summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/rtc_certificate_unittest.cc
blob: 63183883b35c4fb9b456669f6f1055e70e21fc11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*
 *  Copyright 2015 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/rtc_certificate.h"

#include <time.h>

#include <memory>
#include <utility>

#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/ssl_identity.h"
#include "rtc_base/time_utils.h"
#include "test/gtest.h"

namespace rtc {

namespace {

static const char* kTestCertCommonName = "RTCCertificateTest's certificate";

}  // namespace

class RTCCertificateTest : public ::testing::Test {
 protected:
  scoped_refptr<RTCCertificate> GenerateECDSA() {
    std::unique_ptr<SSLIdentity> identity(
        SSLIdentity::Create(kTestCertCommonName, KeyParams::ECDSA()));
    RTC_CHECK(identity);
    return RTCCertificate::Create(std::move(identity));
  }

  // Timestamp note:
  //   All timestamps in this unittest are expressed in number of seconds since
  // epoch, 1970-01-01T00:00:00Z (UTC). The RTCCertificate interface uses ms,
  // but only seconds-precision is supported by SSLCertificate. To make the
  // tests clearer we convert everything to seconds since the precision matters
  // when generating certificates or comparing timestamps.
  //   As a result, ExpiresSeconds and HasExpiredSeconds are used instead of
  // RTCCertificate::Expires and ::HasExpired for ms -> s conversion.

  uint64_t NowSeconds() const { return TimeNanos() / kNumNanosecsPerSec; }

  uint64_t ExpiresSeconds(const scoped_refptr<RTCCertificate>& cert) const {
    uint64_t exp_ms = cert->Expires();
    uint64_t exp_s = exp_ms / kNumMillisecsPerSec;
    // Make sure this did not result in loss of precision.
    RTC_CHECK_EQ(exp_s * kNumMillisecsPerSec, exp_ms);
    return exp_s;
  }

  bool HasExpiredSeconds(const scoped_refptr<RTCCertificate>& cert,
                         uint64_t now_s) const {
    return cert->HasExpired(now_s * kNumMillisecsPerSec);
  }

  // An RTC_CHECK ensures that `expires_s` this is in valid range of time_t as
  // is required by SSLIdentityParams. On some 32-bit systems time_t is limited
  // to < 2^31. On such systems this will fail for expiration times of year 2038
  // or later.
  scoped_refptr<RTCCertificate> GenerateCertificateWithExpires(
      uint64_t expires_s) const {
    RTC_CHECK(IsValueInRangeForNumericType<time_t>(expires_s));

    SSLIdentityParams params;
    params.common_name = kTestCertCommonName;
    params.not_before = 0;
    params.not_after = static_cast<time_t>(expires_s);
    // Certificate type does not matter for our purposes, using ECDSA because it
    // is fast to generate.
    params.key_params = KeyParams::ECDSA();

    std::unique_ptr<SSLIdentity> identity(SSLIdentity::CreateForTest(params));
    return RTCCertificate::Create(std::move(identity));
  }
};

TEST_F(RTCCertificateTest, NewCertificateNotExpired) {
  // Generate a real certificate without specifying the expiration time.
  // Certificate type doesn't matter, using ECDSA because it's fast to generate.
  scoped_refptr<RTCCertificate> certificate = GenerateECDSA();

  uint64_t now = NowSeconds();
  EXPECT_FALSE(HasExpiredSeconds(certificate, now));
  // Even without specifying the expiration time we would expect it to be valid
  // for at least half an hour.
  EXPECT_FALSE(HasExpiredSeconds(certificate, now + 30 * 60));
}

TEST_F(RTCCertificateTest, UsesExpiresAskedFor) {
  uint64_t now = NowSeconds();
  scoped_refptr<RTCCertificate> certificate =
      GenerateCertificateWithExpires(now);
  EXPECT_EQ(now, ExpiresSeconds(certificate));
}

TEST_F(RTCCertificateTest, ExpiresInOneSecond) {
  // Generate a certificate that expires in 1s.
  uint64_t now = NowSeconds();
  scoped_refptr<RTCCertificate> certificate =
      GenerateCertificateWithExpires(now + 1);
  // Now it should not have expired.
  EXPECT_FALSE(HasExpiredSeconds(certificate, now));
  // In 2s it should have expired.
  EXPECT_TRUE(HasExpiredSeconds(certificate, now + 2));
}

TEST_F(RTCCertificateTest, DifferentCertificatesNotEqual) {
  scoped_refptr<RTCCertificate> a = GenerateECDSA();
  scoped_refptr<RTCCertificate> b = GenerateECDSA();
  EXPECT_TRUE(*a != *b);
}

TEST_F(RTCCertificateTest, CloneWithPEMSerialization) {
  scoped_refptr<RTCCertificate> orig = GenerateECDSA();

  // To PEM.
  RTCCertificatePEM orig_pem = orig->ToPEM();
  // Clone from PEM.
  scoped_refptr<RTCCertificate> clone = RTCCertificate::FromPEM(orig_pem);
  EXPECT_TRUE(clone);
  EXPECT_TRUE(*orig == *clone);
  EXPECT_EQ(orig->Expires(), clone->Expires());
}

TEST_F(RTCCertificateTest, FromPEMWithInvalidPEM) {
  RTCCertificatePEM pem("not a valid PEM", "not a valid PEM");
  scoped_refptr<RTCCertificate> certificate = RTCCertificate::FromPEM(pem);
  EXPECT_FALSE(certificate);
}

}  // namespace rtc