summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/p2p/client/basic_port_allocator_unittest.cc
blob: defcab01c9f4fd58e00b03f77e94327c3add89ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
/*
 *  Copyright 2009 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "p2p/client/basic_port_allocator.h"

#include <memory>
#include <ostream>  // no-presubmit-check TODO(webrtc:8982)

#include "absl/algorithm/container.h"
#include "absl/strings/string_view.h"
#include "p2p/base/basic_packet_socket_factory.h"
#include "p2p/base/p2p_constants.h"
#include "p2p/base/stun_port.h"
#include "p2p/base/stun_request.h"
#include "p2p/base/stun_server.h"
#include "p2p/base/test_stun_server.h"
#include "p2p/base/test_turn_server.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/fake_mdns_responder.h"
#include "rtc_base/fake_network.h"
#include "rtc_base/firewall_socket_server.h"
#include "rtc_base/gunit.h"
#include "rtc_base/ip_address.h"
#include "rtc_base/logging.h"
#include "rtc_base/nat_server.h"
#include "rtc_base/nat_socket_factory.h"
#include "rtc_base/nat_types.h"
#include "rtc_base/net_helper.h"
#include "rtc_base/net_helpers.h"
#include "rtc_base/net_test_helpers.h"
#include "rtc_base/network.h"
#include "rtc_base/network_constants.h"
#include "rtc_base/network_monitor.h"
#include "rtc_base/socket.h"
#include "rtc_base/socket_address.h"
#include "rtc_base/socket_address_pair.h"
#include "rtc_base/thread.h"
#include "rtc_base/virtual_socket_server.h"
#include "system_wrappers/include/metrics.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"

using rtc::IPAddress;
using rtc::SocketAddress;
using ::testing::Contains;
using ::testing::Not;

#define MAYBE_SKIP_IPV4                        \
  if (!rtc::HasIPv4Enabled()) {                \
    RTC_LOG(LS_INFO) << "No IPv4... skipping"; \
    return;                                    \
  }

static const SocketAddress kAnyAddr("0.0.0.0", 0);
static const SocketAddress kClientAddr("11.11.11.11", 0);
static const SocketAddress kClientAddr2("22.22.22.22", 0);
static const SocketAddress kLoopbackAddr("127.0.0.1", 0);
static const SocketAddress kPrivateAddr("192.168.1.11", 0);
static const SocketAddress kPrivateAddr2("192.168.1.12", 0);
static const SocketAddress kClientIPv6Addr("2401:fa00:4:1000:be30:5bff:fee5:c3",
                                           0);
static const SocketAddress kClientIPv6Addr2(
    "2401:fa00:4:2000:be30:5bff:fee5:c3",
    0);
static const SocketAddress kClientIPv6Addr3(
    "2401:fa00:4:3000:be30:5bff:fee5:c3",
    0);
static const SocketAddress kClientIPv6Addr4(
    "2401:fa00:4:4000:be30:5bff:fee5:c3",
    0);
static const SocketAddress kClientIPv6Addr5(
    "2401:fa00:4:5000:be30:5bff:fee5:c3",
    0);
static const SocketAddress kNatUdpAddr("77.77.77.77", rtc::NAT_SERVER_UDP_PORT);
static const SocketAddress kNatTcpAddr("77.77.77.77", rtc::NAT_SERVER_TCP_PORT);
static const SocketAddress kRemoteClientAddr("22.22.22.22", 0);
static const SocketAddress kStunAddr("99.99.99.1", cricket::STUN_SERVER_PORT);
static const SocketAddress kTurnUdpIntAddr("99.99.99.4", 3478);
static const SocketAddress kTurnUdpIntIPv6Addr(
    "2402:fb00:4:1000:be30:5bff:fee5:c3",
    3479);
static const SocketAddress kTurnTcpIntAddr("99.99.99.5", 3478);
static const SocketAddress kTurnTcpIntIPv6Addr(
    "2402:fb00:4:2000:be30:5bff:fee5:c3",
    3479);
static const SocketAddress kTurnUdpExtAddr("99.99.99.6", 0);

// Minimum and maximum port for port range tests.
static const int kMinPort = 10000;
static const int kMaxPort = 10099;

// Based on ICE_UFRAG_LENGTH
static const char kIceUfrag0[] = "UF00";
// Based on ICE_PWD_LENGTH
static const char kIcePwd0[] = "TESTICEPWD00000000000000";

static const char kContentName[] = "test content";

static const int kDefaultAllocationTimeout = 3000;
static const char kTurnUsername[] = "test";
static const char kTurnPassword[] = "test";

// STUN timeout (with all retries) is cricket::STUN_TOTAL_TIMEOUT.
// Add some margin of error for slow bots.
static const int kStunTimeoutMs = cricket::STUN_TOTAL_TIMEOUT;

constexpr uint64_t kTiebreakerDefault = 44444;

namespace {

void CheckStunKeepaliveIntervalOfAllReadyPorts(
    const cricket::PortAllocatorSession* allocator_session,
    int expected) {
  auto ready_ports = allocator_session->ReadyPorts();
  for (const auto* port : ready_ports) {
    if (port->Type() == cricket::STUN_PORT_TYPE ||
        (port->Type() == cricket::LOCAL_PORT_TYPE &&
         port->GetProtocol() == cricket::PROTO_UDP)) {
      EXPECT_EQ(
          static_cast<const cricket::UDPPort*>(port)->stun_keepalive_delay(),
          expected);
    }
  }
}

}  // namespace

namespace cricket {

// Helper for dumping candidates
std::ostream& operator<<(std::ostream& os,
                         const std::vector<Candidate>& candidates) {
  os << '[';
  bool first = true;
  for (const Candidate& c : candidates) {
    if (!first) {
      os << ", ";
    }
    os << c.ToString();
    first = false;
  }
  os << ']';
  return os;
}

class BasicPortAllocatorTestBase : public ::testing::Test,
                                   public sigslot::has_slots<> {
 public:
  BasicPortAllocatorTestBase()
      : vss_(new rtc::VirtualSocketServer()),
        fss_(new rtc::FirewallSocketServer(vss_.get())),
        socket_factory_(fss_.get()),
        thread_(fss_.get()),
        // Note that the NAT is not used by default. ResetWithStunServerAndNat
        // must be called.
        nat_factory_(vss_.get(), kNatUdpAddr, kNatTcpAddr),
        nat_socket_factory_(new rtc::BasicPacketSocketFactory(&nat_factory_)),
        stun_server_(TestStunServer::Create(fss_.get(), kStunAddr, thread_)),
        turn_server_(rtc::Thread::Current(),
                     fss_.get(),
                     kTurnUdpIntAddr,
                     kTurnUdpExtAddr),
        candidate_allocation_done_(false) {
    ServerAddresses stun_servers;
    stun_servers.insert(kStunAddr);

    allocator_ = std::make_unique<BasicPortAllocator>(
        &network_manager_, &socket_factory_, stun_servers, &field_trials_);
    allocator_->Initialize();
    allocator_->set_step_delay(kMinimumStepDelay);
    allocator_->SetIceTiebreaker(kTiebreakerDefault);
    webrtc::metrics::Reset();
  }

  void AddInterface(const SocketAddress& addr) {
    network_manager_.AddInterface(addr);
  }
  void AddInterface(const SocketAddress& addr, absl::string_view if_name) {
    network_manager_.AddInterface(addr, if_name);
  }
  void AddInterface(const SocketAddress& addr,
                    absl::string_view if_name,
                    rtc::AdapterType type) {
    network_manager_.AddInterface(addr, if_name, type);
  }
  // The default source address is the public address that STUN server will
  // observe when the endpoint is sitting on the public internet and the local
  // port is bound to the "any" address. Intended for simulating the situation
  // that client binds the "any" address, and that's also the address returned
  // by getsockname/GetLocalAddress, so that the client can learn the actual
  // local address only from the STUN response.
  void AddInterfaceAsDefaultSourceAddresss(const SocketAddress& addr) {
    AddInterface(addr);
    // When a binding comes from the any address, the `addr` will be used as the
    // srflx address.
    vss_->SetDefaultSourceAddress(addr.ipaddr());
  }
  void RemoveInterface(const SocketAddress& addr) {
    network_manager_.RemoveInterface(addr);
  }
  bool SetPortRange(int min_port, int max_port) {
    return allocator_->SetPortRange(min_port, max_port);
  }
  // Endpoint is on the public network. No STUN or TURN.
  void ResetWithNoServersOrNat() {
    allocator_.reset(
        new BasicPortAllocator(&network_manager_, &socket_factory_));
    allocator_->Initialize();
    allocator_->SetIceTiebreaker(kTiebreakerDefault);
    allocator_->set_step_delay(kMinimumStepDelay);
  }
  // Endpoint is behind a NAT, with STUN specified.
  void ResetWithStunServerAndNat(const rtc::SocketAddress& stun_server) {
    ResetWithStunServer(stun_server, true);
  }
  // Endpoint is on the public network, with STUN specified.
  void ResetWithStunServerNoNat(const rtc::SocketAddress& stun_server) {
    ResetWithStunServer(stun_server, false);
  }
  // Endpoint is on the public network, with TURN specified.
  void ResetWithTurnServersNoNat(const rtc::SocketAddress& udp_turn,
                                 const rtc::SocketAddress& tcp_turn) {
    ResetWithNoServersOrNat();
    AddTurnServers(udp_turn, tcp_turn);
  }

  RelayServerConfig CreateTurnServers(const rtc::SocketAddress& udp_turn,
                                      const rtc::SocketAddress& tcp_turn) {
    RelayServerConfig turn_server;
    RelayCredentials credentials(kTurnUsername, kTurnPassword);
    turn_server.credentials = credentials;

    if (!udp_turn.IsNil()) {
      turn_server.ports.push_back(ProtocolAddress(udp_turn, PROTO_UDP));
    }
    if (!tcp_turn.IsNil()) {
      turn_server.ports.push_back(ProtocolAddress(tcp_turn, PROTO_TCP));
    }
    return turn_server;
  }

  void AddTurnServers(const rtc::SocketAddress& udp_turn,
                      const rtc::SocketAddress& tcp_turn) {
    RelayServerConfig turn_server = CreateTurnServers(udp_turn, tcp_turn);
    allocator_->AddTurnServerForTesting(turn_server);
  }

  bool CreateSession(int component) {
    session_ = CreateSession("session", component);
    if (!session_) {
      return false;
    }
    return true;
  }

  bool CreateSession(int component, absl::string_view content_name) {
    session_ = CreateSession("session", content_name, component);
    if (!session_) {
      return false;
    }
    return true;
  }

  std::unique_ptr<PortAllocatorSession> CreateSession(absl::string_view sid,
                                                      int component) {
    return CreateSession(sid, kContentName, component);
  }

  std::unique_ptr<PortAllocatorSession> CreateSession(
      absl::string_view sid,
      absl::string_view content_name,
      int component) {
    return CreateSession(sid, content_name, component, kIceUfrag0, kIcePwd0);
  }

  std::unique_ptr<PortAllocatorSession> CreateSession(
      absl::string_view sid,
      absl::string_view content_name,
      int component,
      absl::string_view ice_ufrag,
      absl::string_view ice_pwd) {
    std::unique_ptr<PortAllocatorSession> session =
        allocator_->CreateSession(content_name, component, ice_ufrag, ice_pwd);
    session->SignalPortReady.connect(this,
                                     &BasicPortAllocatorTestBase::OnPortReady);
    session->SignalPortsPruned.connect(
        this, &BasicPortAllocatorTestBase::OnPortsPruned);
    session->SignalCandidatesReady.connect(
        this, &BasicPortAllocatorTestBase::OnCandidatesReady);
    session->SignalCandidatesRemoved.connect(
        this, &BasicPortAllocatorTestBase::OnCandidatesRemoved);
    session->SignalCandidatesAllocationDone.connect(
        this, &BasicPortAllocatorTestBase::OnCandidatesAllocationDone);
    session->set_ice_tiebreaker(kTiebreakerDefault);
    return session;
  }

  // Return true if the addresses are the same, or the port is 0 in `pattern`
  // (acting as a wildcard) and the IPs are the same.
  // Even with a wildcard port, the port of the address should be nonzero if
  // the IP is nonzero.
  static bool AddressMatch(const SocketAddress& address,
                           const SocketAddress& pattern) {
    return address.ipaddr() == pattern.ipaddr() &&
           ((pattern.port() == 0 &&
             (address.port() != 0 || IPIsAny(address.ipaddr()))) ||
            (pattern.port() != 0 && address.port() == pattern.port()));
  }

  // Returns the number of ports that have matching type, protocol and
  // address.
  static int CountPorts(const std::vector<PortInterface*>& ports,
                        absl::string_view type,
                        ProtocolType protocol,
                        const SocketAddress& client_addr) {
    return absl::c_count_if(
        ports, [type, protocol, client_addr](PortInterface* port) {
          return port->Type() == type && port->GetProtocol() == protocol &&
                 port->Network()->GetBestIP() == client_addr.ipaddr();
        });
  }

  static int CountCandidates(const std::vector<Candidate>& candidates,
                             absl::string_view type,
                             absl::string_view proto,
                             const SocketAddress& addr) {
    return absl::c_count_if(
        candidates, [type, proto, addr](const Candidate& c) {
          return c.type() == type && c.protocol() == proto &&
                 AddressMatch(c.address(), addr);
        });
  }

  // Find a candidate and return it.
  static bool FindCandidate(const std::vector<Candidate>& candidates,
                            absl::string_view type,
                            absl::string_view proto,
                            const SocketAddress& addr,
                            Candidate* found) {
    auto it =
        absl::c_find_if(candidates, [type, proto, addr](const Candidate& c) {
          return c.type() == type && c.protocol() == proto &&
                 AddressMatch(c.address(), addr);
        });
    if (it != candidates.end() && found) {
      *found = *it;
    }
    return it != candidates.end();
  }

  // Convenience method to call FindCandidate with no return.
  static bool HasCandidate(const std::vector<Candidate>& candidates,
                           absl::string_view type,
                           absl::string_view proto,
                           const SocketAddress& addr) {
    return FindCandidate(candidates, type, proto, addr, nullptr);
  }

  // Version of HasCandidate that also takes a related address.
  static bool HasCandidateWithRelatedAddr(
      const std::vector<Candidate>& candidates,
      absl::string_view type,
      absl::string_view proto,
      const SocketAddress& addr,
      const SocketAddress& related_addr) {
    return absl::c_any_of(
        candidates, [type, proto, addr, related_addr](const Candidate& c) {
          return c.type() == type && c.protocol() == proto &&
                 AddressMatch(c.address(), addr) &&
                 AddressMatch(c.related_address(), related_addr);
        });
  }

  static bool CheckPort(const rtc::SocketAddress& addr,
                        int min_port,
                        int max_port) {
    return (addr.port() >= min_port && addr.port() <= max_port);
  }

  static bool HasNetwork(const std::vector<const rtc::Network*>& networks,
                         const rtc::Network& to_be_found) {
    auto it =
        absl::c_find_if(networks, [to_be_found](const rtc::Network* network) {
          return network->description() == to_be_found.description() &&
                 network->name() == to_be_found.name() &&
                 network->prefix() == to_be_found.prefix();
        });
    return it != networks.end();
  }

  void OnCandidatesAllocationDone(PortAllocatorSession* session) {
    // We should only get this callback once, except in the mux test where
    // we have multiple port allocation sessions.
    if (session == session_.get()) {
      ASSERT_FALSE(candidate_allocation_done_);
      candidate_allocation_done_ = true;
    }
    EXPECT_TRUE(session->CandidatesAllocationDone());
  }

  // Check if all ports allocated have send-buffer size `expected`. If
  // `expected` == -1, check if GetOptions returns SOCKET_ERROR.
  void CheckSendBufferSizesOfAllPorts(int expected) {
    std::vector<PortInterface*>::iterator it;
    for (it = ports_.begin(); it < ports_.end(); ++it) {
      int send_buffer_size;
      if (expected == -1) {
        EXPECT_EQ(SOCKET_ERROR,
                  (*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size));
      } else {
        EXPECT_EQ(0,
                  (*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size));
        ASSERT_EQ(expected, send_buffer_size);
      }
    }
  }

  rtc::VirtualSocketServer* virtual_socket_server() { return vss_.get(); }

 protected:
  BasicPortAllocator& allocator() { return *allocator_; }

  void OnPortReady(PortAllocatorSession* ses, PortInterface* port) {
    RTC_LOG(LS_INFO) << "OnPortReady: " << port->ToString();
    ports_.push_back(port);
    // Make sure the new port is added to ReadyPorts.
    auto ready_ports = ses->ReadyPorts();
    EXPECT_THAT(ready_ports, Contains(port));
  }
  void OnPortsPruned(PortAllocatorSession* ses,
                     const std::vector<PortInterface*>& pruned_ports) {
    RTC_LOG(LS_INFO) << "Number of ports pruned: " << pruned_ports.size();
    auto ready_ports = ses->ReadyPorts();
    auto new_end = ports_.end();
    for (PortInterface* port : pruned_ports) {
      new_end = std::remove(ports_.begin(), new_end, port);
      // Make sure the pruned port is not in ReadyPorts.
      EXPECT_THAT(ready_ports, Not(Contains(port)));
    }
    ports_.erase(new_end, ports_.end());
  }

  void OnCandidatesReady(PortAllocatorSession* ses,
                         const std::vector<Candidate>& candidates) {
    for (const Candidate& candidate : candidates) {
      RTC_LOG(LS_INFO) << "OnCandidatesReady: " << candidate.ToString();
      // Sanity check that the ICE component is set.
      EXPECT_EQ(ICE_CANDIDATE_COMPONENT_RTP, candidate.component());
      candidates_.push_back(candidate);
    }
    // Make sure the new candidates are added to Candidates.
    auto ses_candidates = ses->ReadyCandidates();
    for (const Candidate& candidate : candidates) {
      EXPECT_THAT(ses_candidates, Contains(candidate));
    }
  }

  void OnCandidatesRemoved(PortAllocatorSession* session,
                           const std::vector<Candidate>& removed_candidates) {
    auto new_end = std::remove_if(
        candidates_.begin(), candidates_.end(),
        [removed_candidates](Candidate& candidate) {
          for (const Candidate& removed_candidate : removed_candidates) {
            if (candidate.MatchesForRemoval(removed_candidate)) {
              return true;
            }
          }
          return false;
        });
    candidates_.erase(new_end, candidates_.end());
  }

  bool HasRelayAddress(const ProtocolAddress& proto_addr) {
    for (size_t i = 0; i < allocator_->turn_servers().size(); ++i) {
      RelayServerConfig server_config = allocator_->turn_servers()[i];
      PortList::const_iterator relay_port;
      for (relay_port = server_config.ports.begin();
           relay_port != server_config.ports.end(); ++relay_port) {
        if (proto_addr.address == relay_port->address &&
            proto_addr.proto == relay_port->proto)
          return true;
      }
    }
    return false;
  }

  void ResetWithStunServer(const rtc::SocketAddress& stun_server,
                           bool with_nat) {
    if (with_nat) {
      nat_server_.reset(new rtc::NATServer(
          rtc::NAT_OPEN_CONE, vss_.get(), kNatUdpAddr, kNatTcpAddr, vss_.get(),
          rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
    } else {
      nat_socket_factory_ =
          std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get());
    }

    ServerAddresses stun_servers;
    if (!stun_server.IsNil()) {
      stun_servers.insert(stun_server);
    }
    allocator_.reset(new BasicPortAllocator(&network_manager_,
                                            nat_socket_factory_.get(),
                                            stun_servers, &field_trials_));
    allocator_->Initialize();
    allocator_->set_step_delay(kMinimumStepDelay);
  }

  std::unique_ptr<rtc::VirtualSocketServer> vss_;
  std::unique_ptr<rtc::FirewallSocketServer> fss_;
  rtc::BasicPacketSocketFactory socket_factory_;
  rtc::AutoSocketServerThread thread_;
  std::unique_ptr<rtc::NATServer> nat_server_;
  rtc::NATSocketFactory nat_factory_;
  std::unique_ptr<rtc::BasicPacketSocketFactory> nat_socket_factory_;
  TestStunServer::StunServerPtr stun_server_;
  TestTurnServer turn_server_;
  rtc::FakeNetworkManager network_manager_;
  std::unique_ptr<BasicPortAllocator> allocator_;
  std::unique_ptr<PortAllocatorSession> session_;
  std::vector<PortInterface*> ports_;
  std::vector<Candidate> candidates_;
  bool candidate_allocation_done_;
  webrtc::test::ScopedKeyValueConfig field_trials_;
};

class BasicPortAllocatorTestWithRealClock : public BasicPortAllocatorTestBase {
};

class FakeClockBase {
 public:
  rtc::ScopedFakeClock fake_clock;
};

class BasicPortAllocatorTest : public FakeClockBase,
                               public BasicPortAllocatorTestBase {
 public:
  // This function starts the port/address gathering and check the existence of
  // candidates as specified. When `expect_stun_candidate` is true,
  // `stun_candidate_addr` carries the expected reflective address, which is
  // also the related address for TURN candidate if it is expected. Otherwise,
  // it should be ignore.
  void CheckDisableAdapterEnumeration(
      uint32_t total_ports,
      const rtc::IPAddress& host_candidate_addr,
      const rtc::IPAddress& stun_candidate_addr,
      const rtc::IPAddress& relay_candidate_udp_transport_addr,
      const rtc::IPAddress& relay_candidate_tcp_transport_addr) {
    network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
                                                 rtc::IPAddress());
    if (!session_) {
      ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
    }
    session_->set_flags(session_->flags() |
                        PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET);
    allocator().set_allow_tcp_listen(false);
    session_->StartGettingPorts();
    EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                               kDefaultAllocationTimeout, fake_clock);

    uint32_t total_candidates = 0;
    if (!host_candidate_addr.IsNil()) {
      EXPECT_TRUE(HasCandidate(candidates_, "local", "udp",
                               rtc::SocketAddress(kPrivateAddr.ipaddr(), 0)));
      ++total_candidates;
    }
    if (!stun_candidate_addr.IsNil()) {
      rtc::SocketAddress related_address(host_candidate_addr, 0);
      if (host_candidate_addr.IsNil()) {
        related_address.SetIP(rtc::GetAnyIP(stun_candidate_addr.family()));
      }
      EXPECT_TRUE(HasCandidateWithRelatedAddr(
          candidates_, "stun", "udp",
          rtc::SocketAddress(stun_candidate_addr, 0), related_address));
      ++total_candidates;
    }
    if (!relay_candidate_udp_transport_addr.IsNil()) {
      EXPECT_TRUE(HasCandidateWithRelatedAddr(
          candidates_, "relay", "udp",
          rtc::SocketAddress(relay_candidate_udp_transport_addr, 0),
          rtc::SocketAddress(stun_candidate_addr, 0)));
      ++total_candidates;
    }
    if (!relay_candidate_tcp_transport_addr.IsNil()) {
      EXPECT_TRUE(HasCandidateWithRelatedAddr(
          candidates_, "relay", "udp",
          rtc::SocketAddress(relay_candidate_tcp_transport_addr, 0),
          rtc::SocketAddress(stun_candidate_addr, 0)));
      ++total_candidates;
    }

    EXPECT_EQ(total_candidates, candidates_.size());
    EXPECT_EQ(total_ports, ports_.size());
  }

  void TestIPv6TurnPortPrunesIPv4TurnPort() {
    turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
    // Add two IP addresses on the same interface.
    AddInterface(kClientAddr, "net1");
    AddInterface(kClientIPv6Addr, "net1");
    allocator_.reset(
        new BasicPortAllocator(&network_manager_, &socket_factory_));
    allocator_->Initialize();
    allocator_->SetConfiguration(allocator_->stun_servers(),
                                 allocator_->turn_servers(), 0,
                                 webrtc::PRUNE_BASED_ON_PRIORITY);
    AddTurnServers(kTurnUdpIntIPv6Addr, rtc::SocketAddress());
    AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());

    allocator_->set_step_delay(kMinimumStepDelay);
    allocator_->set_flags(
        allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
        PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP);

    ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
    session_->StartGettingPorts();
    EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                               kDefaultAllocationTimeout, fake_clock);
    // Three ports (one IPv4 STUN, one IPv6 STUN and one TURN) will be ready.
    EXPECT_EQ(3U, session_->ReadyPorts().size());
    EXPECT_EQ(3U, ports_.size());
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr));
    EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr));
    EXPECT_EQ(0, CountPorts(ports_, "relay", PROTO_UDP, kClientAddr));

    // Now that we remove candidates when a TURN port is pruned, there will be
    // exactly 3 candidates in both `candidates_` and `ready_candidates`.
    EXPECT_EQ(3U, candidates_.size());
    const std::vector<Candidate>& ready_candidates =
        session_->ReadyCandidates();
    EXPECT_EQ(3U, ready_candidates.size());
    EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr));
    EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp",
                             rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
  }

  void TestTurnPortPrunesWithUdpAndTcpPorts(
      webrtc::PortPrunePolicy prune_policy,
      bool tcp_pruned) {
    turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
    AddInterface(kClientAddr);
    allocator_.reset(
        new BasicPortAllocator(&network_manager_, &socket_factory_));
    allocator_->Initialize();
    allocator_->SetConfiguration(allocator_->stun_servers(),
                                 allocator_->turn_servers(), 0, prune_policy);
    AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
    allocator_->set_step_delay(kMinimumStepDelay);
    allocator_->set_flags(allocator().flags() |
                          PORTALLOCATOR_ENABLE_SHARED_SOCKET |
                          PORTALLOCATOR_DISABLE_TCP);

    ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
    session_->StartGettingPorts();
    EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                               kDefaultAllocationTimeout, fake_clock);
    // Only 2 ports (one STUN and one TURN) are actually being used.
    EXPECT_EQ(2U, session_->ReadyPorts().size());
    // We have verified that each port, when it is added to `ports_`, it is
    // found in `ready_ports`, and when it is pruned, it is not found in
    // `ready_ports`, so we only need to verify the content in one of them.
    EXPECT_EQ(2U, ports_.size());
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
    int num_udp_ports = tcp_pruned ? 1 : 0;
    EXPECT_EQ(num_udp_ports,
              CountPorts(ports_, "relay", PROTO_UDP, kClientAddr));
    EXPECT_EQ(1 - num_udp_ports,
              CountPorts(ports_, "relay", PROTO_TCP, kClientAddr));

    // Now that we remove candidates when a TURN port is pruned, `candidates_`
    // should only contains two candidates regardless whether the TCP TURN port
    // is created before or after the UDP turn port.
    EXPECT_EQ(2U, candidates_.size());
    // There will only be 2 candidates in `ready_candidates` because it only
    // includes the candidates in the ready ports.
    const std::vector<Candidate>& ready_candidates =
        session_->ReadyCandidates();
    EXPECT_EQ(2U, ready_candidates.size());
    EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr));

    // The external candidate is always udp.
    EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp",
                             rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
  }

  void TestEachInterfaceHasItsOwnTurnPorts() {
    turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
    turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
    turn_server_.AddInternalSocket(kTurnTcpIntIPv6Addr, PROTO_TCP);
    // Add two interfaces both having IPv4 and IPv6 addresses.
    AddInterface(kClientAddr, "net1", rtc::ADAPTER_TYPE_WIFI);
    AddInterface(kClientIPv6Addr, "net1", rtc::ADAPTER_TYPE_WIFI);
    AddInterface(kClientAddr2, "net2", rtc::ADAPTER_TYPE_CELLULAR);
    AddInterface(kClientIPv6Addr2, "net2", rtc::ADAPTER_TYPE_CELLULAR);
    allocator_.reset(
        new BasicPortAllocator(&network_manager_, &socket_factory_));
    allocator_->Initialize();
    allocator_->SetConfiguration(allocator_->stun_servers(),
                                 allocator_->turn_servers(), 0,
                                 webrtc::PRUNE_BASED_ON_PRIORITY);
    // Have both UDP/TCP and IPv4/IPv6 TURN ports.
    AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
    AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);

    allocator_->set_step_delay(kMinimumStepDelay);
    allocator_->set_flags(
        allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
        PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
    ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
    session_->StartGettingPorts();
    EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                               kDefaultAllocationTimeout, fake_clock);
    // 10 ports (4 STUN and 1 TURN ports on each interface) will be ready to
    // use.
    EXPECT_EQ(10U, session_->ReadyPorts().size());
    EXPECT_EQ(10U, ports_.size());
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr2));
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr));
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr2));
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr));
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr2));
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr));
    EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr2));
    EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr));
    EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr2));

    // Now that we remove candidates when TURN ports are pruned, there will be
    // exactly 10 candidates in `candidates_`.
    EXPECT_EQ(10U, candidates_.size());
    const std::vector<Candidate>& ready_candidates =
        session_->ReadyCandidates();
    EXPECT_EQ(10U, ready_candidates.size());
    EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr));
    EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr2));
    EXPECT_TRUE(
        HasCandidate(ready_candidates, "local", "udp", kClientIPv6Addr));
    EXPECT_TRUE(
        HasCandidate(ready_candidates, "local", "udp", kClientIPv6Addr2));
    EXPECT_TRUE(HasCandidate(ready_candidates, "local", "tcp", kClientAddr));
    EXPECT_TRUE(HasCandidate(ready_candidates, "local", "tcp", kClientAddr2));
    EXPECT_TRUE(
        HasCandidate(ready_candidates, "local", "tcp", kClientIPv6Addr));
    EXPECT_TRUE(
        HasCandidate(ready_candidates, "local", "tcp", kClientIPv6Addr2));
    EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp",
                             rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
  }
};

// Tests that we can init the port allocator and create a session.
TEST_F(BasicPortAllocatorTest, TestBasic) {
  EXPECT_EQ(&network_manager_, allocator().network_manager());
  EXPECT_EQ(kStunAddr, *allocator().stun_servers().begin());
  ASSERT_EQ(0u, allocator().turn_servers().size());

  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  EXPECT_FALSE(session_->CandidatesAllocationDone());
}

// Tests that our network filtering works properly.
TEST_F(BasicPortAllocatorTest, TestIgnoreOnlyLoopbackNetworkByDefault) {
  AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
               rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
               rtc::ADAPTER_TYPE_WIFI);
  AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
               rtc::ADAPTER_TYPE_CELLULAR);
  AddInterface(SocketAddress(IPAddress(0x12345603U), 0), "test_vpn0",
               rtc::ADAPTER_TYPE_VPN);
  AddInterface(SocketAddress(IPAddress(0x12345604U), 0), "test_lo",
               rtc::ADAPTER_TYPE_LOOPBACK);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
                      PORTALLOCATOR_DISABLE_TCP);
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(4U, candidates_.size());
  for (const Candidate& candidate : candidates_) {
    EXPECT_LT(candidate.address().ip(), 0x12345604U);
  }
}

TEST_F(BasicPortAllocatorTest, TestIgnoreNetworksAccordingToIgnoreMask) {
  AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
               rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
               rtc::ADAPTER_TYPE_WIFI);
  AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
               rtc::ADAPTER_TYPE_CELLULAR);
  allocator_->SetNetworkIgnoreMask(rtc::ADAPTER_TYPE_ETHERNET |
                                   rtc::ADAPTER_TYPE_LOOPBACK |
                                   rtc::ADAPTER_TYPE_WIFI);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
                      PORTALLOCATOR_DISABLE_TCP);
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(1U, candidates_.size());
  EXPECT_EQ(0x12345602U, candidates_[0].address().ip());
}

// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
// both Wi-Fi and cell interfaces are available, only Wi-Fi is used.
TEST_F(BasicPortAllocatorTest,
       WifiUsedInsteadOfCellWhenCostlyNetworksDisabled) {
  SocketAddress wifi(IPAddress(0x12345600U), 0);
  SocketAddress cell(IPAddress(0x12345601U), 0);
  AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
  // Disable all but UDP candidates to make the test simpler.
  allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
                        cricket::PORTALLOCATOR_DISABLE_RELAY |
                        cricket::PORTALLOCATOR_DISABLE_TCP |
                        cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Should only get one Wi-Fi candidate.
  EXPECT_EQ(1U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi));
}

// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
// both "unknown" and cell interfaces are available, only the unknown are used.
// The unknown interface may be something that ultimately uses Wi-Fi, so we do
// this to be on the safe side.
TEST_F(BasicPortAllocatorTest,
       UnknownInterfaceUsedInsteadOfCellWhenCostlyNetworksDisabled) {
  SocketAddress cell(IPAddress(0x12345601U), 0);
  SocketAddress unknown1(IPAddress(0x12345602U), 0);
  SocketAddress unknown2(IPAddress(0x12345603U), 0);
  AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
  AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN);
  AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN);
  // Disable all but UDP candidates to make the test simpler.
  allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
                        cricket::PORTALLOCATOR_DISABLE_RELAY |
                        cricket::PORTALLOCATOR_DISABLE_TCP |
                        cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Should only get two candidates, none of which is cell.
  EXPECT_EQ(2U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", unknown1));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", unknown2));
}

// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
// there are a mix of Wi-Fi, "unknown" and cell interfaces, only the Wi-Fi
// interface is used.
TEST_F(BasicPortAllocatorTest,
       WifiUsedInsteadOfUnknownOrCellWhenCostlyNetworksDisabled) {
  SocketAddress wifi(IPAddress(0x12345600U), 0);
  SocketAddress cellular(IPAddress(0x12345601U), 0);
  SocketAddress unknown1(IPAddress(0x12345602U), 0);
  SocketAddress unknown2(IPAddress(0x12345603U), 0);
  AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
  AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN);
  AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN);
  // Disable all but UDP candidates to make the test simpler.
  allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
                        cricket::PORTALLOCATOR_DISABLE_RELAY |
                        cricket::PORTALLOCATOR_DISABLE_TCP |
                        cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Should only get one Wi-Fi candidate.
  EXPECT_EQ(1U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi));
}

// Test that if the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set, but the
// only interface available is cellular, it ends up used anyway. A costly
// connection is always better than no connection.
TEST_F(BasicPortAllocatorTest,
       CellUsedWhenCostlyNetworksDisabledButThereAreNoOtherInterfaces) {
  SocketAddress cellular(IPAddress(0x12345601U), 0);
  AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
  // Disable all but UDP candidates to make the test simpler.
  allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
                        cricket::PORTALLOCATOR_DISABLE_RELAY |
                        cricket::PORTALLOCATOR_DISABLE_TCP |
                        cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Make sure we got the cell candidate.
  EXPECT_EQ(1U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", cellular));
}

// Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is
// a WiFi network with link-local IP address and a cellular network, then the
// cellular candidate will still be gathered.
TEST_F(BasicPortAllocatorTest,
       CellNotRemovedWhenCostlyNetworksDisabledAndWifiIsLinkLocal) {
  SocketAddress wifi_link_local("169.254.0.1", 0);
  SocketAddress cellular(IPAddress(0x12345601U), 0);
  AddInterface(wifi_link_local, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);

  allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
                        cricket::PORTALLOCATOR_DISABLE_RELAY |
                        cricket::PORTALLOCATOR_DISABLE_TCP |
                        cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Make sure we got both wifi and cell candidates.
  EXPECT_EQ(2U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi_link_local));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", cellular));
}

// Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is
// a WiFi network with link-local IP address, a WiFi network with a normal IP
// address and a cellular network, then the cellular candidate will not be
// gathered.
TEST_F(BasicPortAllocatorTest,
       CellRemovedWhenCostlyNetworksDisabledAndBothWifisPresent) {
  SocketAddress wifi(IPAddress(0x12345600U), 0);
  SocketAddress wifi_link_local("169.254.0.1", 0);
  SocketAddress cellular(IPAddress(0x12345601U), 0);
  AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(wifi_link_local, "test_wlan1", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);

  allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
                        cricket::PORTALLOCATOR_DISABLE_RELAY |
                        cricket::PORTALLOCATOR_DISABLE_TCP |
                        cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Make sure we got only wifi candidates.
  EXPECT_EQ(2U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi_link_local));
}

// Test that the adapter types of the Ethernet and the VPN can be correctly
// identified so that the Ethernet has a lower network cost than the VPN, and
// the Ethernet is not filtered out if PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is
// set.
TEST_F(BasicPortAllocatorTest,
       EthernetIsNotFilteredOutWhenCostlyNetworksDisabledAndVpnPresent) {
  AddInterface(kClientAddr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientAddr2, "tap0", rtc::ADAPTER_TYPE_VPN);
  allocator().set_flags(PORTALLOCATOR_DISABLE_COSTLY_NETWORKS |
                        PORTALLOCATOR_DISABLE_RELAY |
                        PORTALLOCATOR_DISABLE_TCP);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // The VPN tap0 network should be filtered out as a costly network, and we
  // should have a UDP port and a STUN port from the Ethernet eth0.
  ASSERT_EQ(2U, ports_.size());
  EXPECT_EQ(ports_[0]->Network()->name(), "eth0");
  EXPECT_EQ(ports_[1]->Network()->name(), "eth0");
}

// Test that no more than allocator.max_ipv6_networks() IPv6 networks are used
// to gather candidates.
TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitEnforced) {
  // Add three IPv6 network interfaces, but tell the allocator to only use two.
  allocator().set_max_ipv6_networks(2);
  AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientIPv6Addr3, "eth2", rtc::ADAPTER_TYPE_ETHERNET);

  // To simplify the test, only gather UDP host candidates.
  allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
                        PORTALLOCATOR_DISABLE_STUN |
                        PORTALLOCATOR_DISABLE_RELAY);

  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(2U, candidates_.size());
  // Ensure the expected two interfaces (eth0 and eth1) were used.
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr2));
}

// Ensure that allocator.max_ipv6_networks() doesn't prevent IPv4 networks from
// being used.
TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitDoesNotImpactIpv4Networks) {
  // Set the "max IPv6" limit to 1, adding two IPv6 and two IPv4 networks.
  allocator().set_max_ipv6_networks(1);
  AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientAddr, "eth2", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientAddr2, "eth3", rtc::ADAPTER_TYPE_ETHERNET);

  // To simplify the test, only gather UDP host candidates.
  allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
                        PORTALLOCATOR_DISABLE_STUN |
                        PORTALLOCATOR_DISABLE_RELAY);

  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  // Ensure that only one IPv6 interface was used, but both IPv4 interfaces
  // were used.
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr2));
}

// Test that we could use loopback interface as host candidate.
TEST_F(BasicPortAllocatorTest, TestLoopbackNetworkInterface) {
  AddInterface(kLoopbackAddr, "test_loopback", rtc::ADAPTER_TYPE_LOOPBACK);
  allocator_->SetNetworkIgnoreMask(0);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
                      PORTALLOCATOR_DISABLE_TCP);
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(1U, candidates_.size());
}

// Tests that we can get all the desired addresses successfully.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithMinimumStepDelay) {
  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  EXPECT_EQ(3U, ports_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
}

// Test that when the same network interface is brought down and up, the
// port allocator session will restart a new allocation sequence if
// it is not stopped.
TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionNotStopped) {
  std::string if_name("test_net0");
  AddInterface(kClientAddr, if_name);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  EXPECT_EQ(3U, ports_.size());
  candidate_allocation_done_ = false;
  candidates_.clear();
  ports_.clear();

  // Disable socket creation to simulate the network interface being down. When
  // no network interfaces are available, BasicPortAllocator will fall back to
  // binding to the "ANY" address, so we need to make sure that fails too.
  fss_->set_tcp_sockets_enabled(false);
  fss_->set_udp_sockets_enabled(false);
  RemoveInterface(kClientAddr);
  SIMULATED_WAIT(false, 1000, fake_clock);
  EXPECT_EQ(0U, candidates_.size());
  ports_.clear();
  candidate_allocation_done_ = false;

  // When the same interfaces are added again, new candidates/ports should be
  // generated.
  fss_->set_tcp_sockets_enabled(true);
  fss_->set_udp_sockets_enabled(true);
  AddInterface(kClientAddr, if_name);
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  EXPECT_EQ(3U, ports_.size());
}

// Test that when the same network interface is brought down and up, the
// port allocator session will not restart a new allocation sequence if
// it is stopped.
TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionStopped) {
  std::string if_name("test_net0");
  AddInterface(kClientAddr, if_name);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  EXPECT_EQ(3U, ports_.size());
  session_->StopGettingPorts();
  candidates_.clear();
  ports_.clear();

  RemoveInterface(kClientAddr);
  // Wait one (simulated) second and then verify no new candidates have
  // appeared.
  SIMULATED_WAIT(false, 1000, fake_clock);
  EXPECT_EQ(0U, candidates_.size());
  EXPECT_EQ(0U, ports_.size());

  // When the same interfaces are added again, new candidates/ports should not
  // be generated because the session has stopped.
  AddInterface(kClientAddr, if_name);
  SIMULATED_WAIT(false, 1000, fake_clock);
  EXPECT_EQ(0U, candidates_.size());
  EXPECT_EQ(0U, ports_.size());
}

// Similar to the above tests, but tests a situation when sockets can't be
// bound to a network interface, then after a network change event can be.
// Related bug: https://bugs.chromium.org/p/webrtc/issues/detail?id=8256
TEST_F(BasicPortAllocatorTest, CandidatesRegatheredAfterBindingFails) {
  // Only test local ports to simplify test.
  ResetWithNoServersOrNat();
  // Provide a situation where the interface appears to be available, but
  // binding the sockets fails. See bug for description of when this can
  // happen.
  std::string if_name("test_net0");
  AddInterface(kClientAddr, if_name);
  fss_->set_tcp_sockets_enabled(false);
  fss_->set_udp_sockets_enabled(false);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Make sure we actually prevented candidates from being gathered (other than
  // a single TCP active candidate, since that doesn't require creating a
  // socket).
  ASSERT_EQ(1U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
  candidate_allocation_done_ = false;

  // Now simulate the interface coming up, with the newfound ability to bind
  // sockets.
  fss_->set_tcp_sockets_enabled(true);
  fss_->set_udp_sockets_enabled(true);
  AddInterface(kClientAddr, if_name);
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Should get UDP and TCP candidate.
  ASSERT_EQ(2U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  // TODO(deadbeef): This is actually the same active TCP candidate as before.
  // We should extend this test to also verify that a server candidate is
  // gathered.
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
}

// Verify candidates with default step delay of 1sec.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithOneSecondStepDelay) {
  AddInterface(kClientAddr);
  allocator_->set_step_delay(kDefaultStepDelay);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
  EXPECT_EQ(2U, ports_.size());
  ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 2000, fake_clock);
  EXPECT_EQ(3U, ports_.size());

  ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 1500, fake_clock);
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
  EXPECT_EQ(3U, ports_.size());
  EXPECT_TRUE(candidate_allocation_done_);
  // If we Stop gathering now, we shouldn't get a second "done" callback.
  session_->StopGettingPorts();
}

TEST_F(BasicPortAllocatorTest, TestSetupVideoRtpPortsWithNormalSendBuffers) {
  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP, CN_VIDEO));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  // If we Stop gathering now, we shouldn't get a second "done" callback.
  session_->StopGettingPorts();

  // All ports should have unset send-buffer sizes.
  CheckSendBufferSizesOfAllPorts(-1);
}

// Tests that we can get callback after StopGetAllPorts when called in the
// middle of gathering.
TEST_F(BasicPortAllocatorTest, TestStopGetAllPorts) {
  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(2U, ports_.size());
  session_->StopGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
}

// Test that we restrict client ports appropriately when a port range is set.
// We check the candidates for udp/stun/tcp ports, and the from address
// for relay ports.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsPortRange) {
  AddInterface(kClientAddr);
  // Check that an invalid port range fails.
  EXPECT_FALSE(SetPortRange(kMaxPort, kMinPort));
  // Check that a null port range succeeds.
  EXPECT_TRUE(SetPortRange(0, 0));
  // Check that a valid port range succeeds.
  EXPECT_TRUE(SetPortRange(kMinPort, kMaxPort));
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  EXPECT_EQ(3U, ports_.size());

  int num_nonrelay_candidates = 0;
  for (const Candidate& candidate : candidates_) {
    // Check the port number for the UDP/STUN/TCP port objects.
    if (candidate.type() != RELAY_PORT_TYPE) {
      EXPECT_TRUE(CheckPort(candidate.address(), kMinPort, kMaxPort));
      ++num_nonrelay_candidates;
    }
  }
  EXPECT_EQ(3, num_nonrelay_candidates);
}

// Test that if we have no network adapters, we bind to the ANY address and
// still get non-host candidates.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoAdapters) {
  // Default config uses GTURN and no NAT, so replace that with the
  // desired setup (NAT, STUN server, TURN server, UDP/TCP).
  ResetWithStunServerAndNat(kStunAddr);
  turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
  AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
  AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(4U, ports_.size());
  EXPECT_EQ(1, CountPorts(ports_, "stun", PROTO_UDP, kAnyAddr));
  EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kAnyAddr));
  // Two TURN ports, using UDP/TCP for the first hop to the TURN server.
  EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kAnyAddr));
  EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_TCP, kAnyAddr));
  // The "any" address port should be in the signaled ready ports, but the host
  // candidate for it is useless and shouldn't be signaled. So we only have
  // STUN/TURN candidates.
  EXPECT_EQ(3U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp",
                           rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
  // Again, two TURN candidates, using UDP/TCP for the first hop to the TURN
  // server.
  EXPECT_EQ(2,
            CountCandidates(candidates_, "relay", "udp",
                            rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
}

// Test that when enumeration is disabled, we should not have any ports when
// candidate_filter() is set to CF_RELAY and no relay is specified.
TEST_F(BasicPortAllocatorTest,
       TestDisableAdapterEnumerationWithoutNatRelayTransportOnly) {
  ResetWithStunServerNoNat(kStunAddr);
  allocator().SetCandidateFilter(CF_RELAY);
  // Expect to see no ports and no candidates.
  CheckDisableAdapterEnumeration(0U, rtc::IPAddress(), rtc::IPAddress(),
                                 rtc::IPAddress(), rtc::IPAddress());
}

// Test that even with multiple interfaces, the result should still be a single
// default private, one STUN and one TURN candidate since we bind to any address
// (i.e. all 0s).
TEST_F(BasicPortAllocatorTest,
       TestDisableAdapterEnumerationBehindNatMultipleInterfaces) {
  AddInterface(kPrivateAddr);
  AddInterface(kPrivateAddr2);
  ResetWithStunServerAndNat(kStunAddr);
  AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());

  // Enable IPv6 here. Since the network_manager doesn't have IPv6 default
  // address set and we have no IPv6 STUN server, there should be no IPv6
  // candidates.
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->set_flags(PORTALLOCATOR_ENABLE_IPV6);

  // Expect to see 3 ports for IPv4: HOST/STUN, TURN/UDP and TCP ports, 2 ports
  // for IPv6: HOST, and TCP. Only IPv4 candidates: a default private, STUN and
  // TURN/UDP candidates.
  CheckDisableAdapterEnumeration(5U, kPrivateAddr.ipaddr(),
                                 kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
                                 rtc::IPAddress());
}

// Test that we should get a default private, STUN, TURN/UDP and TURN/TCP
// candidates when both TURN/UDP and TURN/TCP servers are specified.
TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationBehindNatWithTcp) {
  turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
  AddInterface(kPrivateAddr);
  ResetWithStunServerAndNat(kStunAddr);
  AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
  // Expect to see 4 ports - STUN, TURN/UDP, TURN/TCP and TCP port. A default
  // private, STUN, TURN/UDP, and TURN/TCP candidates.
  CheckDisableAdapterEnumeration(4U, kPrivateAddr.ipaddr(),
                                 kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
                                 kTurnUdpExtAddr.ipaddr());
}

// Test that when adapter enumeration is disabled, for endpoints without
// STUN/TURN specified, a default private candidate is still generated.
TEST_F(BasicPortAllocatorTest,
       TestDisableAdapterEnumerationWithoutNatOrServers) {
  ResetWithNoServersOrNat();
  // Expect to see 2 ports: STUN and TCP ports, one default private candidate.
  CheckDisableAdapterEnumeration(2U, kPrivateAddr.ipaddr(), rtc::IPAddress(),
                                 rtc::IPAddress(), rtc::IPAddress());
}

// Test that when adapter enumeration is disabled, with
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
// a NAT, there is no local candidate.
TEST_F(BasicPortAllocatorTest,
       TestDisableAdapterEnumerationWithoutNatLocalhostCandidateDisabled) {
  ResetWithStunServerNoNat(kStunAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
  // Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
  // candidate.
  CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), rtc::IPAddress(),
                                 rtc::IPAddress(), rtc::IPAddress());
}

// Test that when adapter enumeration is disabled, with
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
// a NAT, there is no local candidate. However, this specified default route
// (kClientAddr) which was discovered when sending STUN requests, will become
// the srflx addresses.
TEST_F(BasicPortAllocatorTest,
       TestDisableAdapterEnumerationWithoutNatLocalhostCandDisabledDiffRoute) {
  ResetWithStunServerNoNat(kStunAddr);
  AddInterfaceAsDefaultSourceAddresss(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
  // Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
  // candidate.
  CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kClientAddr.ipaddr(),
                                 rtc::IPAddress(), rtc::IPAddress());
}

// Test that when adapter enumeration is disabled, with
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints behind a
// NAT, there is only one STUN candidate.
TEST_F(BasicPortAllocatorTest,
       TestDisableAdapterEnumerationWithNatLocalhostCandidateDisabled) {
  ResetWithStunServerAndNat(kStunAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
  // Expect to see 2 ports: STUN and TCP ports, and single STUN candidate.
  CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kNatUdpAddr.ipaddr(),
                                 rtc::IPAddress(), rtc::IPAddress());
}

// Test that we disable relay over UDP, and only TCP is used when connecting to
// the relay server.
TEST_F(BasicPortAllocatorTest, TestDisableUdpTurn) {
  turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
  AddInterface(kClientAddr);
  ResetWithStunServerAndNat(kStunAddr);
  AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->set_flags(PORTALLOCATOR_DISABLE_UDP_RELAY |
                      PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
                      PORTALLOCATOR_ENABLE_SHARED_SOCKET);

  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);

  // Expect to see 2 ports and 2 candidates - TURN/TCP and TCP ports, TCP and
  // TURN/TCP candidates.
  EXPECT_EQ(2U, ports_.size());
  EXPECT_EQ(2U, candidates_.size());
  Candidate turn_candidate;
  EXPECT_TRUE(FindCandidate(candidates_, "relay", "udp", kTurnUdpExtAddr,
                            &turn_candidate));
  // The TURN candidate should use TCP to contact the TURN server.
  EXPECT_EQ(TCP_PROTOCOL_NAME, turn_candidate.relay_protocol());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
}

// Test that we can get OnCandidatesAllocationDone callback when all the ports
// are disabled.
TEST_F(BasicPortAllocatorTest, TestDisableAllPorts) {
  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->set_flags(PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
                      PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP);
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
  EXPECT_EQ(0U, candidates_.size());
}

// Test that we don't crash or malfunction if we can't create UDP sockets.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSockets) {
  AddInterface(kClientAddr);
  fss_->set_udp_sockets_enabled(false);
  ASSERT_TRUE(CreateSession(1));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(1U, candidates_.size());
  EXPECT_EQ(1U, ports_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
}

// Test that we don't crash or malfunction if we can't create UDP sockets or
// listen on TCP sockets. We still give out a local TCP address, since
// apparently this is needed for the remote side to accept our connection.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSocketsNoTcpListen) {
  AddInterface(kClientAddr);
  fss_->set_udp_sockets_enabled(false);
  fss_->set_tcp_listen_enabled(false);
  ASSERT_TRUE(CreateSession(1));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(1U, candidates_.size());
  EXPECT_EQ(1U, ports_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
}

// Test that we don't crash or malfunction if we can't create any sockets.
// TODO(deadbeef): Find a way to exit early here.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoSockets) {
  AddInterface(kClientAddr);
  fss_->set_tcp_sockets_enabled(false);
  fss_->set_udp_sockets_enabled(false);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  SIMULATED_WAIT(candidates_.size() > 0, 2000, fake_clock);
  // TODO(deadbeef): Check candidate_allocation_done signal.
  // In case of Relay, ports creation will succeed but sockets will fail.
  // There is no error reporting from RelayEntry to handle this failure.
}

// Testing STUN timeout.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpAllowed) {
  fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr);
  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(2U, ports_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
  // We wait at least for a full STUN timeout, which
  // cricket::STUN_TOTAL_TIMEOUT seconds.
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             cricket::STUN_TOTAL_TIMEOUT, fake_clock);
  // No additional (STUN) candidates.
  EXPECT_EQ(2U, candidates_.size());
}

TEST_F(BasicPortAllocatorTest, TestCandidatePriorityOfMultipleInterfaces) {
  AddInterface(kClientAddr);
  AddInterface(kClientAddr2);
  // Allocating only host UDP ports. This is done purely for testing
  // convenience.
  allocator().set_flags(PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN |
                        PORTALLOCATOR_DISABLE_RELAY);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  ASSERT_EQ(2U, candidates_.size());
  EXPECT_EQ(2U, ports_.size());
  // Candidates priorities should be different.
  EXPECT_NE(candidates_[0].priority(), candidates_[1].priority());
}

// Test to verify ICE restart process.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsRestarts) {
  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  EXPECT_EQ(3U, ports_.size());
  // TODO(deadbeef): Extend this to verify ICE restart.
}

// Test that the allocator session uses the candidate filter it's created with,
// rather than the filter of its parent allocator.
// The filter of the allocator should only affect the next gathering phase,
// according to JSEP, which means the *next* allocator session returned.
TEST_F(BasicPortAllocatorTest, TestSessionUsesOwnCandidateFilter) {
  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  // Set candidate filter *after* creating the session. Should have no effect.
  allocator().SetCandidateFilter(CF_RELAY);
  session_->StartGettingPorts();
  // 7 candidates and 4 ports is what we would normally get (see the
  // TestGetAllPorts* tests).
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  EXPECT_EQ(3U, ports_.size());
}

// Test ICE candidate filter mechanism with options Relay/Host/Reflexive.
// This test also verifies that when the allocator is only allowed to use
// relay (i.e. IceTransportsType is relay), the raddr is an empty
// address with the correct family. This is to prevent any local
// reflective address leakage in the sdp line.
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithRelayOnly) {
  AddInterface(kClientAddr);
  // GTURN is not configured here.
  ResetWithTurnServersNoNat(kTurnUdpIntAddr, rtc::SocketAddress());
  allocator().SetCandidateFilter(CF_RELAY);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
                           rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));

  EXPECT_EQ(1U, candidates_.size());
  EXPECT_EQ(1U, ports_.size());  // Only Relay port will be in ready state.
  EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidates_[0].type());
  EXPECT_EQ(
      candidates_[0].related_address(),
      rtc::EmptySocketAddressWithFamily(candidates_[0].address().family()));
}

TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithHostOnly) {
  AddInterface(kClientAddr);
  allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  allocator().SetCandidateFilter(CF_HOST);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(2U, candidates_.size());  // Host UDP/TCP candidates only.
  EXPECT_EQ(2U, ports_.size());       // UDP/TCP ports only.
  for (const Candidate& candidate : candidates_) {
    EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type());
  }
}

// Host is behind the NAT.
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnly) {
  AddInterface(kPrivateAddr);
  ResetWithStunServerAndNat(kStunAddr);

  allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  allocator().SetCandidateFilter(CF_REFLEXIVE);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Host is behind NAT, no private address will be exposed. Hence only UDP
  // port with STUN candidate will be sent outside.
  EXPECT_EQ(1U, candidates_.size());  // Only STUN candidate.
  EXPECT_EQ(1U, ports_.size());       // Only UDP port will be in ready state.
  EXPECT_EQ(std::string(STUN_PORT_TYPE), candidates_[0].type());
  EXPECT_EQ(
      candidates_[0].related_address(),
      rtc::EmptySocketAddressWithFamily(candidates_[0].address().family()));
}

// Host is not behind the NAT.
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnlyAndNoNAT) {
  AddInterface(kClientAddr);
  allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  allocator().SetCandidateFilter(CF_REFLEXIVE);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Host has a public address, both UDP and TCP candidates will be exposed.
  EXPECT_EQ(2U, candidates_.size());  // Local UDP + TCP candidate.
  EXPECT_EQ(2U, ports_.size());  //  UDP and TCP ports will be in ready state.
  for (const Candidate& candidate : candidates_) {
    EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type());
  }
}

// Test that we get the same ufrag and pwd for all candidates.
TEST_F(BasicPortAllocatorTest, TestEnableSharedUfrag) {
  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
  EXPECT_EQ(3U, ports_.size());
  for (const Candidate& candidate : candidates_) {
    EXPECT_EQ(kIceUfrag0, candidate.username());
    EXPECT_EQ(kIcePwd0, candidate.password());
  }
}

// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
// is allocated for udp and stun. Also verify there is only one candidate
// (local) if stun candidate is same as local candidate, which will be the case
// in a public network like the below test.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNat) {
  AddInterface(kClientAddr);
  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(2U, ports_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
}

// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
// is allocated for udp and stun. In this test we should expect both stun and
// local candidates as client behind a nat.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNat) {
  AddInterface(kClientAddr);
  ResetWithStunServerAndNat(kStunAddr);

  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  ASSERT_EQ(2U, ports_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp",
                           rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
}

// Test TURN port in shared socket mode with UDP and TCP TURN server addresses.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNatUsingTurn) {
  turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
  AddInterface(kClientAddr);
  allocator_.reset(new BasicPortAllocator(&network_manager_, &socket_factory_));
  allocator_->Initialize();

  AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);

  allocator_->set_step_delay(kMinimumStepDelay);
  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET |
                        PORTALLOCATOR_DISABLE_TCP);

  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();

  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  ASSERT_EQ(3U, candidates_.size());
  ASSERT_EQ(3U, ports_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
                           rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
  EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
                           rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
}

// Test that if the turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN
// port will not be used if UDP TurnPort is used, given that TCP TURN port
// becomes ready first.
TEST_F(BasicPortAllocatorTest,
       TestUdpTurnPortPrunesTcpTurnPortWithTcpPortReadyFirst) {
  // UDP has longer delay than TCP so that TCP TURN port becomes ready first.
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
  virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);

  TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY,
                                       true /* tcp_pruned */);
}

// Test that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN port
// will not be used if UDP TurnPort is used, given that UDP TURN port becomes
// ready first.
TEST_F(BasicPortAllocatorTest,
       TestUdpTurnPortPrunesTcpTurnPortsWithUdpPortReadyFirst) {
  // UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
  virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);

  TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY,
                                       true /* tcp_pruned */);
}

// Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port
// will be kept regardless of the priority.
TEST_F(BasicPortAllocatorTest,
       TestUdpTurnPortPrunesTcpTurnPortIfUdpReadyFirst) {
  // UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
  virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);

  TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY,
                                       true /* tcp_pruned */);
}

// Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port
// will be kept regardless of the priority.
TEST_F(BasicPortAllocatorTest,
       TestTcpTurnPortPrunesUdpTurnPortIfTcpReadyFirst) {
  // UDP has longer delay than TCP so that TCP TURN port becomes ready first.
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
  virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);

  TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY,
                                       false /* tcp_pruned */);
}

// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4
// TurnPort will not be used if IPv6 TurnPort is used, given that IPv4 TURN port
// becomes ready first.
TEST_F(BasicPortAllocatorTest,
       TestIPv6TurnPortPrunesIPv4TurnPortWithIPv4PortReadyFirst) {
  // IPv6 has longer delay than IPv4, so that IPv4 TURN port becomes ready
  // first.
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 200);

  TestIPv6TurnPortPrunesIPv4TurnPort();
}

// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4
// TurnPort will not be used if IPv6 TurnPort is used, given that IPv6 TURN port
// becomes ready first.
TEST_F(BasicPortAllocatorTest,
       TestIPv6TurnPortPrunesIPv4TurnPortWithIPv6PortReadyFirst) {
  // IPv6 has longer delay than IPv4, so that IPv6 TURN port becomes ready
  // first.
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 100);

  TestIPv6TurnPortPrunesIPv4TurnPort();
}

// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network
// interface will has its own set of TurnPorts based on their priorities, in the
// default case where no transit delay is set.
TEST_F(BasicPortAllocatorTest, TestEachInterfaceHasItsOwnTurnPortsNoDelay) {
  TestEachInterfaceHasItsOwnTurnPorts();
}

// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network
// interface will has its own set of TurnPorts based on their priorities, given
// that IPv4/TCP TURN port becomes ready first.
TEST_F(BasicPortAllocatorTest,
       TestEachInterfaceHasItsOwnTurnPortsWithTcpIPv4ReadyFirst) {
  // IPv6/UDP have longer delay than IPv4/TCP, so that IPv4/TCP TURN port
  // becomes ready last.
  virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 10);
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
  virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntIPv6Addr, 20);
  virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 300);

  TestEachInterfaceHasItsOwnTurnPorts();
}

// Testing DNS resolve for the TURN server, this will test AllocationSequence
// handling the unresolved address signal from TurnPort.
// TODO(pthatcher): Make this test work with SIMULATED_WAIT. It
// appears that it doesn't currently because of the DNS look up not
// using the fake clock.
TEST_F(BasicPortAllocatorTestWithRealClock,
       TestSharedSocketWithServerAddressResolve) {
  // This test relies on a real query for "localhost", so it won't work on an
  // IPv6-only machine.
  MAYBE_SKIP_IPV4;
  turn_server_.AddInternalSocket(rtc::SocketAddress("127.0.0.1", 3478),
                                 PROTO_UDP);
  AddInterface(kClientAddr);
  allocator_.reset(new BasicPortAllocator(&network_manager_, &socket_factory_));
  allocator_->Initialize();
  RelayServerConfig turn_server;
  RelayCredentials credentials(kTurnUsername, kTurnPassword);
  turn_server.credentials = credentials;
  turn_server.ports.push_back(
      ProtocolAddress(rtc::SocketAddress("localhost", 3478), PROTO_UDP));
  allocator_->AddTurnServerForTesting(turn_server);

  allocator_->set_step_delay(kMinimumStepDelay);
  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET |
                        PORTALLOCATOR_DISABLE_TCP);

  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();

  EXPECT_EQ_WAIT(2U, ports_.size(), kDefaultAllocationTimeout);
}

// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
// is allocated for udp/stun/turn. In this test we should expect all local,
// stun and turn candidates.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurn) {
  AddInterface(kClientAddr);
  ResetWithStunServerAndNat(kStunAddr);

  AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());

  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET |
                        PORTALLOCATOR_DISABLE_TCP);

  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();

  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  ASSERT_EQ(2U, ports_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp",
                           rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
  EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
                           rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  // Local port will be created first and then TURN port.
  // TODO(deadbeef): This isn't something the BasicPortAllocator API contract
  // guarantees...
  EXPECT_EQ(2U, ports_[0]->Candidates().size());
  EXPECT_EQ(1U, ports_[1]->Candidates().size());
}

// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled and the TURN
// server is also used as the STUN server, we should get 'local', 'stun', and
// 'relay' candidates.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAsStun) {
  AddInterface(kClientAddr);
  // Use an empty SocketAddress to add a NAT without STUN server.
  ResetWithStunServerAndNat(SocketAddress());
  AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());

  // Must set the step delay to 0 to make sure the relay allocation phase is
  // started before the STUN candidates are obtained, so that the STUN binding
  // response is processed when both StunPort and TurnPort exist to reproduce
  // webrtc issue 3537.
  allocator_->set_step_delay(0);
  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET |
                        PORTALLOCATOR_DISABLE_TCP);

  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();

  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  Candidate stun_candidate;
  EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp",
                            rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
                            &stun_candidate));
  EXPECT_TRUE(HasCandidateWithRelatedAddr(
      candidates_, "relay", "udp",
      rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
      stun_candidate.address()));

  // Local port will be created first and then TURN port.
  // TODO(deadbeef): This isn't something the BasicPortAllocator API contract
  // guarantees...
  EXPECT_EQ(2U, ports_[0]->Candidates().size());
  EXPECT_EQ(1U, ports_[1]->Candidates().size());
}

// Test that when only a TCP TURN server is available, we do NOT use it as
// a UDP STUN server, as this could leak our IP address. Thus we should only
// expect two ports, a UDPPort and TurnPort.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnTcpOnly) {
  turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
  AddInterface(kClientAddr);
  ResetWithStunServerAndNat(rtc::SocketAddress());
  AddTurnServers(rtc::SocketAddress(), kTurnTcpIntAddr);

  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET |
                        PORTALLOCATOR_DISABLE_TCP);

  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();

  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(2U, candidates_.size());
  ASSERT_EQ(2U, ports_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
                           rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
  EXPECT_EQ(1U, ports_[0]->Candidates().size());
  EXPECT_EQ(1U, ports_[1]->Candidates().size());
}

// Test that even when PORTALLOCATOR_ENABLE_SHARED_SOCKET is NOT enabled, the
// TURN server is used as the STUN server and we get 'local', 'stun', and
// 'relay' candidates.
// TODO(deadbeef): Remove this test when support for non-shared socket mode
// is removed.
TEST_F(BasicPortAllocatorTest, TestNonSharedSocketWithNatUsingTurnAsStun) {
  AddInterface(kClientAddr);
  // Use an empty SocketAddress to add a NAT without STUN server.
  ResetWithStunServerAndNat(SocketAddress());
  AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());

  allocator_->set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_TCP);

  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();

  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3U, candidates_.size());
  ASSERT_EQ(3U, ports_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  Candidate stun_candidate;
  EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp",
                            rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
                            &stun_candidate));
  Candidate turn_candidate;
  EXPECT_TRUE(FindCandidate(candidates_, "relay", "udp",
                            rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
                            &turn_candidate));
  // Not using shared socket, so the STUN request's server reflexive address
  // should be different than the TURN request's server reflexive address.
  EXPECT_NE(turn_candidate.related_address(), stun_candidate.address());

  EXPECT_EQ(1U, ports_[0]->Candidates().size());
  EXPECT_EQ(1U, ports_[1]->Candidates().size());
  EXPECT_EQ(1U, ports_[2]->Candidates().size());
}

// Test that even when both a STUN and TURN server are configured, the TURN
// server is used as a STUN server and we get a 'stun' candidate.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAndStun) {
  AddInterface(kClientAddr);
  // Configure with STUN server but destroy it, so we can ensure that it's
  // the TURN server actually being used as a STUN server.
  ResetWithStunServerAndNat(kStunAddr);
  stun_server_.reset();
  AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());

  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET |
                        PORTALLOCATOR_DISABLE_TCP);

  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();

  ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  Candidate stun_candidate;
  EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp",
                            rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
                            &stun_candidate));
  EXPECT_TRUE(HasCandidateWithRelatedAddr(
      candidates_, "relay", "udp",
      rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
      stun_candidate.address()));

  // Don't bother waiting for STUN timeout, since we already verified
  // that we got a STUN candidate from the TURN server.
}

// This test verifies when PORTALLOCATOR_ENABLE_SHARED_SOCKET flag is enabled
// and fail to generate STUN candidate, local UDP candidate is generated
// properly.
TEST_F(BasicPortAllocatorTest, TestSharedSocketNoUdpAllowed) {
  allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
                        PORTALLOCATOR_DISABLE_TCP |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr);
  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(1U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  // STUN timeout is 9.5sec. We need to wait to get candidate done signal.
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kStunTimeoutMs,
                             fake_clock);
  EXPECT_EQ(1U, candidates_.size());
}

// Test that when the NetworkManager doesn't have permission to enumerate
// adapters, the PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION is specified
// automatically.
TEST_F(BasicPortAllocatorTest, TestNetworkPermissionBlocked) {
  network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
                                               rtc::IPAddress());
  network_manager_.set_enumeration_permission(
      rtc::NetworkManager::ENUMERATION_BLOCKED);
  allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
                        PORTALLOCATOR_DISABLE_TCP |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  EXPECT_EQ(0U,
            allocator_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  EXPECT_EQ(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
  session_->StartGettingPorts();
  EXPECT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(1U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kPrivateAddr));
  EXPECT_NE(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
}

// This test verifies allocator can use IPv6 addresses along with IPv4.
TEST_F(BasicPortAllocatorTest, TestEnableIPv6Addresses) {
  allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
                        PORTALLOCATOR_ENABLE_IPV6 |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  AddInterface(kClientIPv6Addr);
  AddInterface(kClientAddr);
  allocator_->set_step_delay(kMinimumStepDelay);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(4U, ports_.size());
  EXPECT_EQ(4U, candidates_.size());
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientIPv6Addr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
}

TEST_F(BasicPortAllocatorTest, TestStopGettingPorts) {
  AddInterface(kClientAddr);
  allocator_->set_step_delay(kDefaultStepDelay);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
  EXPECT_EQ(2U, ports_.size());
  session_->StopGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);

  // After stopping getting ports, adding a new interface will not start
  // getting ports again.
  allocator_->set_step_delay(kMinimumStepDelay);
  candidates_.clear();
  ports_.clear();
  candidate_allocation_done_ = false;
  network_manager_.AddInterface(kClientAddr2);
  SIMULATED_WAIT(false, 1000, fake_clock);
  EXPECT_EQ(0U, candidates_.size());
  EXPECT_EQ(0U, ports_.size());
}

TEST_F(BasicPortAllocatorTest, TestClearGettingPorts) {
  AddInterface(kClientAddr);
  allocator_->set_step_delay(kDefaultStepDelay);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
  EXPECT_EQ(2U, ports_.size());
  session_->ClearGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);

  // After clearing getting ports, adding a new interface will start getting
  // ports again.
  allocator_->set_step_delay(kMinimumStepDelay);
  candidates_.clear();
  ports_.clear();
  candidate_allocation_done_ = false;
  network_manager_.AddInterface(kClientAddr2);
  ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
  EXPECT_EQ(2U, ports_.size());
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
}

// Test that the ports and candidates are updated with new ufrag/pwd/etc. when
// a pooled session is taken out of the pool.
TEST_F(BasicPortAllocatorTest, TestTransportInformationUpdated) {
  AddInterface(kClientAddr);
  int pool_size = 1;
  allocator_->SetConfiguration(allocator_->stun_servers(),
                               allocator_->turn_servers(), pool_size,
                               webrtc::NO_PRUNE);
  const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
  ASSERT_NE(nullptr, peeked_session);
  EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(),
                           kDefaultAllocationTimeout, fake_clock);
  // Expect that when TakePooledSession is called,
  // UpdateTransportInformationInternal will be called and the
  // BasicPortAllocatorSession will update the ufrag/pwd of ports and
  // candidates.
  session_ =
      allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
  ASSERT_NE(nullptr, session_.get());
  auto ready_ports = session_->ReadyPorts();
  auto candidates = session_->ReadyCandidates();
  EXPECT_FALSE(ready_ports.empty());
  EXPECT_FALSE(candidates.empty());
  for (const PortInterface* port_interface : ready_ports) {
    const Port* port = static_cast<const Port*>(port_interface);
    EXPECT_EQ(kContentName, port->content_name());
    EXPECT_EQ(1, port->component());
    EXPECT_EQ(kIceUfrag0, port->username_fragment());
    EXPECT_EQ(kIcePwd0, port->password());
  }
  for (const Candidate& candidate : candidates) {
    EXPECT_EQ(1, candidate.component());
    EXPECT_EQ(kIceUfrag0, candidate.username());
    EXPECT_EQ(kIcePwd0, candidate.password());
  }
}

// Test that a new candidate filter takes effect even on already-gathered
// candidates.
TEST_F(BasicPortAllocatorTest, TestSetCandidateFilterAfterCandidatesGathered) {
  AddInterface(kClientAddr);
  int pool_size = 1;
  allocator_->SetConfiguration(allocator_->stun_servers(),
                               allocator_->turn_servers(), pool_size,
                               webrtc::NO_PRUNE);
  const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
  ASSERT_NE(nullptr, peeked_session);
  EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(),
                           kDefaultAllocationTimeout, fake_clock);
  size_t initial_candidates_size = peeked_session->ReadyCandidates().size();
  size_t initial_ports_size = peeked_session->ReadyPorts().size();
  allocator_->SetCandidateFilter(CF_RELAY);
  // Assume that when TakePooledSession is called, the candidate filter will be
  // applied to the pooled session. This is tested by PortAllocatorTest.
  session_ =
      allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
  ASSERT_NE(nullptr, session_.get());
  auto candidates = session_->ReadyCandidates();
  auto ports = session_->ReadyPorts();
  // Sanity check that the number of candidates and ports decreased.
  EXPECT_GT(initial_candidates_size, candidates.size());
  EXPECT_GT(initial_ports_size, ports.size());
  for (const PortInterface* port : ports) {
    // Expect only relay ports.
    EXPECT_EQ(RELAY_PORT_TYPE, port->Type());
  }
  for (const Candidate& candidate : candidates) {
    // Expect only relay candidates now that the filter is applied.
    EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidate.type());
    // Expect that the raddr is emptied due to the CF_RELAY filter.
    EXPECT_EQ(candidate.related_address(),
              rtc::EmptySocketAddressWithFamily(candidate.address().family()));
  }
}

// Test that candidates that do not match a previous candidate filter can be
// surfaced if they match the new one after setting the filter value.
TEST_F(BasicPortAllocatorTest,
       SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes) {
  // We would still surface a host candidate if the IP is public, even though it
  // is disabled by the candidate filter. See
  // BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so
  // that the srflx candidate is not equivalent to the host candidate.
  AddInterface(kPrivateAddr);
  ResetWithStunServerAndNat(kStunAddr);

  AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());

  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET |
                        PORTALLOCATOR_DISABLE_TCP);

  allocator_->SetCandidateFilter(CF_NONE);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_TRUE(candidates_.empty());
  EXPECT_TRUE(ports_.empty());

  // Surface the relay candidate previously gathered but not signaled.
  session_->SetCandidateFilter(CF_RELAY);
  ASSERT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(RELAY_PORT_TYPE, candidates_.back().type());
  EXPECT_EQ(1u, ports_.size());

  // Surface the srflx candidate previously gathered but not signaled.
  session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE);
  ASSERT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(STUN_PORT_TYPE, candidates_.back().type());
  EXPECT_EQ(2u, ports_.size());

  // Surface the srflx candidate previously gathered but not signaled.
  session_->SetCandidateFilter(CF_ALL);
  ASSERT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(LOCAL_PORT_TYPE, candidates_.back().type());
  EXPECT_EQ(2u, ports_.size());
}

// This is a similar test as
// SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes, and we
// test the transitions for which the new filter value is not a super set of the
// previous value.
TEST_F(
    BasicPortAllocatorTest,
    SurfaceNewCandidatesAfterSetCandidateFilterToAllowDifferentCandidateTypes) {
  // We would still surface a host candidate if the IP is public, even though it
  // is disabled by the candidate filter. See
  // BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so
  // that the srflx candidate is not equivalent to the host candidate.
  AddInterface(kPrivateAddr);
  ResetWithStunServerAndNat(kStunAddr);

  AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());

  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET |
                        PORTALLOCATOR_DISABLE_TCP);

  allocator_->SetCandidateFilter(CF_NONE);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_TRUE(candidates_.empty());
  EXPECT_TRUE(ports_.empty());

  // Surface the relay candidate previously gathered but not signaled.
  session_->SetCandidateFilter(CF_RELAY);
  EXPECT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(RELAY_PORT_TYPE, candidates_.back().type());
  EXPECT_EQ(1u, ports_.size());

  // Surface the srflx candidate previously gathered but not signaled.
  session_->SetCandidateFilter(CF_REFLEXIVE);
  EXPECT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(STUN_PORT_TYPE, candidates_.back().type());
  EXPECT_EQ(2u, ports_.size());

  // Surface the host candidate previously gathered but not signaled.
  session_->SetCandidateFilter(CF_HOST);
  EXPECT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout,
                           fake_clock);
  EXPECT_EQ(LOCAL_PORT_TYPE, candidates_.back().type());
  // We use a shared socket and cricket::UDPPort handles the srflx candidate.
  EXPECT_EQ(2u, ports_.size());
}

// Test that after an allocation session has stopped getting ports, changing the
// candidate filter to allow new types of gathered candidates does not surface
// any candidate.
TEST_F(BasicPortAllocatorTest,
       NoCandidateSurfacedWhenUpdatingCandidateFilterIfSessionStopped) {
  AddInterface(kPrivateAddr);
  ResetWithStunServerAndNat(kStunAddr);

  AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());

  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET |
                        PORTALLOCATOR_DISABLE_TCP);

  allocator_->SetCandidateFilter(CF_NONE);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  auto test_invariants = [this]() {
    EXPECT_TRUE(candidates_.empty());
    EXPECT_TRUE(ports_.empty());
  };

  test_invariants();

  session_->StopGettingPorts();

  session_->SetCandidateFilter(CF_RELAY);
  SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
  test_invariants();

  session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE);
  SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
  test_invariants();

  session_->SetCandidateFilter(CF_ALL);
  SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
  test_invariants();
}

TEST_F(BasicPortAllocatorTest, SetStunKeepaliveIntervalForPorts) {
  const int pool_size = 1;
  const int expected_stun_keepalive_interval = 123;
  AddInterface(kClientAddr);
  allocator_->SetConfiguration(
      allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
      webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
  auto* pooled_session = allocator_->GetPooledSession();
  ASSERT_NE(nullptr, pooled_session);
  EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(),
                           kDefaultAllocationTimeout, fake_clock);
  CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session,
                                            expected_stun_keepalive_interval);
}

TEST_F(BasicPortAllocatorTest,
       ChangeStunKeepaliveIntervalForPortsAfterInitialConfig) {
  const int pool_size = 1;
  AddInterface(kClientAddr);
  allocator_->SetConfiguration(
      allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
      webrtc::NO_PRUNE, nullptr, 123 /* stun keepalive interval */);
  auto* pooled_session = allocator_->GetPooledSession();
  ASSERT_NE(nullptr, pooled_session);
  EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(),
                           kDefaultAllocationTimeout, fake_clock);
  const int expected_stun_keepalive_interval = 321;
  allocator_->SetConfiguration(
      allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
      webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
  CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session,
                                            expected_stun_keepalive_interval);
}

TEST_F(BasicPortAllocatorTest,
       SetStunKeepaliveIntervalForPortsWithSharedSocket) {
  const int pool_size = 1;
  const int expected_stun_keepalive_interval = 123;
  AddInterface(kClientAddr);
  allocator_->set_flags(allocator().flags() |
                        PORTALLOCATOR_ENABLE_SHARED_SOCKET);
  allocator_->SetConfiguration(
      allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
      webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(),
                                            expected_stun_keepalive_interval);
}

TEST_F(BasicPortAllocatorTest,
       SetStunKeepaliveIntervalForPortsWithoutSharedSocket) {
  const int pool_size = 1;
  const int expected_stun_keepalive_interval = 123;
  AddInterface(kClientAddr);
  allocator_->set_flags(allocator().flags() &
                        ~(PORTALLOCATOR_ENABLE_SHARED_SOCKET));
  allocator_->SetConfiguration(
      allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
      webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(),
                                            expected_stun_keepalive_interval);
}

TEST_F(BasicPortAllocatorTest, IceRegatheringMetricsLoggedWhenNetworkChanges) {
  // Only test local ports to simplify test.
  ResetWithNoServersOrNat();
  AddInterface(kClientAddr, "test_net0");
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  candidate_allocation_done_ = false;
  AddInterface(kClientAddr2, "test_net1");
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_METRIC_EQ(1,
                   webrtc::metrics::NumEvents(
                       "WebRTC.PeerConnection.IceRegatheringReason",
                       static_cast<int>(IceRegatheringReason::NETWORK_CHANGE)));
}

// Test that when an mDNS responder is present, the local address of a host
// candidate is concealed by an mDNS hostname and the related address of a srflx
// candidate is set to 0.0.0.0 or ::0.
TEST_F(BasicPortAllocatorTest, HostCandidateAddressIsReplacedByHostname) {
  // Default config uses GTURN and no NAT, so replace that with the
  // desired setup (NAT, STUN server, TURN server, UDP/TCP).
  ResetWithStunServerAndNat(kStunAddr);
  turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
  AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
  AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);

  ASSERT_EQ(&network_manager_, allocator().network_manager());
  network_manager_.set_mdns_responder(
      std::make_unique<webrtc::FakeMdnsResponder>(rtc::Thread::Current()));
  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(5u, candidates_.size());
  int num_host_udp_candidates = 0;
  int num_host_tcp_candidates = 0;
  int num_srflx_candidates = 0;
  int num_relay_candidates = 0;
  for (const auto& candidate : candidates_) {
    const auto& raddr = candidate.related_address();

    if (candidate.type() == LOCAL_PORT_TYPE) {
      EXPECT_FALSE(candidate.address().hostname().empty());
      EXPECT_TRUE(raddr.IsNil());
      if (candidate.protocol() == UDP_PROTOCOL_NAME) {
        ++num_host_udp_candidates;
      } else {
        ++num_host_tcp_candidates;
      }
    } else if (candidate.type() == STUN_PORT_TYPE) {
      // For a srflx candidate, the related address should be set to 0.0.0.0 or
      // ::0
      EXPECT_TRUE(IPIsAny(raddr.ipaddr()));
      EXPECT_EQ(raddr.port(), 0);
      ++num_srflx_candidates;
    } else if (candidate.type() == RELAY_PORT_TYPE) {
      EXPECT_EQ(kNatUdpAddr.ipaddr(), raddr.ipaddr());
      EXPECT_EQ(kNatUdpAddr.family(), raddr.family());
      ++num_relay_candidates;
    } else {
      // prflx candidates are not expected
      FAIL();
    }
  }
  EXPECT_EQ(1, num_host_udp_candidates);
  EXPECT_EQ(1, num_host_tcp_candidates);
  EXPECT_EQ(1, num_srflx_candidates);
  EXPECT_EQ(2, num_relay_candidates);
}

TEST_F(BasicPortAllocatorTest, TestUseTurnServerAsStunSever) {
  ServerAddresses stun_servers;
  stun_servers.insert(kStunAddr);
  PortConfiguration port_config(stun_servers, "", "");
  RelayServerConfig turn_servers =
      CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
  port_config.AddRelay(turn_servers);

  EXPECT_EQ(2U, port_config.StunServers().size());
}

TEST_F(BasicPortAllocatorTest, TestDoNotUseTurnServerAsStunSever) {
  webrtc::test::ScopedKeyValueConfig field_trials(
      "WebRTC-UseTurnServerAsStunServer/Disabled/");
  ServerAddresses stun_servers;
  stun_servers.insert(kStunAddr);
  PortConfiguration port_config(stun_servers, "" /* user_name */,
                                "" /* password */, &field_trials);
  RelayServerConfig turn_servers =
      CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
  port_config.AddRelay(turn_servers);

  EXPECT_EQ(1U, port_config.StunServers().size());
}

// Test that candidates from different servers get assigned a unique local
// preference (the middle 16 bits of the priority)
TEST_F(BasicPortAllocatorTest, AssignsUniqueLocalPreferencetoRelayCandidates) {
  allocator_->SetCandidateFilter(CF_RELAY);
  allocator_->AddTurnServerForTesting(
      CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
  allocator_->AddTurnServerForTesting(
      CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
  allocator_->AddTurnServerForTesting(
      CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));

  AddInterface(kClientAddr);
  ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);
  EXPECT_EQ(3u, candidates_.size());
  EXPECT_GT((candidates_[0].priority() >> 8) & 0xFFFF,
            (candidates_[1].priority() >> 8) & 0xFFFF);
  EXPECT_GT((candidates_[1].priority() >> 8) & 0xFFFF,
            (candidates_[2].priority() >> 8) & 0xFFFF);
}

// Test that no more than allocator.max_ipv6_networks() IPv6 networks are used
// to gather candidates.
TEST_F(BasicPortAllocatorTest, TwoIPv6AreSelectedBecauseOfMaxIpv6Limit) {
  rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
                     64, rtc::ADAPTER_TYPE_WIFI);
  rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
                     kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
  rtc::Network wifi2("wifi2", "Test NetworkAdapter 3",
                     kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
  std::vector<const rtc::Network*> networks = {&wifi1, &ethe1, &wifi2};

  // Ensure that only 2 interfaces were selected.
  EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks(
                    networks, /*max_ipv6_networks=*/2)
                    .size());
}

// Test that if the number of available IPv6 networks is less than
// allocator.max_ipv6_networks(), all IPv6 networks will be selected.
TEST_F(BasicPortAllocatorTest, AllIPv6AreSelected) {
  rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
                     64, rtc::ADAPTER_TYPE_WIFI);
  rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
                     kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
  std::vector<const rtc::Network*> networks = {&wifi1, &ethe1};

  // Ensure that all 2 interfaces were selected.
  EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks(
                    networks, /*max_ipv6_networks=*/3)
                    .size());
}

// If there are some IPv6 networks with different types, diversify IPv6
// networks.
TEST_F(BasicPortAllocatorTest, TwoIPv6WifiAreSelectedIfThereAreTwo) {
  rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
                     64, rtc::ADAPTER_TYPE_WIFI);
  rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
                     kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
  rtc::Network ethe2("ethe2", "Test NetworkAdapter 3",
                     kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
  rtc::Network unknown1("unknown1", "Test NetworkAdapter 4",
                        kClientIPv6Addr2.ipaddr(), 64,
                        rtc::ADAPTER_TYPE_UNKNOWN);
  rtc::Network cell1("cell1", "Test NetworkAdapter 5",
                     kClientIPv6Addr3.ipaddr(), 64,
                     rtc::ADAPTER_TYPE_CELLULAR_4G);
  std::vector<const rtc::Network*> networks = {&wifi1, &ethe1, &ethe2,
                                               &unknown1, &cell1};

  networks = BasicPortAllocatorSession::SelectIPv6Networks(
      networks, /*max_ipv6_networks=*/4);

  EXPECT_EQ(4U, networks.size());
  // Ensure the expected 4 interfaces (wifi1, ethe1, cell1, unknown1) were
  // selected.
  EXPECT_TRUE(HasNetwork(networks, wifi1));
  EXPECT_TRUE(HasNetwork(networks, ethe1));
  EXPECT_TRUE(HasNetwork(networks, cell1));
  EXPECT_TRUE(HasNetwork(networks, unknown1));
}

// If there are some IPv6 networks with the same type, select them because there
// is no other option.
TEST_F(BasicPortAllocatorTest, IPv6WithSameTypeAreSelectedIfNoOtherOption) {
  // Add 5 cellular interfaces
  rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
                     64, rtc::ADAPTER_TYPE_CELLULAR_2G);
  rtc::Network cell2("cell2", "Test NetworkAdapter 2",
                     kClientIPv6Addr2.ipaddr(), 64,
                     rtc::ADAPTER_TYPE_CELLULAR_3G);
  rtc::Network cell3("cell3", "Test NetworkAdapter 3",
                     kClientIPv6Addr3.ipaddr(), 64,
                     rtc::ADAPTER_TYPE_CELLULAR_4G);
  rtc::Network cell4("cell4", "Test NetworkAdapter 4",
                     kClientIPv6Addr2.ipaddr(), 64,
                     rtc::ADAPTER_TYPE_CELLULAR_5G);
  rtc::Network cell5("cell5", "Test NetworkAdapter 5",
                     kClientIPv6Addr3.ipaddr(), 64,
                     rtc::ADAPTER_TYPE_CELLULAR_3G);
  std::vector<const rtc::Network*> networks = {&cell1, &cell2, &cell3, &cell4,
                                               &cell5};

  // Ensure that 4 interfaces were selected.
  EXPECT_EQ(4U, BasicPortAllocatorSession::SelectIPv6Networks(
                    networks, /*max_ipv6_networks=*/4)
                    .size());
}

TEST_F(BasicPortAllocatorTest, IPv6EthernetHasHigherPriorityThanWifi) {
  rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
                     64, rtc::ADAPTER_TYPE_WIFI);
  rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
                     kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
  rtc::Network wifi2("wifi2", "Test NetworkAdapter 3",
                     kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
  std::vector<const rtc::Network*> networks = {&wifi1, &ethe1, &wifi2};

  networks = BasicPortAllocatorSession::SelectIPv6Networks(
      networks, /*max_ipv6_networks=*/1);

  EXPECT_EQ(1U, networks.size());
  // Ensure ethe1 was selected.
  EXPECT_TRUE(HasNetwork(networks, ethe1));
}

TEST_F(BasicPortAllocatorTest, IPv6EtherAndWifiHaveHigherPriorityThanOthers) {
  rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
                     64, rtc::ADAPTER_TYPE_CELLULAR_3G);
  rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
                     kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
  rtc::Network wifi1("wifi1", "Test NetworkAdapter 3",
                     kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
  rtc::Network unknown("unknown", "Test NetworkAdapter 4",
                       kClientIPv6Addr2.ipaddr(), 64,
                       rtc::ADAPTER_TYPE_UNKNOWN);
  rtc::Network vpn1("vpn1", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(),
                    64, rtc::ADAPTER_TYPE_VPN);
  std::vector<const rtc::Network*> networks = {&cell1, &ethe1, &wifi1, &unknown,
                                               &vpn1};

  networks = BasicPortAllocatorSession::SelectIPv6Networks(
      networks, /*max_ipv6_networks=*/2);

  EXPECT_EQ(2U, networks.size());
  // Ensure ethe1 and wifi1 were selected.
  EXPECT_TRUE(HasNetwork(networks, wifi1));
  EXPECT_TRUE(HasNetwork(networks, ethe1));
}

TEST_F(BasicPortAllocatorTest, Select2DifferentIntefaces) {
  allocator().set_max_ipv6_networks(2);
  AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);

  // To simplify the test, only gather UDP host candidates.
  allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
                        PORTALLOCATOR_DISABLE_STUN |
                        PORTALLOCATOR_DISABLE_RELAY |
                        PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);

  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);

  EXPECT_EQ(2U, candidates_.size());
  // ethe1 and wifi1 were selected.
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
}

TEST_F(BasicPortAllocatorTest, Select3DifferentIntefaces) {
  allocator().set_max_ipv6_networks(3);
  AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);

  // To simplify the test, only gather UDP host candidates.
  allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
                        PORTALLOCATOR_DISABLE_STUN |
                        PORTALLOCATOR_DISABLE_RELAY |
                        PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);

  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);

  EXPECT_EQ(3U, candidates_.size());
  // ethe1, wifi1, and cell1 were selected.
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr5));
}

TEST_F(BasicPortAllocatorTest, Select4DifferentIntefaces) {
  allocator().set_max_ipv6_networks(4);
  AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
  AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
  AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);

  // To simplify the test, only gather UDP host candidates.
  allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
                        PORTALLOCATOR_DISABLE_STUN |
                        PORTALLOCATOR_DISABLE_RELAY |
                        PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);

  ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
  session_->StartGettingPorts();
  EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
                             kDefaultAllocationTimeout, fake_clock);

  EXPECT_EQ(4U, candidates_.size());
  // ethe1, ethe2, wifi1, and cell1 were selected.
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr2));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
  EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr5));
}

}  // namespace cricket