summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/test_client.cc
blob: 87c946529ea286481377f5056d06cb79435b6560 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
 *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/test_client.h"

#include <string.h>

#include <memory>
#include <utility>

#include "api/units/timestamp.h"
#include "rtc_base/gunit.h"
#include "rtc_base/network/received_packet.h"
#include "rtc_base/thread.h"
#include "rtc_base/time_utils.h"

namespace rtc {

// DESIGN: Each packet received is put it into a list of packets.
//         Callers can retrieve received packets from any thread by calling
//         NextPacket.

TestClient::TestClient(std::unique_ptr<AsyncPacketSocket> socket)
    : TestClient(std::move(socket), nullptr) {}

TestClient::TestClient(std::unique_ptr<AsyncPacketSocket> socket,
                       ThreadProcessingFakeClock* fake_clock)
    : fake_clock_(fake_clock), socket_(std::move(socket)) {
  socket_->RegisterReceivedPacketCallback(
      [&](rtc::AsyncPacketSocket* socket, const rtc::ReceivedPacket& packet) {
        OnPacket(socket, packet);
      });
  socket_->SignalReadyToSend.connect(this, &TestClient::OnReadyToSend);
}

TestClient::~TestClient() {}

bool TestClient::CheckConnState(AsyncPacketSocket::State state) {
  // Wait for our timeout value until the socket reaches the desired state.
  int64_t end = TimeAfter(kTimeoutMs);
  while (socket_->GetState() != state && TimeUntil(end) > 0) {
    AdvanceTime(1);
  }
  return (socket_->GetState() == state);
}

int TestClient::Send(const char* buf, size_t size) {
  rtc::PacketOptions options;
  return socket_->Send(buf, size, options);
}

int TestClient::SendTo(const char* buf,
                       size_t size,
                       const SocketAddress& dest) {
  rtc::PacketOptions options;
  return socket_->SendTo(buf, size, dest, options);
}

std::unique_ptr<TestClient::Packet> TestClient::NextPacket(int timeout_ms) {
  // If no packets are currently available, we go into a get/dispatch loop for
  // at most timeout_ms.  If, during the loop, a packet arrives, then we can
  // stop early and return it.

  // Note that the case where no packet arrives is important.  We often want to
  // test that a packet does not arrive.

  // Note also that we only try to pump our current thread's message queue.
  // Pumping another thread's queue could lead to messages being dispatched from
  // the wrong thread to non-thread-safe objects.

  int64_t end = TimeAfter(timeout_ms);
  while (TimeUntil(end) > 0) {
    {
      webrtc::MutexLock lock(&mutex_);
      if (packets_.size() != 0) {
        break;
      }
    }
    AdvanceTime(1);
  }

  // Return the first packet placed in the queue.
  std::unique_ptr<Packet> packet;
  webrtc::MutexLock lock(&mutex_);
  if (packets_.size() > 0) {
    packet = std::move(packets_.front());
    packets_.erase(packets_.begin());
  }

  return packet;
}

bool TestClient::CheckNextPacket(const char* buf,
                                 size_t size,
                                 SocketAddress* addr) {
  bool res = false;
  std::unique_ptr<Packet> packet = NextPacket(kTimeoutMs);
  if (packet) {
    res = (packet->buf.size() == size &&
           memcmp(packet->buf.data(), buf, size) == 0 &&
           CheckTimestamp(packet->packet_time));
    if (addr)
      *addr = packet->addr;
  }
  return res;
}

bool TestClient::CheckTimestamp(
    absl::optional<webrtc::Timestamp> packet_timestamp) {
  bool res = true;
  if (!packet_timestamp) {
    res = false;
  }
  if (prev_packet_timestamp_) {
    if (packet_timestamp < prev_packet_timestamp_) {
      res = false;
    }
  }
  prev_packet_timestamp_ = packet_timestamp;
  return res;
}

void TestClient::AdvanceTime(int ms) {
  // If the test is using a fake clock, we must advance the fake clock to
  // advance time. Otherwise, ProcessMessages will work.
  if (fake_clock_) {
    SIMULATED_WAIT(false, ms, *fake_clock_);
  } else {
    Thread::Current()->ProcessMessages(1);
  }
}

bool TestClient::CheckNoPacket() {
  return NextPacket(kNoPacketTimeoutMs) == nullptr;
}

int TestClient::GetError() {
  return socket_->GetError();
}

int TestClient::SetOption(Socket::Option opt, int value) {
  return socket_->SetOption(opt, value);
}

void TestClient::OnPacket(AsyncPacketSocket* socket,
                          const rtc::ReceivedPacket& received_packet) {
  webrtc::MutexLock lock(&mutex_);
  packets_.push_back(std::make_unique<Packet>(received_packet));
}

void TestClient::OnReadyToSend(AsyncPacketSocket* socket) {
  ++ready_to_send_count_;
}

TestClient::Packet::Packet(const rtc::ReceivedPacket& received_packet)
    : addr(received_packet.source_address()),
      // Copy received_packet payload to a buffer owned by Packet.
      buf(received_packet.payload().data(), received_packet.payload().size()),
      packet_time(received_packet.arrival_time()) {}

TestClient::Packet::Packet(const Packet& p)
    : addr(p.addr),
      buf(p.buf.data(), p.buf.size()),
      packet_time(p.packet_time) {}

}  // namespace rtc