summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/rtc_certificate_generator_unittest.cc
blob: fb7ec913e5bd1ccc1690952c2c28902870855fff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*
 *  Copyright 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/rtc_certificate_generator.h"

#include <memory>

#include "absl/types/optional.h"
#include "api/make_ref_counted.h"
#include "rtc_base/checks.h"
#include "rtc_base/gunit.h"
#include "rtc_base/thread.h"
#include "test/gtest.h"

namespace rtc {

class RTCCertificateGeneratorFixture {
 public:
  RTCCertificateGeneratorFixture()
      : signaling_thread_(Thread::Current()),
        worker_thread_(Thread::Create()),
        generate_async_completed_(false) {
    RTC_CHECK(signaling_thread_);
    RTC_CHECK(worker_thread_->Start());
    generator_.reset(
        new RTCCertificateGenerator(signaling_thread_, worker_thread_.get()));
  }

  RTCCertificateGenerator* generator() const { return generator_.get(); }
  RTCCertificate* certificate() const { return certificate_.get(); }

  RTCCertificateGeneratorInterface::Callback OnGenerated() {
    return [this](scoped_refptr<RTCCertificate> certificate) mutable {
      RTC_CHECK(signaling_thread_->IsCurrent());
      certificate_ = std::move(certificate);
      generate_async_completed_ = true;
    };
  }

  bool GenerateAsyncCompleted() {
    RTC_CHECK(signaling_thread_->IsCurrent());
    if (generate_async_completed_) {
      // Reset flag so that future generation requests are not considered done.
      generate_async_completed_ = false;
      return true;
    }
    return false;
  }

 protected:
  Thread* const signaling_thread_;
  std::unique_ptr<Thread> worker_thread_;
  std::unique_ptr<RTCCertificateGenerator> generator_;
  scoped_refptr<RTCCertificate> certificate_;
  bool generate_async_completed_;
};

class RTCCertificateGeneratorTest : public ::testing::Test {
 public:
 protected:
  static constexpr int kGenerationTimeoutMs = 10000;

  rtc::AutoThread main_thread_;
  RTCCertificateGeneratorFixture fixture_;
};

TEST_F(RTCCertificateGeneratorTest, GenerateECDSA) {
  EXPECT_TRUE(RTCCertificateGenerator::GenerateCertificate(KeyParams::ECDSA(),
                                                           absl::nullopt));
}

TEST_F(RTCCertificateGeneratorTest, GenerateRSA) {
  EXPECT_TRUE(RTCCertificateGenerator::GenerateCertificate(KeyParams::RSA(),
                                                           absl::nullopt));
}

TEST_F(RTCCertificateGeneratorTest, GenerateAsyncECDSA) {
  EXPECT_FALSE(fixture_.certificate());
  fixture_.generator()->GenerateCertificateAsync(
      KeyParams::ECDSA(), absl::nullopt, fixture_.OnGenerated());
  // Until generation has completed, the certificate is null. Since this is an
  // async call, generation must not have completed until we process messages
  // posted to this thread (which is done by `EXPECT_TRUE_WAIT`).
  EXPECT_FALSE(fixture_.GenerateAsyncCompleted());
  EXPECT_FALSE(fixture_.certificate());
  EXPECT_TRUE_WAIT(fixture_.GenerateAsyncCompleted(), kGenerationTimeoutMs);
  EXPECT_TRUE(fixture_.certificate());
}

TEST_F(RTCCertificateGeneratorTest, GenerateWithExpires) {
  // By generating two certificates with different expiration we can compare the
  // two expiration times relative to each other without knowing the current
  // time relative to epoch, 1970-01-01T00:00:00Z. This verifies that the
  // expiration parameter is correctly used relative to the generator's clock,
  // but does not verify that this clock is relative to epoch.

  // Generate a certificate that expires immediately.
  scoped_refptr<RTCCertificate> cert_a =
      RTCCertificateGenerator::GenerateCertificate(KeyParams::ECDSA(), 0);
  EXPECT_TRUE(cert_a);

  // Generate a certificate that expires in one minute.
  const uint64_t kExpiresMs = 60000;
  scoped_refptr<RTCCertificate> cert_b =
      RTCCertificateGenerator::GenerateCertificate(KeyParams::ECDSA(),
                                                   kExpiresMs);
  EXPECT_TRUE(cert_b);

  // Verify that `cert_b` expires approximately `kExpiresMs` after `cert_a`
  // (allowing a +/- 1 second plus maximum generation time difference).
  EXPECT_GT(cert_b->Expires(), cert_a->Expires());
  uint64_t expires_diff = cert_b->Expires() - cert_a->Expires();
  EXPECT_GE(expires_diff, kExpiresMs);
  EXPECT_LE(expires_diff, kExpiresMs + 2 * kGenerationTimeoutMs + 1000);
}

TEST_F(RTCCertificateGeneratorTest, GenerateWithInvalidParamsShouldFail) {
  KeyParams invalid_params = KeyParams::RSA(0, 0);
  EXPECT_FALSE(invalid_params.IsValid());

  EXPECT_FALSE(RTCCertificateGenerator::GenerateCertificate(invalid_params,
                                                            absl::nullopt));

  fixture_.generator()->GenerateCertificateAsync(invalid_params, absl::nullopt,
                                                 fixture_.OnGenerated());
  EXPECT_TRUE_WAIT(fixture_.GenerateAsyncCompleted(), kGenerationTimeoutMs);
  EXPECT_FALSE(fixture_.certificate());
}

}  // namespace rtc