_TYPE_ETHERNET);
  AddAddress(1, kPublicAddrs[1]);

  IceConfig config;
  config.vpn_preference = webrtc::VpnPreference::kAvoidVpn;
  CreateChannels(config, config, false);
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckConnected(ep1_ch1(), ep2_ch1()) &&
          !ep1_ch1()->selected_connection()->network()->IsVpn(),
      kDefaultTimeout, clock);

  // Block non-VPN.
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kPublicAddrs[0]);

  // Check that it switches to VPN
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckConnected(ep1_ch1(), ep2_ch1()) &&
          ep1_ch1()->selected_connection()->network()->IsVpn(),
      kDefaultTimeout, clock);
}

TEST_F(P2PTransportChannelMultihomedTest, TestVpnNeverVpn) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0], "eth0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(0, kAlternateAddrs[0], "vpn0", rtc::ADAPTER_TYPE_VPN,
             rtc::ADAPTER_TYPE_ETHERNET);
  AddAddress(1, kPublicAddrs[1]);

  IceConfig config;
  config.vpn_preference = webrtc::VpnPreference::kNeverUseVpn;
  CreateChannels(config, config, false);
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckConnected(ep1_ch1(), ep2_ch1()) &&
          !ep1_ch1()->selected_connection()->network()->IsVpn(),
      kDefaultTimeout, clock);

  // Block non-VPN.
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kPublicAddrs[0]);

  // Check that it does not switches to VPN
  clock.AdvanceTime(webrtc::TimeDelta::Millis(kDefaultTimeout));
  EXPECT_TRUE_SIMULATED_WAIT(!CheckConnected(ep1_ch1(), ep2_ch1()),
                             kDefaultTimeout, clock);
}

TEST_F(P2PTransportChannelMultihomedTest, TestVpnOnlyVpn) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0], "eth0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(0, kAlternateAddrs[0], "vpn0", rtc::ADAPTER_TYPE_VPN,
             rtc::ADAPTER_TYPE_ETHERNET);
  AddAddress(1, kPublicAddrs[1]);

  IceConfig config;
  config.vpn_preference = webrtc::VpnPreference::kOnlyUseVpn;
  CreateChannels(config, config, false);
  EXPECT_TRUE_SIMULATED_WAIT(
      CheckConnected(ep1_ch1(), ep2_ch1()) &&
          ep1_ch1()->selected_connection()->network()->IsVpn(),
      kDefaultTimeout, clock);

  // Block VPN.
  fw()->AddRule(false, rtc::FP_ANY, rtc::FD_ANY, kAlternateAddrs[0]);

  // Check that it does not switch to non-VPN
  clock.AdvanceTime(webrtc::TimeDelta::Millis(kDefaultTimeout));
  EXPECT_TRUE_SIMULATED_WAIT(!CheckConnected(ep1_ch1(), ep2_ch1()),
                             kDefaultTimeout, clock);
}

TEST_F(P2PTransportChannelMultihomedTest, StunDictionaryPerformsSync) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kPublicAddrs[0], "eth0", rtc::ADAPTER_TYPE_CELLULAR);
  AddAddress(0, kAlternateAddrs[0], "vpn0", rtc::ADAPTER_TYPE_VPN,
             rtc::ADAPTER_TYPE_ETHERNET);
  AddAddress(1, kPublicAddrs[1]);

  // Create channels and let them go writable, as usual.
  CreateChannels();

  MockFunction<void(IceTransportInternal*, const StunDictionaryView&,
                    rtc::ArrayView<uint16_t>)>
      view_updated_func;
  ep2_ch1()->AddDictionaryViewUpdatedCallback(
      "tag", view_updated_func.AsStdFunction());
  MockFunction<void(IceTransportInternal*, const StunDictionaryWriter&)>
      writer_synced_func;
  ep1_ch1()->AddDictionaryWriterSyncedCallback(
      "tag", writer_synced_func.AsStdFunction());
  auto& dict_writer = ep1_ch1()->GetDictionaryWriter()->get();
  dict_writer.SetByteString(12)->CopyBytes("keso");
  EXPECT_CALL(view_updated_func, Call)
      .WillOnce([&](auto* channel, auto& view, auto keys) {
        EXPECT_EQ(keys.size(), 1u);
        EXPECT_EQ(keys[0], 12);
        EXPECT_EQ(view.GetByteString(12)->string_view(), "keso");
      });
  EXPECT_CALL(writer_synced_func, Call).Times(1);
  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kMediumTimeout, clock);
}

// A collection of tests which tests a single P2PTransportChannel by sending
// pings.
class P2PTransportChannelPingTest : public ::testing::Test,
                                    public sigslot::has_slots<> {
 public:
  P2PTransportChannelPingTest()
      : vss_(std::make_unique<rtc::VirtualSocketServer>()),
        packet_socket_factory_(
            std::make_unique<rtc::BasicPacketSocketFactory>(vss_.get())),
        thread_(vss_.get()) {}

 protected:
  void PrepareChannel(P2PTransportChannel* ch) {
    ch->SetIceRole(ICEROLE_CONTROLLING);
    ch->SetIceTiebreaker(kTiebreakerDefault);
    ch->SetIceParameters(kIceParams[0]);
    ch->SetRemoteIceParameters(kIceParams[1]);
    ch->SignalNetworkRouteChanged.connect(
        this, &P2PTransportChannelPingTest::OnNetworkRouteChanged);
    ch->SignalReadyToSend.connect(this,
                                  &P2PTransportChannelPingTest::OnReadyToSend);
    ch->SignalStateChanged.connect(
        this, &P2PTransportChannelPingTest::OnChannelStateChanged);
    ch->SetCandidatePairChangeCallback(
        [this](const cricket::CandidatePairChangeEvent& event) {
          OnCandidatePairChanged(event);
        });
  }

  Connection* WaitForConnectionTo(
      P2PTransportChannel* ch,
      absl::string_view ip,
      int port_num,
      rtc::ThreadProcessingFakeClock* clock = nullptr) {
    if (clock == nullptr) {
      EXPECT_TRUE_WAIT(GetConnectionTo(ch, ip, port_num) != nullptr,
                       kMediumTimeout);
    } else {
      EXPECT_TRUE_SIMULATED_WAIT(GetConnectionTo(ch, ip, port_num) != nullptr,
                                 kMediumTimeout, *clock);
    }
    return GetConnectionTo(ch, ip, port_num);
  }

  Port* GetPort(P2PTransportChannel* ch) {
    if (ch->ports().empty()) {
      return nullptr;
    }
    return static_cast<Port*>(ch->ports()[0]);
  }

  Port* GetPrunedPort(P2PTransportChannel* ch) {
    if (ch->pruned_ports().empty()) {
      return nullptr;
    }
    return static_cast<Port*>(ch->pruned_ports()[0]);
  }

  Connection* GetConnectionTo(P2PTransportChannel* ch,
                              absl::string_view ip,
                              int port_num) {
    Port* port = GetPort(ch);
    if (!port) {
      return nullptr;
    }
    return port->GetConnection(rtc::SocketAddress(ip, port_num));
  }

  Connection* FindNextPingableConnectionAndPingIt(P2PTransportChannel* ch) {
    Connection* conn = ch->FindNextPingableConnection();
    if (conn) {
      ch->MarkConnectionPinged(conn);
    }
    return conn;
  }

  int SendData(IceTransportInternal* channel,
               const char* data,
               size_t len,
               int packet_id) {
    rtc::PacketOptions options;
    options.packet_id = packet_id;
    return channel->SendPacket(data, len, options, 0);
  }

  Connection* CreateConnectionWithCandidate(P2PTransportChannel* channel,
                                            rtc::ScopedFakeClock* clock,
                                            absl::string_view ip_addr,
                                            int port,
                                            int priority,
                                            bool writable) {
    channel->AddRemoteCandidate(
        CreateUdpCandidate(LOCAL_PORT_TYPE, ip_addr, port, priority));
    EXPECT_TRUE_SIMULATED_WAIT(
        GetConnectionTo(channel, ip_addr, port) != nullptr, kMediumTimeout,
        *clock);
    Connection* conn = GetConnectionTo(channel, ip_addr, port);

    if (conn && writable) {
      conn->ReceivedPingResponse(LOW_RTT, "id");  // make it writable
    }
    return conn;
  }

  void NominateConnection(Connection* conn, uint32_t remote_nomination = 1U) {
    conn->set_remote_nomination(remote_nomination);
    conn->SignalNominated(conn);
  }

  void OnNetworkRouteChanged(absl::optional<rtc::NetworkRoute> network_route) {
    last_network_route_ = network_route;
    if (last_network_route_) {
      last_sent_packet_id_ = last_network_route_->last_sent_packet_id;
    }
    ++selected_candidate_pair_switches_;
  }

  void ReceivePingOnConnection(
      Connection* conn,
      absl::string_view remote_ufrag,
      int priority,
      uint32_t nomination,
      const absl::optional<std::string>& piggyback_ping_id) {
    IceMessage msg(STUN_BINDING_REQUEST);
    msg.AddAttribute(std::make_unique<StunByteStringAttribute>(
        STUN_ATTR_USERNAME,
        conn->local_candidate().username() + ":" + std::string(remote_ufrag)));
    msg.AddAttribute(
        std::make_unique<StunUInt32Attribute>(STUN_ATTR_PRIORITY, priority));
    if (nomination != 0) {
      msg.AddAttribute(std::make_unique<StunUInt32Attribute>(
          STUN_ATTR_NOMINATION, nomination));
    }
    if (piggyback_ping_id) {
      msg.AddAttribute(std::make_unique<StunByteStringAttribute>(
          STUN_ATTR_GOOG_LAST_ICE_CHECK_RECEIVED, piggyback_ping_id.value()));
    }
    msg.AddMessageIntegrity(conn->local_candidate().password());
    msg.AddFingerprint();
    rtc::ByteBufferWriter buf;
    msg.Write(&buf);
    conn->OnReadPacket(rtc::ReceivedPacket::CreateFromLegacy(
        buf.Data(), buf.Length(), rtc::TimeMicros()));
  }

  void ReceivePingOnConnection(Connection* conn,
                               absl::string_view remote_ufrag,
                               int priority,
                               uint32_t nomination = 0) {
    ReceivePingOnConnection(conn, remote_ufrag, priority, nomination,
                            absl::nullopt);
  }

  void OnReadyToSend(rtc::PacketTransportInternal* transport) {
    channel_ready_to_send_ = true;
  }
  void OnChannelStateChanged(IceTransportInternal* channel) {
    channel_state_ = channel->GetState();
  }
  void OnCandidatePairChanged(const CandidatePairChangeEvent& event) {
    last_candidate_change_event_ = event;
  }

  int last_sent_packet_id() { return last_sent_packet_id_; }
  bool channel_ready_to_send() { return channel_ready_to_send_; }
  void reset_channel_ready_to_send() { channel_ready_to_send_ = false; }
  IceTransportState channel_state() { return channel_state_; }
  int reset_selected_candidate_pair_switches() {
    int switches = selected_candidate_pair_switches_;
    selected_candidate_pair_switches_ = 0;
    return switches;
  }

  // Return true if the `pair` matches the last network route.
  bool CandidatePairMatchesNetworkRoute(CandidatePairInterface* pair) {
    if (!pair) {
      return !last_network_route_.has_value();
    } else {
      return pair->local_candidate().network_id() ==
                 last_network_route_->local.network_id() &&
             pair->remote_candidate().network_id() ==
                 last_network_route_->remote.network_id();
    }
  }

  bool ConnectionMatchesChangeEvent(Connection* conn,
                                    absl::string_view reason) {
    if (!conn) {
      return !last_candidate_change_event_.has_value();
    } else {
      const auto& last_selected_pair =
          last_candidate_change_event_->selected_candidate_pair;
      return last_selected_pair.local_candidate().IsEquivalent(
                 conn->local_candidate()) &&
             last_selected_pair.remote_candidate().IsEquivalent(
                 conn->remote_candidate()) &&
             last_candidate_change_event_->last_data_received_ms ==
                 conn->last_data_received() &&
             last_candidate_change_event_->reason == reason;
    }
  }

  int64_t LastEstimatedDisconnectedTimeMs() const {
    if (!last_candidate_change_event_.has_value()) {
      return 0;
    } else {
      return last_candidate_change_event_->estimated_disconnected_time_ms;
    }
  }

  rtc::SocketServer* ss() const { return vss_.get(); }

  rtc::PacketSocketFactory* packet_socket_factory() const {
    return packet_socket_factory_.get();
  }

  webrtc::test::ScopedKeyValueConfig field_trials_;

 private:
  std::unique_ptr<rtc::VirtualSocketServer> vss_;
  std::unique_ptr<rtc::PacketSocketFactory> packet_socket_factory_;
  rtc::AutoSocketServerThread thread_;
  int selected_candidate_pair_switches_ = 0;
  int last_sent_packet_id_ = -1;
  bool channel_ready_to_send_ = false;
  absl::optional<CandidatePairChangeEvent> last_candidate_change_event_;
  IceTransportState channel_state_ = IceTransportState::STATE_INIT;
  absl::optional<rtc::NetworkRoute> last_network_route_;
};

TEST_F(P2PTransportChannelPingTest, TestTriggeredChecks) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("trigger checks", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 2));

  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn1 != nullptr);
  ASSERT_TRUE(conn2 != nullptr);

  // Before a triggered check, the first connection to ping is the
  // highest priority one.
  EXPECT_EQ(conn2, FindNextPingableConnectionAndPingIt(&ch));

  // Receiving a ping causes a triggered check which should make conn1
  // be pinged first instead of conn2, even though conn2 has a higher
  // priority.
  conn1->ReceivedPing();
  EXPECT_EQ(conn1, FindNextPingableConnectionAndPingIt(&ch));
}

TEST_F(P2PTransportChannelPingTest, TestAllConnectionsPingedSufficiently) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("ping sufficiently", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 2));

  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn1 != nullptr);
  ASSERT_TRUE(conn2 != nullptr);

  // Low-priority connection becomes writable so that the other connection
  // is not pruned.
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_TRUE_WAIT(
      conn1->num_pings_sent() >= MIN_PINGS_AT_WEAK_PING_INTERVAL &&
          conn2->num_pings_sent() >= MIN_PINGS_AT_WEAK_PING_INTERVAL,
      kDefaultTimeout);
}

// Verify that the connections are pinged at the right time.
TEST_F(P2PTransportChannelPingTest, TestStunPingIntervals) {
  rtc::ScopedFakeClock clock;
  int RTT_RATIO = 4;
  int SCHEDULING_RANGE = 200;
  int RTT_RANGE = 10;

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("TestChannel", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  Connection* conn = WaitForConnectionTo(&ch, "1.1.1.1", 1);

  ASSERT_TRUE(conn != nullptr);
  SIMULATED_WAIT(conn->num_pings_sent() == 1, kDefaultTimeout, clock);

  // Initializing.

  int64_t start = clock.TimeNanos();
  SIMULATED_WAIT(conn->num_pings_sent() >= MIN_PINGS_AT_WEAK_PING_INTERVAL,
                 kDefaultTimeout, clock);
  int64_t ping_interval_ms = (clock.TimeNanos() - start) /
                             rtc::kNumNanosecsPerMillisec /
                             (MIN_PINGS_AT_WEAK_PING_INTERVAL - 1);
  EXPECT_EQ(ping_interval_ms, WEAK_PING_INTERVAL);

  // Stabilizing.

  conn->ReceivedPingResponse(LOW_RTT, "id");
  int ping_sent_before = conn->num_pings_sent();
  start = clock.TimeNanos();
  // The connection becomes strong but not stable because we haven't been able
  // to converge the RTT.
  SIMULATED_WAIT(conn->num_pings_sent() == ping_sent_before + 1, kMediumTimeout,
                 clock);
  ping_interval_ms = (clock.TimeNanos() - start) / rtc::kNumNanosecsPerMillisec;
  EXPECT_GE(ping_interval_ms,
            WEAK_OR_STABILIZING_WRITABLE_CONNECTION_PING_INTERVAL);
  EXPECT_LE(
      ping_interval_ms,
      WEAK_OR_STABILIZING_WRITABLE_CONNECTION_PING_INTERVAL + SCHEDULING_RANGE);

  // Stabilized.

  // The connection becomes stable after receiving more than RTT_RATIO rtt
  // samples.
  for (int i = 0; i < RTT_RATIO; i++) {
    conn->ReceivedPingResponse(LOW_RTT, "id");
  }
  ping_sent_before = conn->num_pings_sent();
  start = clock.TimeNanos();
  SIMULATED_WAIT(conn->num_pings_sent() == ping_sent_before + 1, kMediumTimeout,
                 clock);
  ping_interval_ms = (clock.TimeNanos() - start) / rtc::kNumNanosecsPerMillisec;
  EXPECT_GE(ping_interval_ms,
            STRONG_AND_STABLE_WRITABLE_CONNECTION_PING_INTERVAL);
  EXPECT_LE(
      ping_interval_ms,
      STRONG_AND_STABLE_WRITABLE_CONNECTION_PING_INTERVAL + SCHEDULING_RANGE);

  // Destabilized.

  conn->ReceivedPingResponse(LOW_RTT, "id");
  // Create a in-flight ping.
  conn->Ping(clock.TimeNanos() / rtc::kNumNanosecsPerMillisec);
  start = clock.TimeNanos();
  // In-flight ping timeout and the connection will be unstable.
  SIMULATED_WAIT(
      !conn->stable(clock.TimeNanos() / rtc::kNumNanosecsPerMillisec),
      kMediumTimeout, clock);
  int64_t duration_ms =
      (clock.TimeNanos() - start) / rtc::kNumNanosecsPerMillisec;
  EXPECT_GE(duration_ms, 2 * conn->rtt() - RTT_RANGE);
  EXPECT_LE(duration_ms, 2 * conn->rtt() + RTT_RANGE);
  // The connection become unstable due to not receiving ping responses.
  ping_sent_before = conn->num_pings_sent();
  SIMULATED_WAIT(conn->num_pings_sent() == ping_sent_before + 1, kMediumTimeout,
                 clock);
  // The interval is expected to be
  // WEAK_OR_STABILIZING_WRITABLE_CONNECTION_PING_INTERVAL.
  start = clock.TimeNanos();
  ping_sent_before = conn->num_pings_sent();
  SIMULATED_WAIT(conn->num_pings_sent() == ping_sent_before + 1, kMediumTimeout,
                 clock);
  ping_interval_ms = (clock.TimeNanos() - start) / rtc::kNumNanosecsPerMillisec;
  EXPECT_GE(ping_interval_ms,
            WEAK_OR_STABILIZING_WRITABLE_CONNECTION_PING_INTERVAL);
  EXPECT_LE(
      ping_interval_ms,
      WEAK_OR_STABILIZING_WRITABLE_CONNECTION_PING_INTERVAL + SCHEDULING_RANGE);
}

// Test that we start pinging as soon as we have a connection and remote ICE
// parameters.
TEST_F(P2PTransportChannelPingTest, PingingStartedAsSoonAsPossible) {
  rtc::ScopedFakeClock clock;

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("TestChannel", 1, &pa, &field_trials_);
  ch.SetIceRole(ICEROLE_CONTROLLING);
  ch.SetIceTiebreaker(kTiebreakerDefault);
  ch.SetIceParameters(kIceParams[0]);
  ch.MaybeStartGathering();
  EXPECT_EQ_WAIT(IceGatheringState::kIceGatheringComplete, ch.gathering_state(),
                 kDefaultTimeout);

  // Simulate a binding request being received, creating a peer reflexive
  // candidate pair while we still don't have remote ICE parameters.
  IceMessage request(STUN_BINDING_REQUEST);
  request.AddAttribute(std::make_unique<StunByteStringAttribute>(
      STUN_ATTR_USERNAME, kIceUfrag[1]));
  uint32_t prflx_priority = ICE_TYPE_PREFERENCE_PRFLX << 24;
  request.AddAttribute(std::make_unique<StunUInt32Attribute>(STUN_ATTR_PRIORITY,
                                                             prflx_priority));
  Port* port = GetPort(&ch);
  ASSERT_NE(nullptr, port);
  port->SignalUnknownAddress(port, rtc::SocketAddress("1.1.1.1", 1), PROTO_UDP,
                             &request, kIceUfrag[1], false);
  Connection* conn = GetConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_NE(nullptr, conn);

  // Simulate waiting for a second (and change) and verify that no pings were
  // sent, since we don't yet have remote ICE parameters.
  SIMULATED_WAIT(conn->num_pings_sent() > 0, 1025, clock);
  EXPECT_EQ(0, conn->num_pings_sent());

  // Set remote ICE parameters. Now we should be able to ping. Ensure that
  // the first ping is sent as soon as possible, within one simulated clock
  // tick.
  ch.SetRemoteIceParameters(kIceParams[1]);
  EXPECT_TRUE_SIMULATED_WAIT(conn->num_pings_sent() > 0, 1, clock);
}

TEST_F(P2PTransportChannelPingTest, TestNoTriggeredChecksWhenWritable) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("trigger checks", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 2));

  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn1 != nullptr);
  ASSERT_TRUE(conn2 != nullptr);

  EXPECT_EQ(conn2, FindNextPingableConnectionAndPingIt(&ch));
  EXPECT_EQ(conn1, FindNextPingableConnectionAndPingIt(&ch));
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  ASSERT_TRUE(conn1->writable());
  conn1->ReceivedPing();

  // Ping received, but the connection is already writable, so no
  // "triggered check" and conn2 is pinged before conn1 because it has
  // a higher priority.
  EXPECT_EQ(conn2, FindNextPingableConnectionAndPingIt(&ch));
}

TEST_F(P2PTransportChannelPingTest, TestFailedConnectionNotPingable) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("Do not ping failed connections", 1, &pa,
                         &field_trials_);
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));

  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);

  EXPECT_EQ(conn1, ch.FindNextPingableConnection());
  conn1->Prune();  // A pruned connection may still be pingable.
  EXPECT_EQ(conn1, ch.FindNextPingableConnection());
  conn1->FailAndPrune();
  EXPECT_TRUE(nullptr == ch.FindNextPingableConnection());
}

TEST_F(P2PTransportChannelPingTest, TestSignalStateChanged) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("state change", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);
  // Pruning the connection reduces the set of active connections and changes
  // the channel state.
  conn1->Prune();
  EXPECT_EQ_WAIT(IceTransportState::STATE_FAILED, channel_state(),
                 kDefaultTimeout);
}

// Test adding remote candidates with different ufrags. If a remote candidate
// is added with an old ufrag, it will be discarded. If it is added with a
// ufrag that was not seen before, it will be used to create connections
// although the ICE pwd in the remote candidate will be set when the ICE
// parameters arrive. If a remote candidate is added with the current ICE
// ufrag, its pwd and generation will be set properly.
TEST_F(P2PTransportChannelPingTest, TestAddRemoteCandidateWithVariousUfrags) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("add candidate", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  // Add a candidate with a future ufrag.
  ch.AddRemoteCandidate(
      CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1, kIceUfrag[2]));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);
  const Candidate& candidate = conn1->remote_candidate();
  EXPECT_EQ(kIceUfrag[2], candidate.username());
  EXPECT_TRUE(candidate.password().empty());
  EXPECT_TRUE(FindNextPingableConnectionAndPingIt(&ch) == nullptr);

  // Set the remote ICE parameters with the "future" ufrag.
  // This should set the ICE pwd in the remote candidate of `conn1`, making
  // it pingable.
  ch.SetRemoteIceParameters(kIceParams[2]);
  EXPECT_EQ(kIceUfrag[2], candidate.username());
  EXPECT_EQ(kIcePwd[2], candidate.password());
  EXPECT_EQ(conn1, FindNextPingableConnectionAndPingIt(&ch));

  // Add a candidate with an old ufrag. No connection will be created.
  ch.AddRemoteCandidate(
      CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 2, kIceUfrag[1]));
  rtc::Thread::Current()->ProcessMessages(500);
  EXPECT_TRUE(GetConnectionTo(&ch, "2.2.2.2", 2) == nullptr);

  // Add a candidate with the current ufrag, its pwd and generation will be
  // assigned, even if the generation is not set.
  ch.AddRemoteCandidate(
      CreateUdpCandidate(LOCAL_PORT_TYPE, "3.3.3.3", 3, 0, kIceUfrag[2]));
  Connection* conn3 = nullptr;
  ASSERT_TRUE_WAIT((conn3 = GetConnectionTo(&ch, "3.3.3.3", 3)) != nullptr,
                   kMediumTimeout);
  const Candidate& new_candidate = conn3->remote_candidate();
  EXPECT_EQ(kIcePwd[2], new_candidate.password());
  EXPECT_EQ(1U, new_candidate.generation());

  // Check that the pwd of all remote candidates are properly assigned.
  for (const RemoteCandidate& candidate : ch.remote_candidates()) {
    EXPECT_TRUE(candidate.username() == kIceUfrag[1] ||
                candidate.username() == kIceUfrag[2]);
    if (candidate.username() == kIceUfrag[1]) {
      EXPECT_EQ(kIcePwd[1], candidate.password());
    } else if (candidate.username() == kIceUfrag[2]) {
      EXPECT_EQ(kIcePwd[2], candidate.password());
    }
  }
}

TEST_F(P2PTransportChannelPingTest, ConnectionResurrection) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("connection resurrection", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.MaybeStartGathering();

  // Create conn1 and keep track of original candidate priority.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);
  uint32_t remote_priority = conn1->remote_candidate().priority();

  // Create a higher priority candidate and make the connection
  // receiving/writable. This will prune conn1.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 2));
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn2 != nullptr);
  conn2->ReceivedPing();
  conn2->ReceivedPingResponse(LOW_RTT, "id");

  // Wait for conn2 to be selected.
  EXPECT_EQ_WAIT(conn2, ch.selected_connection(), kMediumTimeout);
  // Destroy the connection to test SignalUnknownAddress.
  ch.RemoveConnectionForTest(conn1);
  EXPECT_TRUE_WAIT(GetConnectionTo(&ch, "1.1.1.1", 1) == nullptr,
                   kMediumTimeout);

  // Create a minimal STUN message with prflx priority.
  IceMessage request(STUN_BINDING_REQUEST);
  request.AddAttribute(std::make_unique<StunByteStringAttribute>(
      STUN_ATTR_USERNAME, kIceUfrag[1]));
  uint32_t prflx_priority = ICE_TYPE_PREFERENCE_PRFLX << 24;
  request.AddAttribute(std::make_unique<StunUInt32Attribute>(STUN_ATTR_PRIORITY,
                                                             prflx_priority));
  EXPECT_NE(prflx_priority, remote_priority);

  Port* port = GetPort(&ch);
  // conn1 should be resurrected with original priority.
  port->SignalUnknownAddress(port, rtc::SocketAddress("1.1.1.1", 1), PROTO_UDP,
                             &request, kIceUfrag[1], false);
  conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);
  EXPECT_EQ(conn1->remote_candidate().priority(), remote_priority);

  // conn3, a real prflx connection, should have prflx priority.
  port->SignalUnknownAddress(port, rtc::SocketAddress("3.3.3.3", 1), PROTO_UDP,
                             &request, kIceUfrag[1], false);
  Connection* conn3 = WaitForConnectionTo(&ch, "3.3.3.3", 1);
  ASSERT_TRUE(conn3 != nullptr);
  EXPECT_EQ(conn3->remote_candidate().priority(), prflx_priority);
}

TEST_F(P2PTransportChannelPingTest, TestReceivingStateChange) {
  rtc::ScopedFakeClock clock;
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("receiving state change", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  // Default receiving timeout and checking receiving interval should not be too
  // small.
  EXPECT_LE(1000, ch.config().receiving_timeout_or_default());
  EXPECT_LE(200, ch.check_receiving_interval());
  ch.SetIceConfig(CreateIceConfig(500, GATHER_ONCE));
  EXPECT_EQ(500, ch.config().receiving_timeout_or_default());
  EXPECT_EQ(50, ch.check_receiving_interval());
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1, &clock);
  ASSERT_TRUE(conn1 != nullptr);

  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));
  conn1->ReceivedPing();
  conn1->OnReadPacket(
      rtc::ReceivedPacket::CreateFromLegacy("ABC", 3, rtc::TimeMicros()));

  EXPECT_TRUE_SIMULATED_WAIT(ch.receiving(), kShortTimeout, clock);
  EXPECT_TRUE_SIMULATED_WAIT(!ch.receiving(), kShortTimeout, clock);
}

// The controlled side will select a connection as the "selected connection"
// based on priority until the controlling side nominates a connection, at which
// point the controlled side will select that connection as the
// "selected connection". Plus, SignalNetworkRouteChanged will be fired if the
// selected connection changes and SignalReadyToSend will be fired if the new
// selected connection is writable.
TEST_F(P2PTransportChannelPingTest, TestSelectConnectionBeforeNomination) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("receiving state change", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);
  // Channel is not ready to send because it is not writable.
  EXPECT_FALSE(channel_ready_to_send());
  int last_packet_id = 0;
  const char* data = "ABCDEFGH";
  int len = static_cast<int>(strlen(data));
  EXPECT_EQ(-1, SendData(&ch, data, len, ++last_packet_id));
  EXPECT_EQ(-1, last_sent_packet_id());

  // A connection needs to be writable before it is selected for transmission.
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn1, ch.selected_connection(), kDefaultTimeout);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));
  EXPECT_TRUE(ConnectionMatchesChangeEvent(
      conn1, "remote candidate generation maybe changed"));
  EXPECT_EQ(len, SendData(&ch, data, len, ++last_packet_id));

  // When a higher priority candidate comes in, the new connection is chosen
  // as the selected connection.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 10));
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn2 != nullptr);
  conn2->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn2, ch.selected_connection(), kDefaultTimeout);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));
  EXPECT_TRUE(
      ConnectionMatchesChangeEvent(conn2, "candidate pair state changed"));
  EXPECT_TRUE(channel_ready_to_send());
  EXPECT_EQ(last_packet_id, last_sent_packet_id());

  // If a stun request with use-candidate attribute arrives, the receiving
  // connection will be set as the selected connection, even though
  // its priority is lower.
  EXPECT_EQ(len, SendData(&ch, data, len, ++last_packet_id));
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "3.3.3.3", 3, 1));
  Connection* conn3 = WaitForConnectionTo(&ch, "3.3.3.3", 3);
  ASSERT_TRUE(conn3 != nullptr);
  // Because it has a lower priority, the selected connection is still conn2.
  EXPECT_EQ(conn2, ch.selected_connection());
  conn3->ReceivedPingResponse(LOW_RTT, "id");  // Become writable.
  // But if it is nominated via use_candidate, it is chosen as the selected
  // connection.
  NominateConnection(conn3);
  ASSERT_EQ(conn3, ch.selected_connection());

  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn3));
  EXPECT_TRUE(
      ConnectionMatchesChangeEvent(conn3, "nomination on the controlled side"));
  EXPECT_EQ(last_packet_id, last_sent_packet_id());
  EXPECT_TRUE(channel_ready_to_send());

  // Even if another higher priority candidate arrives, it will not be set as
  // the selected connection because the selected connection is nominated by
  // the controlling side.
  EXPECT_EQ(len, SendData(&ch, data, len, ++last_packet_id));
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "4.4.4.4", 4, 100));
  Connection* conn4 = WaitForConnectionTo(&ch, "4.4.4.4", 4);
  ASSERT_TRUE(conn4 != nullptr);
  EXPECT_EQ(conn3, ch.selected_connection());
  // But if it is nominated via use_candidate and writable, it will be set as
  // the selected connection.
  NominateConnection(conn4);
  // Not switched yet because conn4 is not writable.
  EXPECT_EQ(conn3, ch.selected_connection());
  reset_channel_ready_to_send();
  // The selected connection switches after conn4 becomes writable.
  conn4->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn4, ch.selected_connection(), kDefaultTimeout);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn4));
  EXPECT_TRUE(
      ConnectionMatchesChangeEvent(conn4, "candidate pair state changed"));
  EXPECT_EQ(last_packet_id, last_sent_packet_id());
  // SignalReadyToSend is fired again because conn4 is writable.
  EXPECT_TRUE(channel_ready_to_send());
}

// Test the field trial send_ping_on_nomination_ice_controlled
// that sends a ping directly when a connection has been nominated
// i.e on the ICE_CONTROLLED-side.
TEST_F(P2PTransportChannelPingTest, TestPingOnNomination) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_,
      "WebRTC-IceFieldTrials/send_ping_on_nomination_ice_controlled:true/");
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("receiving state change", 1, &pa, &field_trials);
  PrepareChannel(&ch);
  ch.SetIceConfig(ch.config());
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);

  // A connection needs to be writable before it is selected for transmission.
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn1, ch.selected_connection(), kDefaultTimeout);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));

  // When a higher priority candidate comes in, the new connection is chosen
  // as the selected connection.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 10));
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn2 != nullptr);
  conn2->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn2, ch.selected_connection(), kDefaultTimeout);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));

  // Now nominate conn1 (low prio), it shall be choosen.
  const int before = conn1->num_pings_sent();
  NominateConnection(conn1);
  ASSERT_EQ(conn1, ch.selected_connection());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));

  // And the additional ping should have been sent directly.
  EXPECT_EQ(conn1->num_pings_sent(), before + 1);
}

// Test the field trial send_ping_on_switch_ice_controlling
// that sends a ping directly when switching to a new connection
// on the ICE_CONTROLLING-side.
TEST_F(P2PTransportChannelPingTest, TestPingOnSwitch) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_,
      "WebRTC-IceFieldTrials/send_ping_on_switch_ice_controlling:true/");
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("receiving state change", 1, &pa, &field_trials);
  PrepareChannel(&ch);
  ch.SetIceConfig(ch.config());
  ch.SetIceRole(ICEROLE_CONTROLLING);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);

  // A connection needs to be writable before it is selected for transmission.
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn1, ch.selected_connection(), kDefaultTimeout);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));

  // When a higher priority candidate comes in, the new connection is chosen
  // as the selected connection.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 10));
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn2 != nullptr);

  const int before = conn2->num_pings_sent();

  conn2->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn2, ch.selected_connection(), kDefaultTimeout);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));

  // And the additional ping should have been sent directly.
  EXPECT_EQ(conn2->num_pings_sent(), before + 1);
}

// Test the field trial send_ping_on_switch_ice_controlling
// that sends a ping directly when selecteing a new connection
// on the ICE_CONTROLLING-side (i.e also initial selection).
TEST_F(P2PTransportChannelPingTest, TestPingOnSelected) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_,
      "WebRTC-IceFieldTrials/send_ping_on_selected_ice_controlling:true/");
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("receiving state change", 1, &pa, &field_trials);
  PrepareChannel(&ch);
  ch.SetIceConfig(ch.config());
  ch.SetIceRole(ICEROLE_CONTROLLING);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);

  const int before = conn1->num_pings_sent();

  // A connection needs to be writable before it is selected for transmission.
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn1, ch.selected_connection(), kDefaultTimeout);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));

  // And the additional ping should have been sent directly.
  EXPECT_EQ(conn1->num_pings_sent(), before + 1);
}

// The controlled side will select a connection as the "selected connection"
// based on requests from an unknown address before the controlling side
// nominates a connection, and will nominate a connection from an unknown
// address if the request contains the use_candidate attribute. Plus, it will
// also sends back a ping response and set the ICE pwd in the remote candidate
// appropriately.
TEST_F(P2PTransportChannelPingTest, TestSelectConnectionFromUnknownAddress) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("receiving state change", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  // A minimal STUN message with prflx priority.
  IceMessage request(STUN_BINDING_REQUEST);
  request.AddAttribute(std::make_unique<StunByteStringAttribute>(
      STUN_ATTR_USERNAME, kIceUfrag[1]));
  uint32_t prflx_priority = ICE_TYPE_PREFERENCE_PRFLX << 24;
  request.AddAttribute(std::make_unique<StunUInt32Attribute>(STUN_ATTR_PRIORITY,
                                                             prflx_priority));
  TestUDPPort* port = static_cast<TestUDPPort*>(GetPort(&ch));
  port->SignalUnknownAddress(port, rtc::SocketAddress("1.1.1.1", 1), PROTO_UDP,
                             &request, kIceUfrag[1], false);
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);
  EXPECT_EQ(conn1->stats().sent_ping_responses, 1u);
  EXPECT_NE(conn1, ch.selected_connection());
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn1, ch.selected_connection(), kDefaultTimeout);

  // Another connection is nominated via use_candidate.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 1));
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn2 != nullptr);
  // Because it has a lower priority, the selected connection is still conn1.
  EXPECT_EQ(conn1, ch.selected_connection());
  // When it is nominated via use_candidate and writable, it is chosen as the
  // selected connection.
  conn2->ReceivedPingResponse(LOW_RTT, "id");  // Become writable.
  NominateConnection(conn2);
  EXPECT_EQ(conn2, ch.selected_connection());

  // Another request with unknown address, it will not be set as the selected
  // connection because the selected connection was nominated by the controlling
  // side.
  port->SignalUnknownAddress(port, rtc::SocketAddress("3.3.3.3", 3), PROTO_UDP,
                             &request, kIceUfrag[1], false);
  Connection* conn3 = WaitForConnectionTo(&ch, "3.3.3.3", 3);
  ASSERT_TRUE(conn3 != nullptr);
  EXPECT_EQ(conn3->stats().sent_ping_responses, 1u);
  conn3->ReceivedPingResponse(LOW_RTT, "id");  // Become writable.
  EXPECT_EQ(conn2, ch.selected_connection());

  // However if the request contains use_candidate attribute, it will be
  // selected as the selected connection.
  request.AddAttribute(
      std::make_unique<StunByteStringAttribute>(STUN_ATTR_USE_CANDIDATE));
  port->SignalUnknownAddress(port, rtc::SocketAddress("4.4.4.4", 4), PROTO_UDP,
                             &request, kIceUfrag[1], false);
  Connection* conn4 = WaitForConnectionTo(&ch, "4.4.4.4", 4);
  ASSERT_TRUE(conn4 != nullptr);
  EXPECT_EQ(conn4->stats().sent_ping_responses, 1u);
  // conn4 is not the selected connection yet because it is not writable.
  EXPECT_EQ(conn2, ch.selected_connection());
  conn4->ReceivedPingResponse(LOW_RTT, "id");  // Become writable.
  EXPECT_EQ_WAIT(conn4, ch.selected_connection(), kDefaultTimeout);

  // Test that the request from an unknown address contains a ufrag from an old
  // generation.
  // port->set_sent_binding_response(false);
  ch.SetRemoteIceParameters(kIceParams[2]);
  ch.SetRemoteIceParameters(kIceParams[3]);
  port->SignalUnknownAddress(port, rtc::SocketAddress("5.5.5.5", 5), PROTO_UDP,
                             &request, kIceUfrag[2], false);
  Connection* conn5 = WaitForConnectionTo(&ch, "5.5.5.5", 5);
  ASSERT_TRUE(conn5 != nullptr);
  EXPECT_EQ(conn5->stats().sent_ping_responses, 1u);
  EXPECT_EQ(kIcePwd[2], conn5->remote_candidate().password());
}

// The controlled side will select a connection as the "selected connection"
// based on media received until the controlling side nominates a connection,
// at which point the controlled side will select that connection as
// the "selected connection".
TEST_F(P2PTransportChannelPingTest, TestSelectConnectionBasedOnMediaReceived) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("receiving state change", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 10));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn1, ch.selected_connection(), kDefaultTimeout);

  // If a data packet is received on conn2, the selected connection should
  // switch to conn2 because the controlled side must mirror the media path
  // chosen by the controlling side.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 1));
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn2 != nullptr);
  conn2->ReceivedPingResponse(LOW_RTT, "id");  // Become writable and receiving.
  conn2->OnReadPacket(
      rtc::ReceivedPacket::CreateFromLegacy("ABC", 3, rtc::TimeMicros()));
  EXPECT_EQ(conn2, ch.selected_connection());
  conn2->ReceivedPingResponse(LOW_RTT, "id");  // Become writable.

  // Now another STUN message with an unknown address and use_candidate will
  // nominate the selected connection.
  IceMessage request(STUN_BINDING_REQUEST);
  request.AddAttribute(std::make_unique<StunByteStringAttribute>(
      STUN_ATTR_USERNAME, kIceUfrag[1]));
  uint32_t prflx_priority = ICE_TYPE_PREFERENCE_PRFLX << 24;
  request.AddAttribute(std::make_unique<StunUInt32Attribute>(STUN_ATTR_PRIORITY,
                                                             prflx_priority));
  request.AddAttribute(
      std::make_unique<StunByteStringAttribute>(STUN_ATTR_USE_CANDIDATE));
  Port* port = GetPort(&ch);
  port->SignalUnknownAddress(port, rtc::SocketAddress("3.3.3.3", 3), PROTO_UDP,
                             &request, kIceUfrag[1], false);
  Connection* conn3 = WaitForConnectionTo(&ch, "3.3.3.3", 3);
  ASSERT_TRUE(conn3 != nullptr);
  EXPECT_NE(conn3, ch.selected_connection());  // Not writable yet.
  conn3->ReceivedPingResponse(LOW_RTT, "id");  // Become writable.
  EXPECT_EQ_WAIT(conn3, ch.selected_connection(), kDefaultTimeout);

  // Now another data packet will not switch the selected connection because the
  // selected connection was nominated by the controlling side.
  conn2->ReceivedPing();
  conn2->ReceivedPingResponse(LOW_RTT, "id");
  conn2->OnReadPacket(
      rtc::ReceivedPacket::CreateFromLegacy("XYZ", 3, rtc::TimeMicros()));
  EXPECT_EQ_WAIT(conn3, ch.selected_connection(), kDefaultTimeout);
}

TEST_F(P2PTransportChannelPingTest,
       TestControlledAgentDataReceivingTakesHigherPrecedenceThanPriority) {
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("SwitchSelectedConnection", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  // The connections have decreasing priority.
  Connection* conn1 =
      CreateConnectionWithCandidate(&ch, &clock, "1.1.1.1", 1, 10, true);
  ASSERT_TRUE(conn1 != nullptr);
  Connection* conn2 =
      CreateConnectionWithCandidate(&ch, &clock, "2.2.2.2", 2, 9, true);
  ASSERT_TRUE(conn2 != nullptr);

  // Initially, connections are selected based on priority.
  EXPECT_EQ(1, reset_selected_candidate_pair_switches());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));

  // conn2 receives data; it becomes selected.
  // Advance the clock by 1ms so that the last data receiving timestamp of
  // conn2 is larger.
  SIMULATED_WAIT(false, 1, clock);

  conn2->OnReadPacket(
      rtc::ReceivedPacket::CreateFromLegacy("XYZ", 3, rtc::TimeMicros()));
  EXPECT_EQ(1, reset_selected_candidate_pair_switches());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));

  // conn1 also receives data; it becomes selected due to priority again.
  conn1->OnReadPacket(
      rtc::ReceivedPacket::CreateFromLegacy("ABC", 3, rtc::TimeMicros()));
  EXPECT_EQ(1, reset_selected_candidate_pair_switches());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));

  // conn2 received data more recently; it is selected now because it
  // received data more recently.
  SIMULATED_WAIT(false, 1, clock);
  // Need to become writable again because it was pruned.
  conn2->ReceivedPingResponse(LOW_RTT, "id");
  conn2->OnReadPacket(
      rtc::ReceivedPacket::CreateFromLegacy("ABC", 3, rtc::TimeMicros()));
  EXPECT_EQ(1, reset_selected_candidate_pair_switches());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));

  // Make sure sorting won't reselect candidate pair.
  SIMULATED_WAIT(false, 10, clock);
  EXPECT_EQ(0, reset_selected_candidate_pair_switches());
}

TEST_F(P2PTransportChannelPingTest,
       TestControlledAgentNominationTakesHigherPrecedenceThanDataReceiving) {
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("SwitchSelectedConnection", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  // The connections have decreasing priority.
  Connection* conn1 =
      CreateConnectionWithCandidate(&ch, &clock, "1.1.1.1", 1, 10, true);
  ASSERT_TRUE(conn1 != nullptr);
  Connection* conn2 =
      CreateConnectionWithCandidate(&ch, &clock, "2.2.2.2", 2, 9, true);
  ASSERT_TRUE(conn2 != nullptr);

  // conn1 received data; it is the selected connection.
  // Advance the clock to have a non-zero last-data-receiving time.
  SIMULATED_WAIT(false, 1, clock);

  conn1->OnReadPacket(
      rtc::ReceivedPacket::CreateFromLegacy("XYZ", 3, rtc::TimeMicros()));
  EXPECT_EQ(1, reset_selected_candidate_pair_switches());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));

  // conn2 is nominated; it becomes the selected connection.
  NominateConnection(conn2);
  EXPECT_EQ(1, reset_selected_candidate_pair_switches());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));

  // conn1 is selected because it has higher priority and also nominated.
  NominateConnection(conn1);
  EXPECT_EQ(1, reset_selected_candidate_pair_switches());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));

  // Make sure sorting won't reselect candidate pair.
  SIMULATED_WAIT(false, 10, clock);
  EXPECT_EQ(0, reset_selected_candidate_pair_switches());
}

TEST_F(P2PTransportChannelPingTest,
       TestControlledAgentSelectsConnectionWithHigherNomination) {
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  // The connections have decreasing priority.
  Connection* conn1 =
      CreateConnectionWithCandidate(&ch, &clock, "1.1.1.1", 1, 10, true);
  ASSERT_TRUE(conn1 != nullptr);
  Connection* conn2 =
      CreateConnectionWithCandidate(&ch, &clock, "2.2.2.2", 2, 9, true);
  ASSERT_TRUE(conn2 != nullptr);

  // conn1 is the selected connection because it has a higher priority,
  EXPECT_EQ_SIMULATED_WAIT(conn1, ch.selected_connection(), kDefaultTimeout,
                           clock);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));
  reset_selected_candidate_pair_switches();

  // conn2 is nominated; it becomes selected.
  NominateConnection(conn2);
  EXPECT_EQ(1, reset_selected_candidate_pair_switches());
  EXPECT_EQ(conn2, ch.selected_connection());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));

  // conn1 is selected because of its priority.
  NominateConnection(conn1);
  EXPECT_EQ(1, reset_selected_candidate_pair_switches());
  EXPECT_EQ(conn1, ch.selected_connection());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));

  // conn2 gets higher remote nomination; it is selected again.
  NominateConnection(conn2, 2U);
  EXPECT_EQ(1, reset_selected_candidate_pair_switches());
  EXPECT_EQ(conn2, ch.selected_connection());
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));

  // Make sure sorting won't reselect candidate pair.
  SIMULATED_WAIT(false, 100, clock);
  EXPECT_EQ(0, reset_selected_candidate_pair_switches());
}

TEST_F(P2PTransportChannelPingTest, TestEstimatedDisconnectedTime) {
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  // The connections have decreasing priority.
  Connection* conn1 =
      CreateConnectionWithCandidate(&ch, &clock, "1.1.1.1", /* port= */ 1,
                                    /* priority= */ 10, /* writable= */ true);
  ASSERT_TRUE(conn1 != nullptr);
  Connection* conn2 =
      CreateConnectionWithCandidate(&ch, &clock, "2.2.2.2", /* port= */ 2,
                                    /* priority= */ 9, /* writable= */ true);
  ASSERT_TRUE(conn2 != nullptr);

  // conn1 is the selected connection because it has a higher priority,
  EXPECT_EQ_SIMULATED_WAIT(conn1, ch.selected_connection(), kDefaultTimeout,
                           clock);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));
  // No estimateded disconnect time at first connect <=> value is 0.
  EXPECT_EQ(LastEstimatedDisconnectedTimeMs(), 0);

  // Use nomination to force switching of selected connection.
  int nomination = 1;

  {
    clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));
    // This will not parse as STUN, and is considered data
    conn1->OnReadPacket(
        rtc::ReceivedPacket::CreateFromLegacy("XYZ", 3, rtc::TimeMicros()));
    clock.AdvanceTime(webrtc::TimeDelta::Seconds(2));

    // conn2 is nominated; it becomes selected.
    NominateConnection(conn2, nomination++);
    EXPECT_EQ(conn2, ch.selected_connection());
    // We got data 2s ago...guess that we lost 2s of connectivity.
    EXPECT_EQ(LastEstimatedDisconnectedTimeMs(), 2000);
  }

  {
    clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));
    conn2->OnReadPacket(
        rtc::ReceivedPacket::CreateFromLegacy("XYZ", 3, rtc::TimeMicros()));
    clock.AdvanceTime(webrtc::TimeDelta::Seconds(2));
    ReceivePingOnConnection(conn2, kIceUfrag[1], 1, nomination++);

    clock.AdvanceTime(webrtc::TimeDelta::Millis(500));

    ReceivePingOnConnection(conn1, kIceUfrag[1], 1, nomination++);
    EXPECT_EQ(conn1, ch.selected_connection());
    // We got ping 500ms ago...guess that we lost 500ms of connectivity.
    EXPECT_EQ(LastEstimatedDisconnectedTimeMs(), 500);
  }
}

TEST_F(P2PTransportChannelPingTest,
       TestControlledAgentIgnoresSmallerNomination) {
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  Connection* conn =
      CreateConnectionWithCandidate(&ch, &clock, "1.1.1.1", 1, 10, false);
  ReceivePingOnConnection(conn, kIceUfrag[1], 1, 2U);
  EXPECT_EQ(2U, conn->remote_nomination());
  // Smaller nomination is ignored.
  ReceivePingOnConnection(conn, kIceUfrag[1], 1, 1U);
  EXPECT_EQ(2U, conn->remote_nomination());
}

TEST_F(P2PTransportChannelPingTest,
       TestControlledAgentWriteStateTakesHigherPrecedenceThanNomination) {
  rtc::ScopedFakeClock clock;

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("SwitchSelectedConnection", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  // The connections have decreasing priority.
  Connection* conn1 =
      CreateConnectionWithCandidate(&ch, &clock, "1.1.1.1", 1, 10, false);
  ASSERT_TRUE(conn1 != nullptr);
  Connection* conn2 =
      CreateConnectionWithCandidate(&ch, &clock, "2.2.2.2", 2, 9, false);
  ASSERT_TRUE(conn2 != nullptr);

  NominateConnection(conn1);
  // There is no selected connection because no connection is writable.
  EXPECT_EQ(0, reset_selected_candidate_pair_switches());

  // conn2 becomes writable; it is selected even though it is not nominated.
  conn2->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_SIMULATED_WAIT(1, reset_selected_candidate_pair_switches(),
                           kDefaultTimeout, clock);
  EXPECT_EQ_SIMULATED_WAIT(conn2, ch.selected_connection(), kDefaultTimeout,
                           clock);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn2));

  // If conn1 is also writable, it will become selected.
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_SIMULATED_WAIT(1, reset_selected_candidate_pair_switches(),
                           kDefaultTimeout, clock);
  EXPECT_EQ_SIMULATED_WAIT(conn1, ch.selected_connection(), kDefaultTimeout,
                           clock);
  EXPECT_TRUE(CandidatePairMatchesNetworkRoute(conn1));

  // Make sure sorting won't reselect candidate pair.
  SIMULATED_WAIT(false, 10, clock);
  EXPECT_EQ(0, reset_selected_candidate_pair_switches());
}

// Test that if a new remote candidate has the same address and port with
// an old one, it will be used to create a new connection.
TEST_F(P2PTransportChannelPingTest, TestAddRemoteCandidateWithAddressReuse) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("candidate reuse", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  const std::string host_address = "1.1.1.1";
  const int port_num = 1;

  // kIceUfrag[1] is the current generation ufrag.
  Candidate candidate = CreateUdpCandidate(LOCAL_PORT_TYPE, host_address,
                                           port_num, 1, kIceUfrag[1]);
  ch.AddRemoteCandidate(candidate);
  Connection* conn1 = WaitForConnectionTo(&ch, host_address, port_num);
  ASSERT_TRUE(conn1 != nullptr);
  EXPECT_EQ(0u, conn1->remote_candidate().generation());

  // Simply adding the same candidate again won't create a new connection.
  ch.AddRemoteCandidate(candidate);
  Connection* conn2 = GetConnectionTo(&ch, host_address, port_num);
  EXPECT_EQ(conn1, conn2);

  // Update the ufrag of the candidate and add it again.
  candidate.set_username(kIceUfrag[2]);
  ch.AddRemoteCandidate(candidate);
  conn2 = GetConnectionTo(&ch, host_address, port_num);
  EXPECT_NE(conn1, conn2);
  EXPECT_EQ(kIceUfrag[2], conn2->remote_candidate().username());
  EXPECT_EQ(1u, conn2->remote_candidate().generation());

  // Verify that a ping with the new ufrag can be received on the new
  // connection.
  EXPECT_EQ(0, conn2->last_ping_received());
  ReceivePingOnConnection(conn2, kIceUfrag[2], 1 /* priority */);
  EXPECT_GT(conn2->last_ping_received(), 0);
}

// When the current selected connection is strong, lower-priority connections
// will be pruned. Otherwise, lower-priority connections are kept.
TEST_F(P2PTransportChannelPingTest, TestDontPruneWhenWeak) {
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);
  EXPECT_EQ(nullptr, ch.selected_connection());
  conn1->ReceivedPingResponse(LOW_RTT, "id");  // Becomes writable and receiving

  // When a higher-priority, nominated candidate comes in, the connections with
  // lower-priority are pruned.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 10));
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2, &clock);
  ASSERT_TRUE(conn2 != nullptr);
  conn2->ReceivedPingResponse(LOW_RTT, "id");  // Becomes writable and receiving
  NominateConnection(conn2);
  EXPECT_TRUE_SIMULATED_WAIT(conn1->pruned(), kMediumTimeout, clock);

  ch.SetIceConfig(CreateIceConfig(500, GATHER_ONCE));
  // Wait until conn2 becomes not receiving.
  EXPECT_TRUE_SIMULATED_WAIT(!conn2->receiving(), kMediumTimeout, clock);

  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "3.3.3.3", 3, 1));
  Connection* conn3 = WaitForConnectionTo(&ch, "3.3.3.3", 3, &clock);
  ASSERT_TRUE(conn3 != nullptr);
  // The selected connection should still be conn2. Even through conn3 has lower
  // priority and is not receiving/writable, it is not pruned because the
  // selected connection is not receiving.
  SIMULATED_WAIT(conn3->pruned(), kShortTimeout, clock);
  EXPECT_FALSE(conn3->pruned());
}

TEST_F(P2PTransportChannelPingTest, TestDontPruneHighPriorityConnections) {
  rtc::ScopedFakeClock clock;
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  Connection* conn1 =
      CreateConnectionWithCandidate(&ch, &clock, "1.1.1.1", 1, 100, true);
  ASSERT_TRUE(conn1 != nullptr);
  Connection* conn2 =
      CreateConnectionWithCandidate(&ch, &clock, "2.2.2.2", 2, 200, false);
  ASSERT_TRUE(conn2 != nullptr);
  // Even if conn1 is writable, nominated, receiving data, it should not prune
  // conn2.
  NominateConnection(conn1);
  SIMULATED_WAIT(false, 1, clock);
  conn1->OnReadPacket(
      rtc::ReceivedPacket::CreateFromLegacy("XYZ", 3, rtc::TimeMicros()));
  SIMULATED_WAIT(conn2->pruned(), 100, clock);
  EXPECT_FALSE(conn2->pruned());
}

// Test that GetState returns the state correctly.
TEST_F(P2PTransportChannelPingTest, TestGetState) {
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", 1, &pa, &field_trials_);
  EXPECT_EQ(webrtc::IceTransportState::kNew, ch.GetIceTransportState());
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  // After gathering we are still in the kNew state because we aren't checking
  // any connections yet.
  EXPECT_EQ(webrtc::IceTransportState::kNew, ch.GetIceTransportState());
  EXPECT_EQ(IceTransportState::STATE_INIT, ch.GetState());
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 100));
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 1));
  // Checking candidates that have been added with gathered candidates.
  ASSERT_GT(ch.connections().size(), 0u);
  EXPECT_EQ(webrtc::IceTransportState::kChecking, ch.GetIceTransportState());
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1, &clock);
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2, &clock);
  ASSERT_TRUE(conn1 != nullptr);
  ASSERT_TRUE(conn2 != nullptr);
  // Now there are two connections, so the transport channel is connecting.
  EXPECT_EQ(IceTransportState::STATE_CONNECTING, ch.GetState());
  // No connections are writable yet, so we should still be in the kChecking
  // state.
  EXPECT_EQ(webrtc::IceTransportState::kChecking, ch.GetIceTransportState());
  // `conn1` becomes writable and receiving; it then should prune `conn2`.
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_TRUE_SIMULATED_WAIT(conn2->pruned(), kShortTimeout, clock);
  EXPECT_EQ(IceTransportState::STATE_COMPLETED, ch.GetState());
  EXPECT_EQ(webrtc::IceTransportState::kConnected, ch.GetIceTransportState());
  conn1->Prune();  // All connections are pruned.
  // Need to wait until the channel state is updated.
  EXPECT_EQ_SIMULATED_WAIT(IceTransportState::STATE_FAILED, ch.GetState(),
                           kShortTimeout, clock);
  EXPECT_EQ(webrtc::IceTransportState::kFailed, ch.GetIceTransportState());
}

// Test that when a low-priority connection is pruned, it is not deleted
// right away, and it can become active and be pruned again.
TEST_F(P2PTransportChannelPingTest, TestConnectionPrunedAgain) {
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  IceConfig config = CreateIceConfig(1000, GATHER_ONCE);
  config.receiving_switching_delay = 800;
  ch.SetIceConfig(config);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 100));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1, &clock);
  ASSERT_TRUE(conn1 != nullptr);
  EXPECT_EQ(nullptr, ch.selected_connection());
  conn1->ReceivedPingResponse(LOW_RTT, "id");  // Becomes writable and receiving
  EXPECT_EQ_SIMULATED_WAIT(conn1, ch.selected_connection(), kDefaultTimeout,
                           clock);

  // Add a low-priority connection `conn2`, which will be pruned, but it will
  // not be deleted right away. Once the current selected connection becomes not
  // receiving, `conn2` will start to ping and upon receiving the ping response,
  // it will become the selected connection.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 1));
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2, &clock);
  ASSERT_TRUE(conn2 != nullptr);
  EXPECT_TRUE_SIMULATED_WAIT(!conn2->active(), kDefaultTimeout, clock);
  // `conn2` should not send a ping yet.
  EXPECT_EQ(IceCandidatePairState::WAITING, conn2->state());
  EXPECT_EQ(IceTransportState::STATE_COMPLETED, ch.GetState());
  // Wait for `conn1` becoming not receiving.
  EXPECT_TRUE_SIMULATED_WAIT(!conn1->receiving(), kMediumTimeout, clock);
  // Make sure conn2 is not deleted.
  conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2, &clock);
  ASSERT_TRUE(conn2 != nullptr);
  EXPECT_EQ_SIMULATED_WAIT(IceCandidatePairState::IN_PROGRESS, conn2->state(),
                           kDefaultTimeout, clock);
  conn2->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_SIMULATED_WAIT(conn2, ch.selected_connection(), kDefaultTimeout,
                           clock);
  EXPECT_EQ(IceTransportState::STATE_CONNECTING, ch.GetState());

  // When `conn1` comes back again, `conn2` will be pruned again.
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_SIMULATED_WAIT(conn1, ch.selected_connection(), kDefaultTimeout,
                           clock);
  EXPECT_TRUE_SIMULATED_WAIT(!conn2->active(), kDefaultTimeout, clock);
  EXPECT_EQ(IceTransportState::STATE_COMPLETED, ch.GetState());
}

// Test that if all connections in a channel has timed out on writing, they
// will all be deleted. We use Prune to simulate write_time_out.
TEST_F(P2PTransportChannelPingTest, TestDeleteConnectionsIfAllWriteTimedout) {
  rtc::ScopedFakeClock clock;
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  // Have one connection only but later becomes write-time-out.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 100));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1, &clock);
  ASSERT_TRUE(conn1 != nullptr);
  conn1->ReceivedPing();  // Becomes receiving
  conn1->Prune();
  EXPECT_TRUE_SIMULATED_WAIT(ch.connections().empty(), kShortTimeout, clock);

  // Have two connections but both become write-time-out later.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 1));
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2, &clock);
  ASSERT_TRUE(conn2 != nullptr);
  conn2->ReceivedPing();  // Becomes receiving
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "3.3.3.3", 3, 2));
  Connection* conn3 = WaitForConnectionTo(&ch, "3.3.3.3", 3, &clock);
  ASSERT_TRUE(conn3 != nullptr);
  conn3->ReceivedPing();  // Becomes receiving
  // Now prune both conn2 and conn3; they will be deleted soon.
  conn2->Prune();
  conn3->Prune();
  EXPECT_TRUE_SIMULATED_WAIT(ch.connections().empty(), kShortTimeout, clock);
}

// Tests that after a port allocator session is started, it will be stopped
// when a new connection becomes writable and receiving. Also tests that if a
// connection belonging to an old session becomes writable, it won't stop
// the current port allocator session.
TEST_F(P2PTransportChannelPingTest, TestStopPortAllocatorSessions) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", 1, &pa, &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceConfig(CreateIceConfig(2000, GATHER_ONCE));
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 100));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn1 != nullptr);
  conn1->ReceivedPingResponse(LOW_RTT, "id");  // Becomes writable and receiving
  EXPECT_TRUE(!ch.allocator_session()->IsGettingPorts());

  // Start a new session. Even though conn1, which belongs to an older
  // session, becomes unwritable and writable again, it should not stop the
  // current session.
  ch.SetIceParameters(kIceParams[1]);
  ch.MaybeStartGathering();
  conn1->Prune();
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_TRUE(ch.allocator_session()->IsGettingPorts());

  // But if a new connection created from the new session becomes writable,
  // it will stop the current session.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 100));
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn2 != nullptr);
  conn2->ReceivedPingResponse(LOW_RTT, "id");  // Becomes writable and receiving
  EXPECT_TRUE(!ch.allocator_session()->IsGettingPorts());
}

// Test that the ICE role is updated even on ports that has been removed.
// These ports may still have connections that need a correct role, in case that
// the connections on it may still receive stun pings.
TEST_F(P2PTransportChannelPingTest, TestIceRoleUpdatedOnRemovedPort) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", ICE_CANDIDATE_COMPONENT_DEFAULT, &pa,
                         &field_trials_);
  // Starts with ICEROLE_CONTROLLING.
  PrepareChannel(&ch);
  IceConfig config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  ch.SetIceConfig(config);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));

  Connection* conn = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn != nullptr);

  // Make a fake signal to remove the ports in the p2ptransportchannel. then
  // change the ICE role and expect it to be updated.
  std::vector<PortInterface*> ports(1, conn->PortForTest());
  ch.allocator_session()->SignalPortsPruned(ch.allocator_session(), ports);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  EXPECT_EQ(ICEROLE_CONTROLLED, conn->PortForTest()->GetIceRole());
}

// Test that the ICE role is updated even on ports with inactive networks.
// These ports may still have connections that need a correct role, for the
// pings sent by those connections until they're replaced by newer-generation
// connections.
TEST_F(P2PTransportChannelPingTest, TestIceRoleUpdatedOnPortAfterIceRestart) {
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", ICE_CANDIDATE_COMPONENT_DEFAULT, &pa,
                         &field_trials_);
  // Starts with ICEROLE_CONTROLLING.
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));

  Connection* conn = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn != nullptr);

  // Do an ICE restart, change the role, and expect the old port to have its
  // role updated.
  ch.SetIceParameters(kIceParams[1]);
  ch.MaybeStartGathering();
  ch.SetIceRole(ICEROLE_CONTROLLED);
  EXPECT_EQ(ICEROLE_CONTROLLED, conn->PortForTest()->GetIceRole());
}

// Test that after some amount of time without receiving data, the connection
// will be destroyed. The port will only be destroyed after it is marked as
// "pruned."
TEST_F(P2PTransportChannelPingTest, TestPortDestroyedAfterTimeoutAndPruned) {
  rtc::ScopedFakeClock fake_clock;

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", ICE_CANDIDATE_COMPONENT_DEFAULT, &pa,
                         &field_trials_);
  PrepareChannel(&ch);
  ch.SetIceRole(ICEROLE_CONTROLLED);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));

  Connection* conn = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn != nullptr);

  // Simulate 2 minutes going by. This should be enough time for the port to
  // time out.
  for (int second = 0; second < 120; ++second) {
    fake_clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));
  }
  EXPECT_EQ(nullptr, GetConnectionTo(&ch, "1.1.1.1", 1));
  // Port will not be removed because it is not pruned yet.
  PortInterface* port = GetPort(&ch);
  ASSERT_NE(nullptr, port);

  // If the session prunes all ports, the port will be destroyed.
  ch.allocator_session()->PruneAllPorts();
  EXPECT_EQ_SIMULATED_WAIT(nullptr, GetPort(&ch), 1, fake_clock);
  EXPECT_EQ_SIMULATED_WAIT(nullptr, GetPrunedPort(&ch), 1, fake_clock);
}

TEST_F(P2PTransportChannelPingTest, TestMaxOutstandingPingsFieldTrial) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_, "WebRTC-IceFieldTrials/max_outstanding_pings:3/");
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("max", 1, &pa, &field_trials);
  ch.SetIceConfig(ch.config());
  PrepareChannel(&ch);
  ch.MaybeStartGathering();
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 2));

  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn1 != nullptr);
  ASSERT_TRUE(conn2 != nullptr);

  EXPECT_TRUE_WAIT(conn1->num_pings_sent() == 3 && conn2->num_pings_sent() == 3,
                   kDefaultTimeout);

  // Check that these connections don't send any more pings.
  EXPECT_EQ(nullptr, ch.FindNextPingableConnection());
}

class P2PTransportChannelMostLikelyToWorkFirstTest
    : public P2PTransportChannelPingTest {
 public:
  P2PTransportChannelMostLikelyToWorkFirstTest()
      : turn_server_(rtc::Thread::Current(),
                     ss(),
                     kTurnUdpIntAddr,
                     kTurnUdpExtAddr) {
    network_manager_.AddInterface(kPublicAddrs[0]);
    allocator_.reset(CreateBasicPortAllocator(
        &network_manager_, packet_socket_factory(), ServerAddresses(),
        kTurnUdpIntAddr, rtc::SocketAddress()));
    allocator_->set_flags(allocator_->flags() | PORTALLOCATOR_DISABLE_STUN |
                          PORTALLOCATOR_DISABLE_TCP);
    allocator_->set_step_delay(kMinimumStepDelay);
  }

  P2PTransportChannel& StartTransportChannel(
      bool prioritize_most_likely_to_work,
      int stable_writable_connection_ping_interval,
      const webrtc::FieldTrialsView* field_trials = nullptr) {
    channel_.reset(
        new P2PTransportChannel("checks", 1, allocator(), field_trials));
    IceConfig config = channel_->config();
    config.prioritize_most_likely_candidate_pairs =
        prioritize_most_likely_to_work;
    config.stable_writable_connection_ping_interval =
        stable_writable_connection_ping_interval;
    channel_->SetIceConfig(config);
    PrepareChannel(channel_.get());
    channel_->MaybeStartGathering();
    return *channel_.get();
  }

  BasicPortAllocator* allocator() { return allocator_.get(); }
  TestTurnServer* turn_server() { return &turn_server_; }

  // This verifies the next pingable connection has the expected candidates'
  // types and, for relay local candidate, the expected relay protocol and ping
  // it.
  void VerifyNextPingableConnection(
      absl::string_view local_candidate_type,
      absl::string_view remote_candidate_type,
      absl::string_view relay_protocol_type = UDP_PROTOCOL_NAME) {
    Connection* conn = FindNextPingableConnectionAndPingIt(channel_.get());
    ASSERT_TRUE(conn != nullptr);
    EXPECT_EQ(conn->local_candidate().type(), local_candidate_type);
    if (conn->local_candidate().type() == RELAY_PORT_TYPE) {
      EXPECT_EQ(conn->local_candidate().relay_protocol(), relay_protocol_type);
    }
    EXPECT_EQ(conn->remote_candidate().type(), remote_candidate_type);
  }

 private:
  std::unique_ptr<BasicPortAllocator> allocator_;
  rtc::FakeNetworkManager network_manager_;
  TestTurnServer turn_server_;
  std::unique_ptr<P2PTransportChannel> channel_;
};

// Test that Relay/Relay connections will be pinged first when no other
// connections have been pinged yet, unless we need to ping a trigger check or
// we have a selected connection.
TEST_F(P2PTransportChannelMostLikelyToWorkFirstTest,
       TestRelayRelayFirstWhenNothingPingedYet) {
  const int max_strong_interval = 500;
  P2PTransportChannel& ch =
      StartTransportChannel(true, max_strong_interval, &field_trials_);
  EXPECT_TRUE_WAIT(ch.ports().size() == 2, kDefaultTimeout);
  EXPECT_EQ(ch.ports()[0]->Type(), LOCAL_PORT_TYPE);
  EXPECT_EQ(ch.ports()[1]->Type(), RELAY_PORT_TYPE);

  ch.AddRemoteCandidate(CreateUdpCandidate(RELAY_PORT_TYPE, "1.1.1.1", 1, 1));
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 2));

  EXPECT_TRUE_WAIT(ch.connections().size() == 4, kDefaultTimeout);

  // Relay/Relay should be the first pingable connection.
  Connection* conn = FindNextPingableConnectionAndPingIt(&ch);
  ASSERT_TRUE(conn != nullptr);
  EXPECT_EQ(conn->local_candidate().type(), RELAY_PORT_TYPE);
  EXPECT_EQ(conn->remote_candidate().type(), RELAY_PORT_TYPE);

  // Unless that we have a trigger check waiting to be pinged.
  Connection* conn2 = WaitForConnectionTo(&ch, "2.2.2.2", 2);
  ASSERT_TRUE(conn2 != nullptr);
  EXPECT_EQ(conn2->local_candidate().type(), LOCAL_PORT_TYPE);
  EXPECT_EQ(conn2->remote_candidate().type(), LOCAL_PORT_TYPE);
  conn2->ReceivedPing();
  EXPECT_EQ(conn2, FindNextPingableConnectionAndPingIt(&ch));

  // Make conn3 the selected connection.
  Connection* conn3 = WaitForConnectionTo(&ch, "1.1.1.1", 1);
  ASSERT_TRUE(conn3 != nullptr);
  EXPECT_EQ(conn3->local_candidate().type(), LOCAL_PORT_TYPE);
  EXPECT_EQ(conn3->remote_candidate().type(), RELAY_PORT_TYPE);
  conn3->ReceivedPingResponse(LOW_RTT, "id");
  ASSERT_TRUE(conn3->writable());
  conn3->ReceivedPing();

  /*

  TODO(honghaiz): Re-enable this once we use fake clock for this test to fix
  the flakiness. The following test becomes flaky because we now ping the
  connections with fast rates until every connection is pinged at least three
  times. The selected connection may have been pinged before
  `max_strong_interval`, so it may not be the next connection to be pinged as
  expected in the test.

  // Verify that conn3 will be the "selected connection" since it is readable
  // and writable. After `MAX_CURRENT_STRONG_INTERVAL`, it should be the next
  // pingable connection.
  EXPECT_TRUE_WAIT(conn3 == ch.selected_connection(), kDefaultTimeout);
  WAIT(false, max_strong_interval + 100);
  conn3->ReceivedPingResponse(LOW_RTT, "id");
  ASSERT_TRUE(conn3->writable());
  EXPECT_EQ(conn3, FindNextPingableConnectionAndPingIt(&ch));

  */
}

// Test that Relay/Relay connections will be pinged first when everything has
// been pinged even if the Relay/Relay connection wasn't the first to be pinged
// in the first round.
TEST_F(P2PTransportChannelMostLikelyToWorkFirstTest,
       TestRelayRelayFirstWhenEverythingPinged) {
  P2PTransportChannel& ch = StartTransportChannel(true, 500, &field_trials_);
  EXPECT_TRUE_WAIT(ch.ports().size() == 2, kDefaultTimeout);
  EXPECT_EQ(ch.ports()[0]->Type(), LOCAL_PORT_TYPE);
  EXPECT_EQ(ch.ports()[1]->Type(), RELAY_PORT_TYPE);

  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  EXPECT_TRUE_WAIT(ch.connections().size() == 2, kDefaultTimeout);

  // Initially, only have Local/Local and Local/Relay.
  VerifyNextPingableConnection(LOCAL_PORT_TYPE, LOCAL_PORT_TYPE);
  VerifyNextPingableConnection(RELAY_PORT_TYPE, LOCAL_PORT_TYPE);

  // Remote Relay candidate arrives.
  ch.AddRemoteCandidate(CreateUdpCandidate(RELAY_PORT_TYPE, "2.2.2.2", 2, 2));
  EXPECT_TRUE_WAIT(ch.connections().size() == 4, kDefaultTimeout);

  // Relay/Relay should be the first since it hasn't been pinged before.
  VerifyNextPingableConnection(RELAY_PORT_TYPE, RELAY_PORT_TYPE);

  // Local/Relay is the final one.
  VerifyNextPingableConnection(LOCAL_PORT_TYPE, RELAY_PORT_TYPE);

  // Now, every connection has been pinged once. The next one should be
  // Relay/Relay.
  VerifyNextPingableConnection(RELAY_PORT_TYPE, RELAY_PORT_TYPE);
}

// Test that when we receive a new remote candidate, they will be tried first
// before we re-ping Relay/Relay connections again.
TEST_F(P2PTransportChannelMostLikelyToWorkFirstTest,
       TestNoStarvationOnNonRelayConnection) {
  P2PTransportChannel& ch = StartTransportChannel(true, 500, &field_trials_);
  EXPECT_TRUE_WAIT(ch.ports().size() == 2, kDefaultTimeout);
  EXPECT_EQ(ch.ports()[0]->Type(), LOCAL_PORT_TYPE);
  EXPECT_EQ(ch.ports()[1]->Type(), RELAY_PORT_TYPE);

  ch.AddRemoteCandidate(CreateUdpCandidate(RELAY_PORT_TYPE, "1.1.1.1", 1, 1));
  EXPECT_TRUE_WAIT(ch.connections().size() == 2, kDefaultTimeout);

  // Initially, only have Relay/Relay and Local/Relay. Ping Relay/Relay first.
  VerifyNextPingableConnection(RELAY_PORT_TYPE, RELAY_PORT_TYPE);

  // Next, ping Local/Relay.
  VerifyNextPingableConnection(LOCAL_PORT_TYPE, RELAY_PORT_TYPE);

  // Remote Local candidate arrives.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 2));
  EXPECT_TRUE_WAIT(ch.connections().size() == 4, kDefaultTimeout);

  // Local/Local should be the first since it hasn't been pinged before.
  VerifyNextPingableConnection(LOCAL_PORT_TYPE, LOCAL_PORT_TYPE);

  // Relay/Local is the final one.
  VerifyNextPingableConnection(RELAY_PORT_TYPE, LOCAL_PORT_TYPE);

  // Now, every connection has been pinged once. The next one should be
  // Relay/Relay.
  VerifyNextPingableConnection(RELAY_PORT_TYPE, RELAY_PORT_TYPE);
}

// Test skip_relay_to_non_relay_connections field-trial.
// I.e that we never create connection between relay and non-relay.
TEST_F(P2PTransportChannelMostLikelyToWorkFirstTest,
       TestSkipRelayToNonRelayConnectionsFieldTrial) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_,
      "WebRTC-IceFieldTrials/skip_relay_to_non_relay_connections:true/");
  P2PTransportChannel& ch = StartTransportChannel(true, 500, &field_trials);
  EXPECT_TRUE_WAIT(ch.ports().size() == 2, kDefaultTimeout);
  EXPECT_EQ(ch.ports()[0]->Type(), LOCAL_PORT_TYPE);
  EXPECT_EQ(ch.ports()[1]->Type(), RELAY_PORT_TYPE);

  // Remote Relay candidate arrives.
  ch.AddRemoteCandidate(CreateUdpCandidate(RELAY_PORT_TYPE, "1.1.1.1", 1, 1));
  EXPECT_TRUE_WAIT(ch.connections().size() == 1, kDefaultTimeout);

  // Remote Local candidate arrives.
  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 2));
  EXPECT_TRUE_WAIT(ch.connections().size() == 2, kDefaultTimeout);
}

// Test the ping sequence is UDP Relay/Relay followed by TCP Relay/Relay,
// followed by the rest.
TEST_F(P2PTransportChannelMostLikelyToWorkFirstTest, TestTcpTurn) {
  // Add a Tcp Turn server.
  turn_server()->AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
  RelayServerConfig config;
  config.credentials = kRelayCredentials;
  config.ports.push_back(ProtocolAddress(kTurnTcpIntAddr, PROTO_TCP));
  allocator()->AddTurnServerForTesting(config);

  P2PTransportChannel& ch = StartTransportChannel(true, 500, &field_trials_);
  EXPECT_TRUE_WAIT(ch.ports().size() == 3, kDefaultTimeout);
  EXPECT_EQ(ch.ports()[0]->Type(), LOCAL_PORT_TYPE);
  EXPECT_EQ(ch.ports()[1]->Type(), RELAY_PORT_TYPE);
  EXPECT_EQ(ch.ports()[2]->Type(), RELAY_PORT_TYPE);

  // Remote Relay candidate arrives.
  ch.AddRemoteCandidate(CreateUdpCandidate(RELAY_PORT_TYPE, "1.1.1.1", 1, 1));
  EXPECT_TRUE_WAIT(ch.connections().size() == 3, kDefaultTimeout);

  // UDP Relay/Relay should be pinged first.
  VerifyNextPingableConnection(RELAY_PORT_TYPE, RELAY_PORT_TYPE);

  // TCP Relay/Relay is the next.
  VerifyNextPingableConnection(RELAY_PORT_TYPE, RELAY_PORT_TYPE,
                               TCP_PROTOCOL_NAME);

  // Finally, Local/Relay will be pinged.
  VerifyNextPingableConnection(LOCAL_PORT_TYPE, RELAY_PORT_TYPE);
}

// Test that a resolver is created, asked for a result, and destroyed
// when the address is a hostname. The destruction should happen even
// if the channel is not destroyed.
TEST(P2PTransportChannelResolverTest, HostnameCandidateIsResolved) {
  webrtc::test::ScopedKeyValueConfig field_trials;
  ResolverFactoryFixture resolver_fixture;
  std::unique_ptr<rtc::SocketServer> socket_server =
      rtc::CreateDefaultSocketServer();
  rtc::AutoSocketServerThread main_thread(socket_server.get());
  rtc::BasicPacketSocketFactory packet_socket_factory(socket_server.get());
  FakePortAllocator allocator(rtc::Thread::Current(), &packet_socket_factory,
                              &field_trials);
  webrtc::IceTransportInit init;
  init.set_port_allocator(&allocator);
  init.set_async_dns_resolver_factory(&resolver_fixture);
  init.set_field_trials(&field_trials);
  auto channel = P2PTransportChannel::Create("tn", 0, std::move(init));
  Candidate hostname_candidate;
  SocketAddress hostname_address("fake.test", 1000);
  hostname_candidate.set_address(hostname_address);
  channel->AddRemoteCandidate(hostname_candidate);

  ASSERT_EQ_WAIT(1u, channel->remote_candidates().size(), kDefaultTimeout);
  const RemoteCandidate& candidate = channel->remote_candidates()[0];
  EXPECT_FALSE(candidate.address().IsUnresolvedIP());
}

// Test that if we signal a hostname candidate after the remote endpoint
// discovers a prflx remote candidate with the same underlying IP address, the
// prflx candidate is updated to a host candidate after the name resolution is
// done.
TEST_F(P2PTransportChannelTest,
       PeerReflexiveCandidateBeforeSignalingWithMdnsName) {
  // ep1 and ep2 will only gather host candidates with addresses
  // kPublicAddrs[0] and kPublicAddrs[1], respectively.
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);
  // ICE parameter will be set up when creating the channels.
  set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);
  GetEndpoint(0)->network_manager_.set_mdns_responder(
      std::make_unique<webrtc::FakeMdnsResponder>(rtc::Thread::Current()));

  ResolverFactoryFixture resolver_fixture;
  GetEndpoint(1)->async_dns_resolver_factory_ = &resolver_fixture;
  CreateChannels();
  // Pause sending candidates from both endpoints until we find out what port
  // number is assgined to ep1's host candidate.
  PauseCandidates(0);
  PauseCandidates(1);
  ASSERT_EQ_WAIT(1u, GetEndpoint(0)->saved_candidates_.size(), kMediumTimeout);
  const auto& local_candidate = GetEndpoint(0)->saved_candidates_[0].candidate;
  // The IP address of ep1's host candidate should be obfuscated.
  EXPECT_TRUE(local_candidate.address().IsUnresolvedIP());
  // This is the underlying private IP address of the same candidate at ep1.
  const auto local_address = rtc::SocketAddress(
      kPublicAddrs[0].ipaddr(), local_candidate.address().port());

  // Let ep2 signal its candidate to ep1. ep1 should form a candidate
  // pair and start to ping. After receiving the ping, ep2 discovers a prflx
  // remote candidate and form a candidate pair as well.
  ResumeCandidates(1);
  ASSERT_TRUE_WAIT(ep1_ch1()->selected_connection() != nullptr, kMediumTimeout);
  // ep2 should have the selected connection connected to the prflx remote
  // candidate.
  const Connection* selected_connection = nullptr;
  ASSERT_TRUE_WAIT(
      (selected_connection = ep2_ch1()->selected_connection()) != nullptr,
      kMediumTimeout);
  EXPECT_EQ(PRFLX_PORT_TYPE, selected_connection->remote_candidate().type());
  EXPECT_EQ(kIceUfrag[0], selected_connection->remote_candidate().username());
  EXPECT_EQ(kIcePwd[0], selected_connection->remote_candidate().password());
  // Set expectation before ep1 signals a hostname candidate.
  resolver_fixture.SetAddressToReturn(local_address);
  ResumeCandidates(0);
  // Verify ep2's selected connection is updated to use the 'local' candidate.
  EXPECT_EQ_WAIT(LOCAL_PORT_TYPE,
                 ep2_ch1()->selected_connection()->remote_candidate().type(),
                 kMediumTimeout);
  EXPECT_EQ(selected_connection, ep2_ch1()->selected_connection());

  DestroyChannels();
}

// Test that if we discover a prflx candidate during the process of name
// resolution for a remote hostname candidate, we update the prflx candidate to
// a host candidate if the hostname candidate turns out to have the same IP
// address after the resolution completes.
TEST_F(P2PTransportChannelTest,
       PeerReflexiveCandidateDuringResolvingHostCandidateWithMdnsName) {
  ResolverFactoryFixture resolver_fixture;
  // Prevent resolution until triggered by FireDelayedResolution.
  resolver_fixture.DelayResolution();

  // ep1 and ep2 will only gather host candidates with addresses
  // kPublicAddrs[0] and kPublicAddrs[1], respectively.
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);
  // ICE parameter will be set up when creating the channels.
  set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);
  GetEndpoint(0)->network_manager_.set_mdns_responder(
      std::make_unique<webrtc::FakeMdnsResponder>(rtc::Thread::Current()));
  GetEndpoint(1)->async_dns_resolver_factory_ = &resolver_fixture;
  CreateChannels();
  // Pause sending candidates from both endpoints until we find out what port
  // number is assgined to ep1's host candidate.
  PauseCandidates(0);
  PauseCandidates(1);

  ASSERT_EQ_WAIT(1u, GetEndpoint(0)->saved_candidates_.size(), kMediumTimeout);
  const auto& local_candidate = GetEndpoint(0)->saved_candidates_[0].candidate;
  // The IP address of ep1's host candidate should be obfuscated.
  ASSERT_TRUE(local_candidate.address().IsUnresolvedIP());
  // This is the underlying private IP address of the same candidate at ep1.
  const auto local_address = rtc::SocketAddress(
      kPublicAddrs[0].ipaddr(), local_candidate.address().port());
  // Let ep1 signal its hostname candidate to ep2.
  ResumeCandidates(0);
  // Now that ep2 is in the process of resolving the hostname candidate signaled
  // by ep1. Let ep2 signal its host candidate with an IP address to ep1, so
  // that ep1 can form a candidate pair, select it and start to ping ep2.
  ResumeCandidates(1);
  ASSERT_TRUE_WAIT(ep1_ch1()->selected_connection() != nullptr, kMediumTimeout);
  // Let the mock resolver of ep2 receives the correct resolution.
  resolver_fixture.SetAddressToReturn(local_address);

  // Upon receiving a ping from ep1, ep2 adds a prflx candidate from the
  // unknown address and establishes a connection.
  //
  // There is a caveat in our implementation associated with this expectation.
  // See the big comment in P2PTransportChannel::OnUnknownAddress.
  ASSERT_TRUE_WAIT(ep2_ch1()->selected_connection() != nullptr, kMediumTimeout);
  EXPECT_EQ(PRFLX_PORT_TYPE,
            ep2_ch1()->selected_connection()->remote_candidate().type());
  // ep2 should also be able resolve the hostname candidate. The resolved remote
  // host candidate should be merged with the prflx remote candidate.

  resolver_fixture.FireDelayedResolution();

  EXPECT_EQ_WAIT(LOCAL_PORT_TYPE,
                 ep2_ch1()->selected_connection()->remote_candidate().type(),
                 kMediumTimeout);
  EXPECT_EQ(1u, ep2_ch1()->remote_candidates().size());

  DestroyChannels();
}

// Test that if we only gather and signal a host candidate, the IP address of
// which is obfuscated by an mDNS name, and if the peer can complete the name
// resolution with the correct IP address, we can have a p2p connection.
TEST_F(P2PTransportChannelTest, CanConnectWithHostCandidateWithMdnsName) {
  ResolverFactoryFixture resolver_fixture;

  // ep1 and ep2 will only gather host candidates with addresses
  // kPublicAddrs[0] and kPublicAddrs[1], respectively.
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);
  // ICE parameter will be set up when creating the channels.
  set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);
  GetEndpoint(0)->network_manager_.set_mdns_responder(
      std::make_unique<webrtc::FakeMdnsResponder>(rtc::Thread::Current()));
  GetEndpoint(1)->async_dns_resolver_factory_ = &resolver_fixture;
  CreateChannels();
  // Pause sending candidates from both endpoints until we find out what port
  // number is assgined to ep1's host candidate.
  PauseCandidates(0);
  PauseCandidates(1);
  ASSERT_EQ_WAIT(1u, GetEndpoint(0)->saved_candidates_.size(), kMediumTimeout);
  const auto& local_candidate_ep1 =
      GetEndpoint(0)->saved_candidates_[0].candidate;
  // The IP address of ep1's host candidate should be obfuscated.
  EXPECT_TRUE(local_candidate_ep1.address().IsUnresolvedIP());
  // This is the underlying private IP address of the same candidate at ep1,
  // and let the mock resolver of ep2 receive the correct resolution.
  rtc::SocketAddress resolved_address_ep1(local_candidate_ep1.address());
  resolved_address_ep1.SetResolvedIP(kPublicAddrs[0].ipaddr());

  resolver_fixture.SetAddressToReturn(resolved_address_ep1);
  // Let ep1 signal its hostname candidate to ep2.
  ResumeCandidates(0);

  // We should be able to receive a ping from ep2 and establish a connection
  // with a peer reflexive candidate from ep2.
  ASSERT_TRUE_WAIT((ep1_ch1()->selected_connection()) != nullptr,
                   kMediumTimeout);
  EXPECT_EQ(LOCAL_PORT_TYPE,
            ep1_ch1()->selected_connection()->local_candidate().type());
  EXPECT_EQ(PRFLX_PORT_TYPE,
            ep1_ch1()->selected_connection()->remote_candidate().type());

  DestroyChannels();
}

// Test that when the IP of a host candidate is concealed by an mDNS name, the
// stats from the gathering ICE endpoint do not reveal the address of this local
// host candidate or the related address of a local srflx candidate from the
// same endpoint. Also, the remote ICE endpoint that successfully resolves a
// signaled host candidate with an mDNS name should not reveal the address of
// this remote host candidate in stats.
TEST_F(P2PTransportChannelTest,
       CandidatesSanitizedInStatsWhenMdnsObfuscationEnabled) {
  ResolverFactoryFixture resolver_fixture;

  // ep1 and ep2 will gather host candidates with addresses
  // kPublicAddrs[0] and kPublicAddrs[1], respectively. ep1 also gathers a srflx
  // and a relay candidates.
  ConfigureEndpoints(OPEN, OPEN,
                     kDefaultPortAllocatorFlags | PORTALLOCATOR_DISABLE_TCP,
                     kOnlyLocalPorts);
  // ICE parameter will be set up when creating the channels.
  set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);
  GetEndpoint(0)->network_manager_.set_mdns_responder(
      std::make_unique<webrtc::FakeMdnsResponder>(rtc::Thread::Current()));
  GetEndpoint(1)->async_dns_resolver_factory_ = &resolver_fixture;
  CreateChannels();
  // Pause sending candidates from both endpoints until we find out what port
  // number is assigned to ep1's host candidate.
  PauseCandidates(0);
  PauseCandidates(1);
  // Ep1 has a UDP host, a srflx and a relay candidates.
  ASSERT_EQ_WAIT(3u, GetEndpoint(0)->saved_candidates_.size(), kMediumTimeout);
  ASSERT_EQ_WAIT(1u, GetEndpoint(1)->saved_candidates_.size(), kMediumTimeout);

  for (const auto& candidates_data : GetEndpoint(0)->saved_candidates_) {
    const auto& local_candidate_ep1 = candidates_data.candidate;
    if (local_candidate_ep1.type() == LOCAL_PORT_TYPE) {
      // This is the underlying private IP address of the same candidate at ep1,
      // and let the mock resolver of ep2 receive the correct resolution.
      rtc::SocketAddress resolved_address_ep1(local_candidate_ep1.address());
      resolved_address_ep1.SetResolvedIP(kPublicAddrs[0].ipaddr());
      resolver_fixture.SetAddressToReturn(resolved_address_ep1);
      break;
    }
  }
  ResumeCandidates(0);
  ResumeCandidates(1);

  ASSERT_EQ_WAIT(kIceGatheringComplete, ep1_ch1()->gathering_state(),
                 kMediumTimeout);
  // We should have the following candidate pairs on both endpoints:
  // ep1_host <-> ep2_host, ep1_srflx <-> ep2_host, ep1_relay <-> ep2_host
  ASSERT_EQ_WAIT(3u, ep1_ch1()->connections().size(), kMediumTimeout);
  ASSERT_EQ_WAIT(3u, ep2_ch1()->connections().size(), kMediumTimeout);

  IceTransportStats ice_transport_stats1;
  IceTransportStats ice_transport_stats2;
  ep1_ch1()->GetStats(&ice_transport_stats1);
  ep2_ch1()->GetStats(&ice_transport_stats2);
  EXPECT_EQ(3u, ice_transport_stats1.connection_infos.size());
  EXPECT_EQ(3u, ice_transport_stats1.candidate_stats_list.size());
  EXPECT_EQ(3u, ice_transport_stats2.connection_infos.size());
  // Check the stats of ep1 seen by ep1.
  for (const auto& connection_info : ice_transport_stats1.connection_infos) {
    const auto& local_candidate = connection_info.local_candidate;
    if (local_candidate.type() == LOCAL_PORT_TYPE) {
      EXPECT_TRUE(local_candidate.address().IsUnresolvedIP());
    } else if (local_candidate.type() == STUN_PORT_TYPE) {
      EXPECT_TRUE(local_candidate.related_address().IsAnyIP());
    } else if (local_candidate.type() == RELAY_PORT_TYPE) {
      // The related address of the relay candidate should be equal to the
      // srflx address. Note that NAT is not configured, hence the following
      // expectation.
      EXPECT_EQ(kPublicAddrs[0].ipaddr(),
                local_candidate.related_address().ipaddr());
    } else {
      FAIL();
    }
  }
  // Check the stats of ep1 seen by ep2.
  for (const auto& connection_info : ice_transport_stats2.connection_infos) {
    const auto& remote_candidate = connection_info.remote_candidate;
    if (remote_candidate.type() == LOCAL_PORT_TYPE) {
      EXPECT_TRUE(remote_candidate.address().IsUnresolvedIP());
    } else if (remote_candidate.type() == STUN_PORT_TYPE) {
      EXPECT_TRUE(remote_candidate.related_address().IsAnyIP());
    } else if (remote_candidate.type() == RELAY_PORT_TYPE) {
      EXPECT_EQ(kPublicAddrs[0].ipaddr(),
                remote_candidate.related_address().ipaddr());
    } else {
      FAIL();
    }
  }
  DestroyChannels();
}

TEST_F(P2PTransportChannelTest,
       ConnectingIncreasesSelectedCandidatePairChanges) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  CreateChannels();

  IceTransportStats ice_transport_stats;
  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats));
  EXPECT_EQ(0u, ice_transport_stats.selected_candidate_pair_changes);

  // Let the channels connect.
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection() != nullptr,
                             kMediumTimeout, clock);

  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats));
  EXPECT_EQ(1u, ice_transport_stats.selected_candidate_pair_changes);

  DestroyChannels();
}

TEST_F(P2PTransportChannelTest,
       DisconnectedIncreasesSelectedCandidatePairChanges) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  CreateChannels();

  IceTransportStats ice_transport_stats;
  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats));
  EXPECT_EQ(0u, ice_transport_stats.selected_candidate_pair_changes);

  // Let the channels connect.
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection() != nullptr,
                             kMediumTimeout, clock);

  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats));
  EXPECT_EQ(1u, ice_transport_stats.selected_candidate_pair_changes);

  // Prune connections and wait for disconnect.
  for (Connection* con : ep1_ch1()->connections()) {
    con->Prune();
  }
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection() == nullptr,
                             kMediumTimeout, clock);

  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats));
  EXPECT_EQ(2u, ice_transport_stats.selected_candidate_pair_changes);

  DestroyChannels();
}

TEST_F(P2PTransportChannelTest,
       NewSelectionIncreasesSelectedCandidatePairChanges) {
  rtc::ScopedFakeClock clock;
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  CreateChannels();

  IceTransportStats ice_transport_stats;
  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats));
  EXPECT_EQ(0u, ice_transport_stats.selected_candidate_pair_changes);

  // Let the channels connect.
  EXPECT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection() != nullptr,
                             kMediumTimeout, clock);

  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats));
  EXPECT_EQ(1u, ice_transport_stats.selected_candidate_pair_changes);

  // Prune the currently selected connection and wait for selection
  // of a new one.
  const Connection* selected_connection = ep1_ch1()->selected_connection();
  for (Connection* con : ep1_ch1()->connections()) {
    if (con == selected_connection) {
      con->Prune();
    }
  }
  EXPECT_TRUE_SIMULATED_WAIT(
      ep1_ch1()->selected_connection() != nullptr &&
          (ep1_ch1()->GetStats(&ice_transport_stats),
           ice_transport_stats.selected_candidate_pair_changes >= 2u),
      kMediumTimeout, clock);

  ASSERT_TRUE(ep1_ch1()->GetStats(&ice_transport_stats));
  EXPECT_GE(ice_transport_stats.selected_candidate_pair_changes, 2u);

  DestroyChannels();
}

// A similar test as above to check the selected candidate pair is sanitized
// when it is queried via GetSelectedCandidatePair.
TEST_F(P2PTransportChannelTest,
       SelectedCandidatePairSanitizedWhenMdnsObfuscationEnabled) {
  ResolverFactoryFixture resolver_fixture;

  // ep1 and ep2 will gather host candidates with addresses
  // kPublicAddrs[0] and kPublicAddrs[1], respectively.
  ConfigureEndpoints(OPEN, OPEN, kOnlyLocalPorts, kOnlyLocalPorts);
  // ICE parameter will be set up when creating the channels.
  set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);
  GetEndpoint(0)->network_manager_.set_mdns_responder(
      std::make_unique<webrtc::FakeMdnsResponder>(rtc::Thread::Current()));
  GetEndpoint(1)->async_dns_resolver_factory_ = &resolver_fixture;
  CreateChannels();
  // Pause sending candidates from both endpoints until we find out what port
  // number is assigned to ep1's host candidate.
  PauseCandidates(0);
  PauseCandidates(1);
  ASSERT_EQ_WAIT(1u, GetEndpoint(0)->saved_candidates_.size(), kMediumTimeout);
  const auto& candidates_data = GetEndpoint(0)->saved_candidates_[0];
  const auto& local_candidate_ep1 = candidates_data.candidate;
  ASSERT_TRUE(local_candidate_ep1.type() == LOCAL_PORT_TYPE);
  // This is the underlying private IP address of the same candidate at ep1,
  // and let the mock resolver of ep2 receive the correct resolution.
  rtc::SocketAddress resolved_address_ep1(local_candidate_ep1.address());
  resolved_address_ep1.SetResolvedIP(kPublicAddrs[0].ipaddr());
  resolver_fixture.SetAddressToReturn(resolved_address_ep1);

  ResumeCandidates(0);
  ResumeCandidates(1);

  ASSERT_TRUE_WAIT(ep1_ch1()->selected_connection() != nullptr &&
                       ep2_ch1()->selected_connection() != nullptr,
                   kMediumTimeout);

  const auto pair_ep1 = ep1_ch1()->GetSelectedCandidatePair();
  ASSERT_TRUE(pair_ep1.has_value());
  EXPECT_EQ(LOCAL_PORT_TYPE, pair_ep1->local_candidate().type());
  EXPECT_TRUE(pair_ep1->local_candidate().address().IsUnresolvedIP());

  const auto pair_ep2 = ep2_ch1()->GetSelectedCandidatePair();
  ASSERT_TRUE(pair_ep2.has_value());
  EXPECT_EQ(LOCAL_PORT_TYPE, pair_ep2->remote_candidate().type());
  EXPECT_TRUE(pair_ep2->remote_candidate().address().IsUnresolvedIP());

  DestroyChannels();
}

TEST_F(P2PTransportChannelTest,
       NoPairOfLocalRelayCandidateWithRemoteMdnsCandidate) {
  const int kOnlyRelayPorts = cricket::PORTALLOCATOR_DISABLE_UDP |
                              cricket::PORTALLOCATOR_DISABLE_STUN |
                              cricket::PORTALLOCATOR_DISABLE_TCP;
  // We use one endpoint to test the behavior of adding remote candidates, and
  // this endpoint only gathers relay candidates.
  ConfigureEndpoints(OPEN, OPEN, kOnlyRelayPorts, kDefaultPortAllocatorFlags);
  GetEndpoint(0)->cd1_.ch_ = CreateChannel(0, ICE_CANDIDATE_COMPONENT_DEFAULT,
                                           kIceParams[0], kIceParams[1]);
  IceConfig config;
  // Start gathering and we should have only a single relay port.
  ep1_ch1()->SetIceConfig(config);
  ep1_ch1()->MaybeStartGathering();
  EXPECT_EQ_WAIT(IceGatheringState::kIceGatheringComplete,
                 ep1_ch1()->gathering_state(), kDefaultTimeout);
  EXPECT_EQ(1u, ep1_ch1()->ports().size());
  // Add a plain remote host candidate and three remote mDNS candidates with the
  // host, srflx and relay types. Note that the candidates differ in their
  // ports.
  cricket::Candidate host_candidate = CreateUdpCandidate(
      LOCAL_PORT_TYPE, "1.1.1.1", 1 /* port */, 0 /* priority */);
  ep1_ch1()->AddRemoteCandidate(host_candidate);

  std::vector<cricket::Candidate> mdns_candidates;
  mdns_candidates.push_back(CreateUdpCandidate(LOCAL_PORT_TYPE, "example.local",
                                               2 /* port */, 0 /* priority */));
  mdns_candidates.push_back(CreateUdpCandidate(STUN_PORT_TYPE, "example.local",
                                               3 /* port */, 0 /* priority */));
  mdns_candidates.push_back(CreateUdpCandidate(RELAY_PORT_TYPE, "example.local",
                                               4 /* port */, 0 /* priority */));
  // We just resolve the hostname to 1.1.1.1, and add the candidates with this
  // address directly to simulate the process of adding remote candidates with
  // the name resolution.
  for (auto& mdns_candidate : mdns_candidates) {
    rtc::SocketAddress resolved_address(mdns_candidate.address());
    resolved_address.SetResolvedIP(0x1111);  // 1.1.1.1
    mdns_candidate.set_address(resolved_address);
    EXPECT_FALSE(mdns_candidate.address().IsUnresolvedIP());
    ep1_ch1()->AddRemoteCandidate(mdns_candidate);
  }

  // All remote candidates should have been successfully added.
  EXPECT_EQ(4u, ep1_ch1()->remote_candidates().size());

  // Expect that there is no connection paired with any mDNS candidate.
  ASSERT_EQ(1u, ep1_ch1()->connections().size());
  ASSERT_NE(nullptr, ep1_ch1()->connections()[0]);
  EXPECT_EQ(
      "1.1.1.1:1",
      ep1_ch1()->connections()[0]->remote_candidate().address().ToString());
  DestroyChannels();
}

class MockMdnsResponder : public webrtc::MdnsResponderInterface {
 public:
  MOCK_METHOD(void,
              CreateNameForAddress,
              (const rtc::IPAddress&, NameCreatedCallback),
              (override));
  MOCK_METHOD(void,
              RemoveNameForAddress,
              (const rtc::IPAddress&, NameRemovedCallback),
              (override));
};

TEST_F(P2PTransportChannelTest,
       SrflxCandidateCanBeGatheredBeforeMdnsCandidateToCreateConnection) {
  // ep1 and ep2 will only gather host and srflx candidates with base addresses
  // kPublicAddrs[0] and kPublicAddrs[1], respectively, and we use a shared
  // socket in gathering.
  const auto kOnlyLocalAndStunPorts =
      cricket::PORTALLOCATOR_DISABLE_RELAY |
      cricket::PORTALLOCATOR_DISABLE_TCP |
      cricket::PORTALLOCATOR_ENABLE_SHARED_SOCKET;
  // ep1 is configured with a NAT so that we do gather a srflx candidate.
  ConfigureEndpoints(NAT_FULL_CONE, OPEN, kOnlyLocalAndStunPorts,
                     kOnlyLocalAndStunPorts);
  // ICE parameter will be set up when creating the channels.
  set_remote_ice_parameter_source(FROM_SETICEPARAMETERS);
  // Use a mock mDNS responder, which does not complete the name registration by
  // ignoring the completion callback.
  auto mock_mdns_responder = std::make_unique<MockMdnsResponder>();
  EXPECT_CALL(*mock_mdns_responder, CreateNameForAddress(_, _))
      .Times(1)
      .WillOnce(Return());
  GetEndpoint(0)->network_manager_.set_mdns_responder(
      std::move(mock_mdns_responder));

  CreateChannels();

  // We should be able to form a srflx-host connection to ep2.
  ASSERT_TRUE_WAIT((ep1_ch1()->selected_connection()) != nullptr,
                   kMediumTimeout);
  EXPECT_EQ(STUN_PORT_TYPE,
            ep1_ch1()->selected_connection()->local_candidate().type());
  EXPECT_EQ(LOCAL_PORT_TYPE,
            ep1_ch1()->selected_connection()->remote_candidate().type());

  DestroyChannels();
}

// Test that after changing the candidate filter from relay-only to allowing all
// types of candidates when doing continual gathering, we can gather without ICE
// restart the other types of candidates that are now enabled and form candidate
// pairs. Also, we verify that the relay candidates gathered previously are not
// removed and are still usable for necessary route switching.
TEST_F(P2PTransportChannelTest,
       SurfaceHostCandidateOnCandidateFilterChangeFromRelayToAll) {
  rtc::ScopedFakeClock clock;

  ConfigureEndpoints(
      OPEN, OPEN,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  auto* ep1 = GetEndpoint(0);
  auto* ep2 = GetEndpoint(1);
  ep1->allocator_->SetCandidateFilter(CF_RELAY);
  ep2->allocator_->SetCandidateFilter(CF_RELAY);
  // Enable continual gathering and also resurfacing gathered candidates upon
  // the candidate filter changed in the ICE configuration.
  IceConfig ice_config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  ice_config.surface_ice_candidates_on_ice_transport_type_changed = true;
  CreateChannels(ice_config, ice_config);
  ASSERT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection() != nullptr,
                             kDefaultTimeout, clock);
  ASSERT_TRUE_SIMULATED_WAIT(ep2_ch1()->selected_connection() != nullptr,
                             kDefaultTimeout, clock);
  EXPECT_EQ(RELAY_PORT_TYPE,
            ep1_ch1()->selected_connection()->local_candidate().type());
  EXPECT_EQ(RELAY_PORT_TYPE,
            ep2_ch1()->selected_connection()->local_candidate().type());

  // Loosen the candidate filter at ep1.
  ep1->allocator_->SetCandidateFilter(CF_ALL);
  EXPECT_TRUE_SIMULATED_WAIT(
      ep1_ch1()->selected_connection() != nullptr &&
          ep1_ch1()->selected_connection()->local_candidate().type() ==
              LOCAL_PORT_TYPE,
      kDefaultTimeout, clock);
  EXPECT_EQ(RELAY_PORT_TYPE,
            ep1_ch1()->selected_connection()->remote_candidate().type());

  // Loosen the candidate filter at ep2.
  ep2->allocator_->SetCandidateFilter(CF_ALL);
  EXPECT_TRUE_SIMULATED_WAIT(
      ep2_ch1()->selected_connection() != nullptr &&
          ep2_ch1()->selected_connection()->local_candidate().type() ==
              LOCAL_PORT_TYPE,
      kDefaultTimeout, clock);
  // We have migrated to a host-host candidate pair.
  EXPECT_EQ(LOCAL_PORT_TYPE,
            ep2_ch1()->selected_connection()->remote_candidate().type());

  // Block the traffic over non-relay-to-relay routes and expect a route change.
  fw()->AddRule(false, rtc::FP_ANY, kPublicAddrs[0], kPublicAddrs[1]);
  fw()->AddRule(false, rtc::FP_ANY, kPublicAddrs[1], kPublicAddrs[0]);
  fw()->AddRule(false, rtc::FP_ANY, kPublicAddrs[0], kTurnUdpExtAddr);
  fw()->AddRule(false, rtc::FP_ANY, kPublicAddrs[1], kTurnUdpExtAddr);

  // We should be able to reuse the previously gathered relay candidates.
  EXPECT_EQ_SIMULATED_WAIT(
      RELAY_PORT_TYPE,
      ep1_ch1()->selected_connection()->local_candidate().type(),
      kDefaultTimeout, clock);
  EXPECT_EQ(RELAY_PORT_TYPE,
            ep1_ch1()->selected_connection()->remote_candidate().type());
  DestroyChannels();
}

// A similar test as SurfaceHostCandidateOnCandidateFilterChangeFromRelayToAll,
// and we should surface server-reflexive candidates that are enabled after
// changing the candidate filter.
TEST_F(P2PTransportChannelTest,
       SurfaceSrflxCandidateOnCandidateFilterChangeFromRelayToNoHost) {
  rtc::ScopedFakeClock clock;
  // We need an actual NAT so that the host candidate is not equivalent to the
  // srflx candidate; otherwise, the host candidate would still surface even
  // though we disable it via the candidate filter below. This is a result of
  // the following limitation in the current implementation:
  //  1. We don't generate the srflx candidate when we have public IP.
  //  2. We keep the host candidate in this case in CheckCandidateFilter even
  //     though we intend to filter them.
  ConfigureEndpoints(
      NAT_FULL_CONE, NAT_FULL_CONE,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  auto* ep1 = GetEndpoint(0);
  auto* ep2 = GetEndpoint(1);
  ep1->allocator_->SetCandidateFilter(CF_RELAY);
  ep2->allocator_->SetCandidateFilter(CF_RELAY);
  // Enable continual gathering and also resurfacing gathered candidates upon
  // the candidate filter changed in the ICE configuration.
  IceConfig ice_config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  ice_config.surface_ice_candidates_on_ice_transport_type_changed = true;
  CreateChannels(ice_config, ice_config);
  ASSERT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection() != nullptr,
                             kDefaultTimeout, clock);
  ASSERT_TRUE_SIMULATED_WAIT(ep2_ch1()->selected_connection() != nullptr,
                             kDefaultTimeout, clock);
  const uint32_t kCandidateFilterNoHost = CF_ALL & ~CF_HOST;
  // Loosen the candidate filter at ep1.
  ep1->allocator_->SetCandidateFilter(kCandidateFilterNoHost);
  EXPECT_TRUE_SIMULATED_WAIT(
      ep1_ch1()->selected_connection() != nullptr &&
          ep1_ch1()->selected_connection()->local_candidate().type() ==
              STUN_PORT_TYPE,
      kDefaultTimeout, clock);
  EXPECT_EQ(RELAY_PORT_TYPE,
            ep1_ch1()->selected_connection()->remote_candidate().type());

  // Loosen the candidate filter at ep2.
  ep2->allocator_->SetCandidateFilter(kCandidateFilterNoHost);
  EXPECT_TRUE_SIMULATED_WAIT(
      ep2_ch1()->selected_connection() != nullptr &&
          ep2_ch1()->selected_connection()->local_candidate().type() ==
              STUN_PORT_TYPE,
      kDefaultTimeout, clock);
  // We have migrated to a srflx-srflx candidate pair.
  EXPECT_EQ(STUN_PORT_TYPE,
            ep2_ch1()->selected_connection()->remote_candidate().type());

  // Block the traffic over non-relay-to-relay routes and expect a route change.
  fw()->AddRule(false, rtc::FP_ANY, kPrivateAddrs[0], kPublicAddrs[1]);
  fw()->AddRule(false, rtc::FP_ANY, kPrivateAddrs[1], kPublicAddrs[0]);
  fw()->AddRule(false, rtc::FP_ANY, kPrivateAddrs[0], kTurnUdpExtAddr);
  fw()->AddRule(false, rtc::FP_ANY, kPrivateAddrs[1], kTurnUdpExtAddr);
  // We should be able to reuse the previously gathered relay candidates.
  EXPECT_EQ_SIMULATED_WAIT(
      RELAY_PORT_TYPE,
      ep1_ch1()->selected_connection()->local_candidate().type(),
      kDefaultTimeout, clock);
  EXPECT_EQ(RELAY_PORT_TYPE,
            ep1_ch1()->selected_connection()->remote_candidate().type());
  DestroyChannels();
}

// This is the complement to
// SurfaceHostCandidateOnCandidateFilterChangeFromRelayToAll, and instead of
// gathering continually we only gather once, which makes the config
// `surface_ice_candidates_on_ice_transport_type_changed` ineffective after the
// gathering stopped.
TEST_F(P2PTransportChannelTest,
       CannotSurfaceTheNewlyAllowedOnFilterChangeIfNotGatheringContinually) {
  rtc::ScopedFakeClock clock;

  ConfigureEndpoints(
      OPEN, OPEN,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  auto* ep1 = GetEndpoint(0);
  auto* ep2 = GetEndpoint(1);
  ep1->allocator_->SetCandidateFilter(CF_RELAY);
  ep2->allocator_->SetCandidateFilter(CF_RELAY);
  // Only gather once.
  IceConfig ice_config = CreateIceConfig(1000, GATHER_ONCE);
  ice_config.surface_ice_candidates_on_ice_transport_type_changed = true;
  CreateChannels(ice_config, ice_config);
  ASSERT_TRUE_SIMULATED_WAIT(ep1_ch1()->selected_connection() != nullptr,
                             kDefaultTimeout, clock);
  ASSERT_TRUE_SIMULATED_WAIT(ep2_ch1()->selected_connection() != nullptr,
                             kDefaultTimeout, clock);
  // Loosen the candidate filter at ep1.
  ep1->allocator_->SetCandidateFilter(CF_ALL);
  // Wait for a period for any potential surfacing of new candidates.
  SIMULATED_WAIT(false, kDefaultTimeout, clock);
  EXPECT_EQ(RELAY_PORT_TYPE,
            ep1_ch1()->selected_connection()->local_candidate().type());

  // Loosen the candidate filter at ep2.
  ep2->allocator_->SetCandidateFilter(CF_ALL);
  EXPECT_EQ(RELAY_PORT_TYPE,
            ep2_ch1()->selected_connection()->local_candidate().type());
  DestroyChannels();
}

// Test that when the candidate filter is updated to be more restrictive,
// candidates that 1) have already been gathered and signaled 2) but no longer
// match the filter, are not removed.
TEST_F(P2PTransportChannelTest,
       RestrictingCandidateFilterDoesNotRemoveRegatheredCandidates) {
  rtc::ScopedFakeClock clock;

  ConfigureEndpoints(
      OPEN, OPEN,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  auto* ep1 = GetEndpoint(0);
  auto* ep2 = GetEndpoint(1);
  ep1->allocator_->SetCandidateFilter(CF_ALL);
  ep2->allocator_->SetCandidateFilter(CF_ALL);
  // Enable continual gathering and also resurfacing gathered candidates upon
  // the candidate filter changed in the ICE configuration.
  IceConfig ice_config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  ice_config.surface_ice_candidates_on_ice_transport_type_changed = true;
  // Pause candidates so we can gather all types of candidates. See
  // P2PTransportChannel::OnConnectionStateChange, where we would stop the
  // gathering when we have a strongly connected candidate pair.
  PauseCandidates(0);
  PauseCandidates(1);
  CreateChannels(ice_config, ice_config);

  // We have gathered host, srflx and relay candidates.
  EXPECT_TRUE_SIMULATED_WAIT(ep1->saved_candidates_.size() == 3u,
                             kDefaultTimeout, clock);
  ResumeCandidates(0);
  ResumeCandidates(1);
  ASSERT_TRUE_SIMULATED_WAIT(
      ep1_ch1()->selected_connection() != nullptr &&
          LOCAL_PORT_TYPE ==
              ep1_ch1()->selected_connection()->local_candidate().type() &&
          ep2_ch1()->selected_connection() != nullptr &&
          LOCAL_PORT_TYPE ==
              ep1_ch1()->selected_connection()->remote_candidate().type(),
      kDefaultTimeout, clock);
  ASSERT_TRUE_SIMULATED_WAIT(ep2_ch1()->selected_connection() != nullptr,
                             kDefaultTimeout, clock);
  // Test that we have a host-host candidate pair selected and the number of
  // candidates signaled to the remote peer stays the same.
  auto test_invariants = [this]() {
    EXPECT_EQ(LOCAL_PORT_TYPE,
              ep1_ch1()->selected_connection()->local_candidate().type());
    EXPECT_EQ(LOCAL_PORT_TYPE,
              ep1_ch1()->selected_connection()->remote_candidate().type());
    EXPECT_THAT(ep2_ch1()->remote_candidates(), SizeIs(3));
  };

  test_invariants();

  // Set a more restrictive candidate filter at ep1.
  ep1->allocator_->SetCandidateFilter(CF_HOST | CF_REFLEXIVE);
  SIMULATED_WAIT(false, kDefaultTimeout, clock);
  test_invariants();

  ep1->allocator_->SetCandidateFilter(CF_HOST);
  SIMULATED_WAIT(false, kDefaultTimeout, clock);
  test_invariants();

  ep1->allocator_->SetCandidateFilter(CF_NONE);
  SIMULATED_WAIT(false, kDefaultTimeout, clock);
  test_invariants();
  DestroyChannels();
}

// Verify that things break unless
// - both parties use the surface_ice_candidates_on_ice_transport_type_changed
// - both parties loosen candidate filter at the same time (approx.).
//
// i.e surface_ice_candidates_on_ice_transport_type_changed requires
// coordination outside of webrtc to function properly.
TEST_F(P2PTransportChannelTest, SurfaceRequiresCoordination) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_,
      "WebRTC-IceFieldTrials/skip_relay_to_non_relay_connections:true/");
  rtc::ScopedFakeClock clock;

  ConfigureEndpoints(
      OPEN, OPEN,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET,
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  auto* ep1 = GetEndpoint(0);
  auto* ep2 = GetEndpoint(1);
  ep1->allocator_->SetCandidateFilter(CF_RELAY);
  ep2->allocator_->SetCandidateFilter(CF_ALL);
  // Enable continual gathering and also resurfacing gathered candidates upon
  // the candidate filter changed in the ICE configuration.
  IceConfig ice_config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  ice_config.surface_ice_candidates_on_ice_transport_type_changed = true;
  // Pause candidates gathering so we can gather all types of candidates. See
  // P2PTransportChannel::OnConnectionStateChange, where we would stop the
  // gathering when we have a strongly connected candidate pair.
  PauseCandidates(0);
  PauseCandidates(1);
  CreateChannels(ice_config, ice_config);

  // On the caller we only have relay,
  // on the callee we have host, srflx and relay.
  EXPECT_TRUE_SIMULATED_WAIT(ep1->saved_candidates_.size() == 1u,
                             kDefaultTimeout, clock);
  EXPECT_TRUE_SIMULATED_WAIT(ep2->saved_candidates_.size() == 3u,
                             kDefaultTimeout, clock);

  ResumeCandidates(0);
  ResumeCandidates(1);
  ASSERT_TRUE_SIMULATED_WAIT(
      ep1_ch1()->selected_connection() != nullptr &&
          RELAY_PORT_TYPE ==
              ep1_ch1()->selected_connection()->local_candidate().type() &&
          ep2_ch1()->selected_connection() != nullptr &&
          RELAY_PORT_TYPE ==
              ep1_ch1()->selected_connection()->remote_candidate().type(),
      kDefaultTimeout, clock);
  ASSERT_TRUE_SIMULATED_WAIT(ep2_ch1()->selected_connection() != nullptr,
                             kDefaultTimeout, clock);

  // Wait until the callee discards it's candidates
  // since they don't manage to connect.
  SIMULATED_WAIT(false, 300000, clock);

  // And then loosen caller candidate filter.
  ep1->allocator_->SetCandidateFilter(CF_ALL);

  SIMULATED_WAIT(false, kDefaultTimeout, clock);

  // No p2p connection will be made, it will remain on relay.
  EXPECT_TRUE(ep1_ch1()->selected_connection() != nullptr &&
              RELAY_PORT_TYPE ==
                  ep1_ch1()->selected_connection()->local_candidate().type() &&
              ep2_ch1()->selected_connection() != nullptr &&
              RELAY_PORT_TYPE ==
                  ep1_ch1()->selected_connection()->remote_candidate().type());

  DestroyChannels();
}

TEST_F(P2PTransportChannelPingTest, TestInitialSelectDampening0) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_, "WebRTC-IceFieldTrials/initial_select_dampening:0/");

  constexpr int kMargin = 10;
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", 1, &pa, &field_trials);
  PrepareChannel(&ch);
  ch.SetIceConfig(ch.config());
  ch.MaybeStartGathering();

  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 100));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1, &clock);
  ASSERT_TRUE(conn1 != nullptr);
  EXPECT_EQ(nullptr, ch.selected_connection());
  conn1->ReceivedPingResponse(LOW_RTT, "id");  // Becomes writable and receiving
  // It shall not be selected until 0ms has passed....i.e it should be connected
  // directly.
  EXPECT_EQ_SIMULATED_WAIT(conn1, ch.selected_connection(), kMargin, clock);
}

TEST_F(P2PTransportChannelPingTest, TestInitialSelectDampening) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_, "WebRTC-IceFieldTrials/initial_select_dampening:100/");

  constexpr int kMargin = 10;
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", 1, &pa, &field_trials);
  PrepareChannel(&ch);
  ch.SetIceConfig(ch.config());
  ch.MaybeStartGathering();

  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 100));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1, &clock);
  ASSERT_TRUE(conn1 != nullptr);
  EXPECT_EQ(nullptr, ch.selected_connection());
  conn1->ReceivedPingResponse(LOW_RTT, "id");  // Becomes writable and receiving
  // It shall not be selected until 100ms has passed.
  SIMULATED_WAIT(conn1 == ch.selected_connection(), 100 - kMargin, clock);
  EXPECT_EQ_SIMULATED_WAIT(conn1, ch.selected_connection(), 2 * kMargin, clock);
}

TEST_F(P2PTransportChannelPingTest, TestInitialSelectDampeningPingReceived) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_,
      "WebRTC-IceFieldTrials/initial_select_dampening_ping_received:100/");

  constexpr int kMargin = 10;
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", 1, &pa, &field_trials);
  PrepareChannel(&ch);
  ch.SetIceConfig(ch.config());
  ch.MaybeStartGathering();

  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 100));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1, &clock);
  ASSERT_TRUE(conn1 != nullptr);
  EXPECT_EQ(nullptr, ch.selected_connection());
  conn1->ReceivedPingResponse(LOW_RTT, "id");  // Becomes writable and receiving
  conn1->ReceivedPing("id1");                  //
  // It shall not be selected until 100ms has passed.
  SIMULATED_WAIT(conn1 == ch.selected_connection(), 100 - kMargin, clock);
  EXPECT_EQ_SIMULATED_WAIT(conn1, ch.selected_connection(), 2 * kMargin, clock);
}

TEST_F(P2PTransportChannelPingTest, TestInitialSelectDampeningBoth) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      field_trials_,
      "WebRTC-IceFieldTrials/"
      "initial_select_dampening:100,initial_select_dampening_ping_received:"
      "50/");

  constexpr int kMargin = 10;
  rtc::ScopedFakeClock clock;
  clock.AdvanceTime(webrtc::TimeDelta::Seconds(1));

  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  P2PTransportChannel ch("test channel", 1, &pa, &field_trials);
  PrepareChannel(&ch);
  ch.SetIceConfig(ch.config());
  ch.MaybeStartGathering();

  ch.AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 100));
  Connection* conn1 = WaitForConnectionTo(&ch, "1.1.1.1", 1, &clock);
  ASSERT_TRUE(conn1 != nullptr);
  EXPECT_EQ(nullptr, ch.selected_connection());
  conn1->ReceivedPingResponse(LOW_RTT, "id");  // Becomes writable and receiving
  // It shall not be selected until 100ms has passed....but only wait ~50 now.
  SIMULATED_WAIT(conn1 == ch.selected_connection(), 50 - kMargin, clock);
  // Now receiving ping and new timeout should kick in.
  conn1->ReceivedPing("id1");  //
  EXPECT_EQ_SIMULATED_WAIT(conn1, ch.selected_connection(), 2 * kMargin, clock);
}

TEST(P2PTransportChannelIceControllerTest, InjectIceController) {
  webrtc::test::ScopedKeyValueConfig field_trials;
  std::unique_ptr<rtc::SocketServer> socket_server =
      rtc::CreateDefaultSocketServer();
  rtc::AutoSocketServerThread main_thread(socket_server.get());
  rtc::BasicPacketSocketFactory packet_socket_factory(socket_server.get());
  MockIceControllerFactory factory;
  FakePortAllocator pa(rtc::Thread::Current(), &packet_socket_factory,
                       &field_trials);
  EXPECT_CALL(factory, RecordIceControllerCreated()).Times(1);
  webrtc::IceTransportInit init;
  init.set_port_allocator(&pa);
  init.set_ice_controller_factory(&factory);
  init.set_field_trials(&field_trials);
  auto dummy =
      P2PTransportChannel::Create("transport_name",
                                  /* component= */ 77, std::move(init));
}

TEST(P2PTransportChannel, InjectActiveIceController) {
  webrtc::test::ScopedKeyValueConfig field_trials;
  std::unique_ptr<rtc::SocketServer> socket_server =
      rtc::CreateDefaultSocketServer();
  rtc::AutoSocketServerThread main_thread(socket_server.get());
  rtc::BasicPacketSocketFactory packet_socket_factory(socket_server.get());
  MockActiveIceControllerFactory factory;
  FakePortAllocator pa(rtc::Thread::Current(), &packet_socket_factory,
                       &field_trials);
  EXPECT_CALL(factory, RecordActiveIceControllerCreated()).Times(1);
  webrtc::IceTransportInit init;
  init.set_port_allocator(&pa);
  init.set_active_ice_controller_factory(&factory);
  init.set_field_trials(&field_trials);
  auto dummy =
      P2PTransportChannel::Create("transport_name",
                                  /* component= */ 77, std::move(init));
}

class ForgetLearnedStateController : public cricket::BasicIceController {
 public:
  explicit ForgetLearnedStateController(
      const cricket::IceControllerFactoryArgs& args)
      : cricket::BasicIceController(args) {}

  SwitchResult SortAndSwitchConnection(IceSwitchReason reason) override {
    auto result = cricket::BasicIceController::SortAndSwitchConnection(reason);
    if (forget_connnection_) {
      result.connections_to_forget_state_on.push_back(forget_connnection_);
      forget_connnection_ = nullptr;
    }
    result.recheck_event.emplace(IceSwitchReason::ICE_CONTROLLER_RECHECK, 100);
    return result;
  }

  void ForgetThisConnectionNextTimeSortAndSwitchConnectionIsCalled(
      Connection* con) {
    forget_connnection_ = con;
  }

 private:
  Connection* forget_connnection_ = nullptr;
};

class ForgetLearnedStateControllerFactory
    : public cricket::IceControllerFactoryInterface {
 public:
  std::unique_ptr<cricket::IceControllerInterface> Create(
      const cricket::IceControllerFactoryArgs& args) override {
    auto controller = std::make_unique<ForgetLearnedStateController>(args);
    // Keep a pointer to allow modifying calls.
    // Must not be used after the p2ptransportchannel has been destructed.
    controller_ = controller.get();
    return controller;
  }
  virtual ~ForgetLearnedStateControllerFactory() = default;

  ForgetLearnedStateController* controller_;
};

TEST_F(P2PTransportChannelPingTest, TestForgetLearnedState) {
  ForgetLearnedStateControllerFactory factory;
  FakePortAllocator pa(rtc::Thread::Current(), packet_socket_factory(),
                       &field_trials_);
  webrtc::IceTransportInit init;
  init.set_port_allocator(&pa);
  init.set_ice_controller_factory(&factory);
  init.set_field_trials(&field_trials_);
  auto ch =
      P2PTransportChannel::Create("ping sufficiently", 1, std::move(init));

  PrepareChannel(ch.get());
  ch->MaybeStartGathering();
  ch->AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "1.1.1.1", 1, 1));
  ch->AddRemoteCandidate(CreateUdpCandidate(LOCAL_PORT_TYPE, "2.2.2.2", 2, 2));

  Connection* conn1 = WaitForConnectionTo(ch.get(), "1.1.1.1", 1);
  Connection* conn2 = WaitForConnectionTo(ch.get(), "2.2.2.2", 2);
  ASSERT_TRUE(conn1 != nullptr);
  ASSERT_TRUE(conn2 != nullptr);

  // Wait for conn1 to be selected.
  conn1->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_EQ_WAIT(conn1, ch->selected_connection(), kMediumTimeout);

  conn2->ReceivedPingResponse(LOW_RTT, "id");
  EXPECT_TRUE(conn2->writable());

  // Now let the ice controller signal to P2PTransportChannel that it
  // should Forget conn2.
  factory.controller_
      ->ForgetThisConnectionNextTimeSortAndSwitchConnectionIsCalled(conn2);

  // We don't have a mock Connection, so verify this by checking that it
  // is no longer writable.
  EXPECT_EQ_WAIT(false, conn2->writable(), kMediumTimeout);
}

TEST_F(P2PTransportChannelTest, DisableDnsLookupsWithTransportPolicyRelay) {
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  auto* ep1 = GetEndpoint(0);
  ep1->allocator_->SetCandidateFilter(CF_RELAY);

  std::unique_ptr<webrtc::MockAsyncDnsResolver> mock_async_resolver =
      std::make_unique<webrtc::MockAsyncDnsResolver>();
  // This test expects resolution to not be started.
  EXPECT_CALL(*mock_async_resolver, Start(_, _)).Times(0);

  webrtc::MockAsyncDnsResolverFactory mock_async_resolver_factory;
  ON_CALL(mock_async_resolver_factory, Create())
      .WillByDefault(
          [&mock_async_resolver]() { return std::move(mock_async_resolver); });

  ep1->async_dns_resolver_factory_ = &mock_async_resolver_factory;

  CreateChannels();

  ep1_ch1()->AddRemoteCandidate(
      CreateUdpCandidate(LOCAL_PORT_TYPE, "hostname.test", 1, 100));

  DestroyChannels();
}

TEST_F(P2PTransportChannelTest, DisableDnsLookupsWithTransportPolicyNone) {
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  auto* ep1 = GetEndpoint(0);
  ep1->allocator_->SetCandidateFilter(CF_NONE);

  std::unique_ptr<webrtc::MockAsyncDnsResolver> mock_async_resolver =
      std::make_unique<webrtc::MockAsyncDnsResolver>();
  // This test expects resolution to not be started.
  EXPECT_CALL(*mock_async_resolver, Start(_, _)).Times(0);

  webrtc::MockAsyncDnsResolverFactory mock_async_resolver_factory;
  ON_CALL(mock_async_resolver_factory, Create())
      .WillByDefault(
          [&mock_async_resolver]() { return std::move(mock_async_resolver); });

  ep1->async_dns_resolver_factory_ = &mock_async_resolver_factory;

  CreateChannels();

  ep1_ch1()->AddRemoteCandidate(
      CreateUdpCandidate(LOCAL_PORT_TYPE, "hostname.test", 1, 100));

  DestroyChannels();
}

TEST_F(P2PTransportChannelTest, EnableDnsLookupsWithTransportPolicyNoHost) {
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);
  auto* ep1 = GetEndpoint(0);
  ep1->allocator_->SetCandidateFilter(CF_ALL & ~CF_HOST);

  std::unique_ptr<webrtc::MockAsyncDnsResolver> mock_async_resolver =
      std::make_unique<webrtc::MockAsyncDnsResolver>();
  bool lookup_started = false;
  EXPECT_CALL(*mock_async_resolver, Start(_, _))
      .WillOnce(Assign(&lookup_started, true));

  webrtc::MockAsyncDnsResolverFactory mock_async_resolver_factory;
  EXPECT_CALL(mock_async_resolver_factory, Create())
      .WillOnce(
          [&mock_async_resolver]() { return std::move(mock_async_resolver); });

  ep1->async_dns_resolver_factory_ = &mock_async_resolver_factory;

  CreateChannels();

  ep1_ch1()->AddRemoteCandidate(
      CreateUdpCandidate(LOCAL_PORT_TYPE, "hostname.test", 1, 100));

  EXPECT_TRUE(lookup_started);

  DestroyChannels();
}

class GatherAfterConnectedTest : public P2PTransportChannelTest,
                                 public WithParamInterface<bool> {};

INSTANTIATE_TEST_SUITE_P(All, GatherAfterConnectedTest, Values(true, false));

TEST_P(GatherAfterConnectedTest, GatherAfterConnected) {
  const bool stop_gather_on_strongly_connected = GetParam();
  const std::string field_trial =
      std::string("WebRTC-IceFieldTrials/stop_gather_on_strongly_connected:") +
      (stop_gather_on_strongly_connected ? "true/" : "false/");
  webrtc::test::ScopedKeyValueConfig field_trials(field_trials_, field_trial);

  rtc::ScopedFakeClock clock;
  // Use local + relay
  constexpr uint32_t flags =
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
      PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_TCP;
  ConfigureEndpoints(OPEN, OPEN, flags, flags);
  auto* ep1 = GetEndpoint(0);
  auto* ep2 = GetEndpoint(1);
  ep1->allocator_->SetCandidateFilter(CF_ALL);
  ep2->allocator_->SetCandidateFilter(CF_ALL);

  // Use step delay 3s which is long enough for
  // connection to be established before managing to gather relay candidates.
  int delay = 3000;
  SetAllocationStepDelay(0, delay);
  SetAllocationStepDelay(1, delay);
  IceConfig ice_config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  CreateChannels(ice_config, ice_config);

  PauseCandidates(0);
  PauseCandidates(1);

  // We have gathered host candidates but not relay.
  ASSERT_TRUE_SIMULATED_WAIT(ep1->saved_candidates_.size() == 1u &&
                                 ep2->saved_candidates_.size() == 1u,
                             kDefaultTimeout, clock);

  ResumeCandidates(0);
  ResumeCandidates(1);

  PauseCandidates(0);
  PauseCandidates(1);

  ASSERT_TRUE_SIMULATED_WAIT(ep1_ch1()->remote_candidates().size() == 1 &&
                                 ep2_ch1()->remote_candidates().size() == 1,
                             kDefaultTimeout, clock);

  ASSERT_TRUE_SIMULATED_WAIT(
      ep1_ch1()->selected_connection() && ep2_ch1()->selected_connection(),
      kDefaultTimeout, clock);

  clock.AdvanceTime(webrtc::TimeDelta::Millis(10 * delay));

  if (stop_gather_on_strongly_connected) {
    // The relay candidates gathered has not been propagated to channel.
    EXPECT_EQ(ep1->saved_candidates_.size(), 0u);
    EXPECT_EQ(ep2->saved_candidates_.size(), 0u);
  } else {
    // The relay candidates gathered has been propagated to channel.
    EXPECT_EQ(ep1->saved_candidates_.size(), 1u);
    EXPECT_EQ(ep2->saved_candidates_.size(), 1u);
  }
}

TEST_P(GatherAfterConnectedTest, GatherAfterConnectedMultiHomed) {
  const bool stop_gather_on_strongly_connected = GetParam();
  const std::string field_trial =
      std::string("WebRTC-IceFieldTrials/stop_gather_on_strongly_connected:") +
      (stop_gather_on_strongly_connected ? "true/" : "false/");
  webrtc::test::ScopedKeyValueConfig field_trials(field_trials_, field_trial);

  rtc::ScopedFakeClock clock;
  // Use local + relay
  constexpr uint32_t flags =
      kDefaultPortAllocatorFlags | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
      PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_TCP;
  AddAddress(0, kAlternateAddrs[0]);
  ConfigureEndpoints(OPEN, OPEN, flags, flags);
  auto* ep1 = GetEndpoint(0);
  auto* ep2 = GetEndpoint(1);
  ep1->allocator_->SetCandidateFilter(CF_ALL);
  ep2->allocator_->SetCandidateFilter(CF_ALL);

  // Use step delay 3s which is long enough for
  // connection to be established before managing to gather relay candidates.
  int delay = 3000;
  SetAllocationStepDelay(0, delay);
  SetAllocationStepDelay(1, delay);
  IceConfig ice_config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  CreateChannels(ice_config, ice_config);

  PauseCandidates(0);
  PauseCandidates(1);

  // We have gathered host candidates but not relay.
  ASSERT_TRUE_SIMULATED_WAIT(ep1->saved_candidates_.size() == 2u &&
                                 ep2->saved_candidates_.size() == 1u,
                             kDefaultTimeout, clock);

  ResumeCandidates(0);
  ResumeCandidates(1);

  PauseCandidates(0);
  PauseCandidates(1);

  ASSERT_TRUE_SIMULATED_WAIT(ep1_ch1()->remote_candidates().size() == 1 &&
                                 ep2_ch1()->remote_candidates().size() == 2,
                             kDefaultTimeout, clock);

  ASSERT_TRUE_SIMULATED_WAIT(
      ep1_ch1()->selected_connection() && ep2_ch1()->selected_connection(),
      kDefaultTimeout, clock);

  clock.AdvanceTime(webrtc::TimeDelta::Millis(10 * delay));

  if (stop_gather_on_strongly_connected) {
    // The relay candidates gathered has not been propagated to channel.
    EXPECT_EQ(ep1->saved_candidates_.size(), 0u);
    EXPECT_EQ(ep2->saved_candidates_.size(), 0u);
  } else {
    // The relay candidates gathered has been propagated.
    EXPECT_EQ(ep1->saved_candidates_.size(), 2u);
    EXPECT_EQ(ep2->saved_candidates_.size(), 1u);
  }
}

// Tests no candidates are generated with old ice ufrag/passwd after an ice
// restart even if continual gathering is enabled.
TEST_F(P2PTransportChannelTest, TestIceNoOldCandidatesAfterIceRestart) {
  rtc::ScopedFakeClock clock;
  AddAddress(0, kAlternateAddrs[0]);
  ConfigureEndpoints(OPEN, OPEN, kDefaultPortAllocatorFlags,
                     kDefaultPortAllocatorFlags);

  // gathers continually.
  IceConfig config = CreateIceConfig(1000, GATHER_CONTINUALLY);
  CreateChannels(config, config);

  EXPECT_TRUE_SIMULATED_WAIT(CheckConnected(ep1_ch1(), ep2_ch1()),
                             kDefaultTimeout, clock);

  PauseCandidates(0);

  ep1_ch1()->SetIceParameters(kIceParams[3]);
  ep1_ch1()->MaybeStartGathering();

  EXPECT_TRUE_SIMULATED_WAIT(GetEndpoint(0)->saved_candidates_.size() > 0,
                             kDefaultTimeout, clock);

  for (const auto& cd : GetEndpoint(0)->saved_candidates_) {
    EXPECT_EQ(cd.candidate.username(), kIceUfrag[3]);
  }

  DestroyChannels();
}

}  // namespace cricket