summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/message_digest.cc
blob: 56abcd2c7b5bfdcf85f84845871c8d479a363471 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
 *  Copyright 2011 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/message_digest.h"

#include <string.h>

#include <cstdint>
#include <memory>

#include "absl/strings/string_view.h"
#include "rtc_base/openssl_digest.h"
#include "rtc_base/string_encode.h"

namespace rtc {

// From RFC 4572.
const char DIGEST_MD5[] = "md5";
const char DIGEST_SHA_1[] = "sha-1";
const char DIGEST_SHA_224[] = "sha-224";
const char DIGEST_SHA_256[] = "sha-256";
const char DIGEST_SHA_384[] = "sha-384";
const char DIGEST_SHA_512[] = "sha-512";

static const size_t kBlockSize = 64;  // valid for SHA-256 and down

MessageDigest* MessageDigestFactory::Create(absl::string_view alg) {
  MessageDigest* digest = new OpenSSLDigest(alg);
  if (digest->Size() == 0) {  // invalid algorithm
    delete digest;
    digest = nullptr;
  }
  return digest;
}

bool IsFips180DigestAlgorithm(absl::string_view alg) {
  // These are the FIPS 180 algorithms.  According to RFC 4572 Section 5,
  // "Self-signed certificates (for which legacy certificates are not a
  // consideration) MUST use one of the FIPS 180 algorithms (SHA-1,
  // SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm,
  // and thus also MUST use it to calculate certificate fingerprints."
  return alg == DIGEST_SHA_1 || alg == DIGEST_SHA_224 ||
         alg == DIGEST_SHA_256 || alg == DIGEST_SHA_384 ||
         alg == DIGEST_SHA_512;
}

size_t ComputeDigest(MessageDigest* digest,
                     const void* input,
                     size_t in_len,
                     void* output,
                     size_t out_len) {
  digest->Update(input, in_len);
  return digest->Finish(output, out_len);
}

size_t ComputeDigest(absl::string_view alg,
                     const void* input,
                     size_t in_len,
                     void* output,
                     size_t out_len) {
  std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
  return (digest) ? ComputeDigest(digest.get(), input, in_len, output, out_len)
                  : 0;
}

std::string ComputeDigest(MessageDigest* digest, absl::string_view input) {
  std::unique_ptr<char[]> output(new char[digest->Size()]);
  ComputeDigest(digest, input.data(), input.size(), output.get(),
                digest->Size());
  return hex_encode(absl::string_view(output.get(), digest->Size()));
}

bool ComputeDigest(absl::string_view alg,
                   absl::string_view input,
                   std::string* output) {
  std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
  if (!digest) {
    return false;
  }
  *output = ComputeDigest(digest.get(), input);
  return true;
}

std::string ComputeDigest(absl::string_view alg, absl::string_view input) {
  std::string output;
  ComputeDigest(alg, input, &output);
  return output;
}

// Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text))
size_t ComputeHmac(MessageDigest* digest,
                   const void* key,
                   size_t key_len,
                   const void* input,
                   size_t in_len,
                   void* output,
                   size_t out_len) {
  // We only handle algorithms with a 64-byte blocksize.
  // TODO: Add BlockSize() method to MessageDigest.
  size_t block_len = kBlockSize;
  if (digest->Size() > 32) {
    return 0;
  }
  // Copy the key to a block-sized buffer to simplify padding.
  // If the key is longer than a block, hash it and use the result instead.
  std::unique_ptr<uint8_t[]> new_key(new uint8_t[block_len]);
  if (key_len > block_len) {
    ComputeDigest(digest, key, key_len, new_key.get(), block_len);
    memset(new_key.get() + digest->Size(), 0, block_len - digest->Size());
  } else {
    memcpy(new_key.get(), key, key_len);
    memset(new_key.get() + key_len, 0, block_len - key_len);
  }
  // Set up the padding from the key, salting appropriately for each padding.
  std::unique_ptr<uint8_t[]> o_pad(new uint8_t[block_len]);
  std::unique_ptr<uint8_t[]> i_pad(new uint8_t[block_len]);
  for (size_t i = 0; i < block_len; ++i) {
    o_pad[i] = 0x5c ^ new_key[i];
    i_pad[i] = 0x36 ^ new_key[i];
  }
  // Inner hash; hash the inner padding, and then the input buffer.
  std::unique_ptr<uint8_t[]> inner(new uint8_t[digest->Size()]);
  digest->Update(i_pad.get(), block_len);
  digest->Update(input, in_len);
  digest->Finish(inner.get(), digest->Size());
  // Outer hash; hash the outer padding, and then the result of the inner hash.
  digest->Update(o_pad.get(), block_len);
  digest->Update(inner.get(), digest->Size());
  return digest->Finish(output, out_len);
}

size_t ComputeHmac(absl::string_view alg,
                   const void* key,
                   size_t key_len,
                   const void* input,
                   size_t in_len,
                   void* output,
                   size_t out_len) {
  std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
  if (!digest) {
    return 0;
  }
  return ComputeHmac(digest.get(), key, key_len, input, in_len, output,
                     out_len);
}

std::string ComputeHmac(MessageDigest* digest,
                        absl::string_view key,
                        absl::string_view input) {
  std::unique_ptr<char[]> output(new char[digest->Size()]);
  ComputeHmac(digest, key.data(), key.size(), input.data(), input.size(),
              output.get(), digest->Size());
  return hex_encode(absl::string_view(output.get(), digest->Size()));
}

bool ComputeHmac(absl::string_view alg,
                 absl::string_view key,
                 absl::string_view input,
                 std::string* output) {
  std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
  if (!digest) {
    return false;
  }
  *output = ComputeHmac(digest.get(), key, input);
  return true;
}

std::string ComputeHmac(absl::string_view alg,
                        absl::string_view key,
                        absl::string_view input) {
  std::string output;
  ComputeHmac(alg, key, input, &output);
  return output;
}

}  // namespace rtc