1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
|
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/thread.h"
#include "absl/strings/string_view.h"
#include "api/task_queue/task_queue_base.h"
#include "api/units/time_delta.h"
#include "rtc_base/socket_server.h"
#if defined(WEBRTC_WIN)
#include <comdef.h>
#elif defined(WEBRTC_POSIX)
#include <time.h>
#else
#error "Either WEBRTC_WIN or WEBRTC_POSIX needs to be defined."
#endif
#if defined(WEBRTC_WIN)
// Disable warning that we don't care about:
// warning C4722: destructor never returns, potential memory leak
#pragma warning(disable : 4722)
#endif
#include <stdio.h>
#include <utility>
#include "absl/algorithm/container.h"
#include "absl/cleanup/cleanup.h"
#include "api/sequence_checker.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/internal/default_socket_server.h"
#include "rtc_base/logging.h"
#include "rtc_base/null_socket_server.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
#if defined(WEBRTC_MAC)
#include "rtc_base/system/cocoa_threading.h"
/*
* These are forward-declarations for methods that are part of the
* ObjC runtime. They are declared in the private header objc-internal.h.
* These calls are what clang inserts when using @autoreleasepool in ObjC,
* but here they are used directly in order to keep this file C++.
* https://clang.llvm.org/docs/AutomaticReferenceCounting.html#runtime-support
*/
extern "C" {
void* objc_autoreleasePoolPush(void);
void objc_autoreleasePoolPop(void* pool);
}
namespace {
class ScopedAutoReleasePool {
public:
ScopedAutoReleasePool() : pool_(objc_autoreleasePoolPush()) {}
~ScopedAutoReleasePool() { objc_autoreleasePoolPop(pool_); }
private:
void* const pool_;
};
} // namespace
#endif
namespace rtc {
using ::webrtc::MutexLock;
using ::webrtc::TimeDelta;
ThreadManager* ThreadManager::Instance() {
static ThreadManager* const thread_manager = new ThreadManager();
return thread_manager;
}
ThreadManager::~ThreadManager() {
// By above RTC_DEFINE_STATIC_LOCAL.
RTC_DCHECK_NOTREACHED() << "ThreadManager should never be destructed.";
}
// static
void ThreadManager::Add(Thread* message_queue) {
return Instance()->AddInternal(message_queue);
}
void ThreadManager::AddInternal(Thread* message_queue) {
MutexLock cs(&crit_);
message_queues_.push_back(message_queue);
}
// static
void ThreadManager::Remove(Thread* message_queue) {
return Instance()->RemoveInternal(message_queue);
}
void ThreadManager::RemoveInternal(Thread* message_queue) {
{
MutexLock cs(&crit_);
std::vector<Thread*>::iterator iter;
iter = absl::c_find(message_queues_, message_queue);
if (iter != message_queues_.end()) {
message_queues_.erase(iter);
}
#if RTC_DCHECK_IS_ON
RemoveFromSendGraph(message_queue);
#endif
}
}
#if RTC_DCHECK_IS_ON
void ThreadManager::RemoveFromSendGraph(Thread* thread) {
for (auto it = send_graph_.begin(); it != send_graph_.end();) {
if (it->first == thread) {
it = send_graph_.erase(it);
} else {
it->second.erase(thread);
++it;
}
}
}
void ThreadManager::RegisterSendAndCheckForCycles(Thread* source,
Thread* target) {
RTC_DCHECK(source);
RTC_DCHECK(target);
MutexLock cs(&crit_);
std::deque<Thread*> all_targets({target});
// We check the pre-existing who-sends-to-who graph for any path from target
// to source. This loop is guaranteed to terminate because per the send graph
// invariant, there are no cycles in the graph.
for (size_t i = 0; i < all_targets.size(); i++) {
const auto& targets = send_graph_[all_targets[i]];
all_targets.insert(all_targets.end(), targets.begin(), targets.end());
}
RTC_CHECK_EQ(absl::c_count(all_targets, source), 0)
<< " send loop between " << source->name() << " and " << target->name();
// We may now insert source -> target without creating a cycle, since there
// was no path from target to source per the prior CHECK.
send_graph_[source].insert(target);
}
#endif
// static
void ThreadManager::ProcessAllMessageQueuesForTesting() {
return Instance()->ProcessAllMessageQueuesInternal();
}
void ThreadManager::ProcessAllMessageQueuesInternal() {
// This works by posting a delayed message at the current time and waiting
// for it to be dispatched on all queues, which will ensure that all messages
// that came before it were also dispatched.
std::atomic<int> queues_not_done(0);
{
MutexLock cs(&crit_);
for (Thread* queue : message_queues_) {
if (!queue->IsProcessingMessagesForTesting()) {
// If the queue is not processing messages, it can
// be ignored. If we tried to post a message to it, it would be dropped
// or ignored.
continue;
}
queues_not_done.fetch_add(1);
// Whether the task is processed, or the thread is simply cleared,
// queues_not_done gets decremented.
absl::Cleanup sub = [&queues_not_done] { queues_not_done.fetch_sub(1); };
// Post delayed task instead of regular task to wait for all delayed tasks
// that are ready for processing.
queue->PostDelayedTask([sub = std::move(sub)] {}, TimeDelta::Zero());
}
}
rtc::Thread* current = rtc::Thread::Current();
// Note: One of the message queues may have been on this thread, which is
// why we can't synchronously wait for queues_not_done to go to 0; we need
// to process messages as well.
while (queues_not_done.load() > 0) {
if (current) {
current->ProcessMessages(0);
}
}
}
// static
Thread* Thread::Current() {
ThreadManager* manager = ThreadManager::Instance();
Thread* thread = manager->CurrentThread();
return thread;
}
#if defined(WEBRTC_POSIX)
ThreadManager::ThreadManager() {
#if defined(WEBRTC_MAC)
InitCocoaMultiThreading();
#endif
pthread_key_create(&key_, nullptr);
}
Thread* ThreadManager::CurrentThread() {
return static_cast<Thread*>(pthread_getspecific(key_));
}
void ThreadManager::SetCurrentThreadInternal(Thread* thread) {
pthread_setspecific(key_, thread);
}
#endif
#if defined(WEBRTC_WIN)
ThreadManager::ThreadManager() : key_(TlsAlloc()) {}
Thread* ThreadManager::CurrentThread() {
return static_cast<Thread*>(TlsGetValue(key_));
}
void ThreadManager::SetCurrentThreadInternal(Thread* thread) {
TlsSetValue(key_, thread);
}
#endif
void ThreadManager::SetCurrentThread(Thread* thread) {
#if RTC_DLOG_IS_ON
if (CurrentThread() && thread) {
RTC_DLOG(LS_ERROR) << "SetCurrentThread: Overwriting an existing value?";
}
#endif // RTC_DLOG_IS_ON
if (thread) {
thread->EnsureIsCurrentTaskQueue();
} else {
Thread* current = CurrentThread();
if (current) {
// The current thread is being cleared, e.g. as a result of
// UnwrapCurrent() being called or when a thread is being stopped
// (see PreRun()). This signals that the Thread instance is being detached
// from the thread, which also means that TaskQueue::Current() must not
// return a pointer to the Thread instance.
current->ClearCurrentTaskQueue();
}
}
SetCurrentThreadInternal(thread);
}
void rtc::ThreadManager::ChangeCurrentThreadForTest(rtc::Thread* thread) {
SetCurrentThreadInternal(thread);
}
Thread* ThreadManager::WrapCurrentThread() {
Thread* result = CurrentThread();
if (nullptr == result) {
result = new Thread(CreateDefaultSocketServer());
result->WrapCurrentWithThreadManager(this, true);
}
return result;
}
void ThreadManager::UnwrapCurrentThread() {
Thread* t = CurrentThread();
if (t && !(t->IsOwned())) {
t->UnwrapCurrent();
delete t;
}
}
Thread::ScopedDisallowBlockingCalls::ScopedDisallowBlockingCalls()
: thread_(Thread::Current()),
previous_state_(thread_->SetAllowBlockingCalls(false)) {}
Thread::ScopedDisallowBlockingCalls::~ScopedDisallowBlockingCalls() {
RTC_DCHECK(thread_->IsCurrent());
thread_->SetAllowBlockingCalls(previous_state_);
}
#if RTC_DCHECK_IS_ON
Thread::ScopedCountBlockingCalls::ScopedCountBlockingCalls(
std::function<void(uint32_t, uint32_t)> callback)
: thread_(Thread::Current()),
base_blocking_call_count_(thread_->GetBlockingCallCount()),
base_could_be_blocking_call_count_(
thread_->GetCouldBeBlockingCallCount()),
result_callback_(std::move(callback)) {}
Thread::ScopedCountBlockingCalls::~ScopedCountBlockingCalls() {
if (GetTotalBlockedCallCount() >= min_blocking_calls_for_callback_) {
result_callback_(GetBlockingCallCount(), GetCouldBeBlockingCallCount());
}
}
uint32_t Thread::ScopedCountBlockingCalls::GetBlockingCallCount() const {
return thread_->GetBlockingCallCount() - base_blocking_call_count_;
}
uint32_t Thread::ScopedCountBlockingCalls::GetCouldBeBlockingCallCount() const {
return thread_->GetCouldBeBlockingCallCount() -
base_could_be_blocking_call_count_;
}
uint32_t Thread::ScopedCountBlockingCalls::GetTotalBlockedCallCount() const {
return GetBlockingCallCount() + GetCouldBeBlockingCallCount();
}
#endif
Thread::Thread(SocketServer* ss) : Thread(ss, /*do_init=*/true) {}
Thread::Thread(std::unique_ptr<SocketServer> ss)
: Thread(std::move(ss), /*do_init=*/true) {}
Thread::Thread(SocketServer* ss, bool do_init)
: delayed_next_num_(0),
fInitialized_(false),
fDestroyed_(false),
stop_(0),
ss_(ss) {
RTC_DCHECK(ss);
ss_->SetMessageQueue(this);
SetName("Thread", this); // default name
if (do_init) {
DoInit();
}
}
Thread::Thread(std::unique_ptr<SocketServer> ss, bool do_init)
: Thread(ss.get(), do_init) {
own_ss_ = std::move(ss);
}
Thread::~Thread() {
Stop();
DoDestroy();
}
void Thread::DoInit() {
if (fInitialized_) {
return;
}
fInitialized_ = true;
ThreadManager::Add(this);
}
void Thread::DoDestroy() {
if (fDestroyed_) {
return;
}
fDestroyed_ = true;
// The signal is done from here to ensure
// that it always gets called when the queue
// is going away.
if (ss_) {
ss_->SetMessageQueue(nullptr);
}
ThreadManager::Remove(this);
// Clear.
CurrentTaskQueueSetter set_current(this);
messages_ = {};
delayed_messages_ = {};
}
SocketServer* Thread::socketserver() {
return ss_;
}
void Thread::WakeUpSocketServer() {
ss_->WakeUp();
}
void Thread::Quit() {
stop_.store(1, std::memory_order_release);
WakeUpSocketServer();
}
bool Thread::IsQuitting() {
return stop_.load(std::memory_order_acquire) != 0;
}
void Thread::Restart() {
stop_.store(0, std::memory_order_release);
}
absl::AnyInvocable<void() &&> Thread::Get(int cmsWait) {
// Get w/wait + timer scan / dispatch + socket / event multiplexer dispatch
int64_t cmsTotal = cmsWait;
int64_t cmsElapsed = 0;
int64_t msStart = TimeMillis();
int64_t msCurrent = msStart;
while (true) {
// Check for posted events
int64_t cmsDelayNext = kForever;
{
// All queue operations need to be locked, but nothing else in this loop
// can happen while holding the `mutex_`.
MutexLock lock(&mutex_);
// Check for delayed messages that have been triggered and calculate the
// next trigger time.
while (!delayed_messages_.empty()) {
if (msCurrent < delayed_messages_.top().run_time_ms) {
cmsDelayNext =
TimeDiff(delayed_messages_.top().run_time_ms, msCurrent);
break;
}
messages_.push(std::move(delayed_messages_.top().functor));
delayed_messages_.pop();
}
// Pull a message off the message queue, if available.
if (!messages_.empty()) {
absl::AnyInvocable<void()&&> task = std::move(messages_.front());
messages_.pop();
return task;
}
}
if (IsQuitting())
break;
// Which is shorter, the delay wait or the asked wait?
int64_t cmsNext;
if (cmsWait == kForever) {
cmsNext = cmsDelayNext;
} else {
cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
if ((cmsDelayNext != kForever) && (cmsDelayNext < cmsNext))
cmsNext = cmsDelayNext;
}
{
// Wait and multiplex in the meantime
if (!ss_->Wait(cmsNext == kForever ? SocketServer::kForever
: webrtc::TimeDelta::Millis(cmsNext),
/*process_io=*/true))
return nullptr;
}
// If the specified timeout expired, return
msCurrent = TimeMillis();
cmsElapsed = TimeDiff(msCurrent, msStart);
if (cmsWait != kForever) {
if (cmsElapsed >= cmsWait)
return nullptr;
}
}
return nullptr;
}
void Thread::PostTaskImpl(absl::AnyInvocable<void() &&> task,
const PostTaskTraits& traits,
const webrtc::Location& location) {
if (IsQuitting()) {
return;
}
// Keep thread safe
// Add the message to the end of the queue
// Signal for the multiplexer to return
{
MutexLock lock(&mutex_);
messages_.push(std::move(task));
}
WakeUpSocketServer();
}
void Thread::PostDelayedTaskImpl(absl::AnyInvocable<void() &&> task,
webrtc::TimeDelta delay,
const PostDelayedTaskTraits& traits,
const webrtc::Location& location) {
if (IsQuitting()) {
return;
}
// Keep thread safe
// Add to the priority queue. Gets sorted soonest first.
// Signal for the multiplexer to return.
int64_t delay_ms = delay.RoundUpTo(webrtc::TimeDelta::Millis(1)).ms<int>();
int64_t run_time_ms = TimeAfter(delay_ms);
{
MutexLock lock(&mutex_);
delayed_messages_.push({.delay_ms = delay_ms,
.run_time_ms = run_time_ms,
.message_number = delayed_next_num_,
.functor = std::move(task)});
// If this message queue processes 1 message every millisecond for 50 days,
// we will wrap this number. Even then, only messages with identical times
// will be misordered, and then only briefly. This is probably ok.
++delayed_next_num_;
RTC_DCHECK_NE(0, delayed_next_num_);
}
WakeUpSocketServer();
}
int Thread::GetDelay() {
MutexLock lock(&mutex_);
if (!messages_.empty())
return 0;
if (!delayed_messages_.empty()) {
int delay = TimeUntil(delayed_messages_.top().run_time_ms);
if (delay < 0)
delay = 0;
return delay;
}
return kForever;
}
void Thread::Dispatch(absl::AnyInvocable<void() &&> task) {
TRACE_EVENT0("webrtc", "Thread::Dispatch");
RTC_DCHECK_RUN_ON(this);
int64_t start_time = TimeMillis();
std::move(task)();
int64_t end_time = TimeMillis();
int64_t diff = TimeDiff(end_time, start_time);
if (diff >= dispatch_warning_ms_) {
RTC_LOG(LS_INFO) << "Message to " << name() << " took " << diff
<< "ms to dispatch.";
// To avoid log spew, move the warning limit to only give warning
// for delays that are larger than the one observed.
dispatch_warning_ms_ = diff + 1;
}
}
bool Thread::IsCurrent() const {
return ThreadManager::Instance()->CurrentThread() == this;
}
std::unique_ptr<Thread> Thread::CreateWithSocketServer() {
return std::unique_ptr<Thread>(new Thread(CreateDefaultSocketServer()));
}
std::unique_ptr<Thread> Thread::Create() {
return std::unique_ptr<Thread>(
new Thread(std::unique_ptr<SocketServer>(new NullSocketServer())));
}
bool Thread::SleepMs(int milliseconds) {
AssertBlockingIsAllowedOnCurrentThread();
#if defined(WEBRTC_WIN)
::Sleep(milliseconds);
return true;
#else
// POSIX has both a usleep() and a nanosleep(), but the former is deprecated,
// so we use nanosleep() even though it has greater precision than necessary.
struct timespec ts;
ts.tv_sec = milliseconds / 1000;
ts.tv_nsec = (milliseconds % 1000) * 1000000;
int ret = nanosleep(&ts, nullptr);
if (ret != 0) {
RTC_LOG_ERR(LS_WARNING) << "nanosleep() returning early";
return false;
}
return true;
#endif
}
bool Thread::SetName(absl::string_view name, const void* obj) {
RTC_DCHECK(!IsRunning());
name_ = std::string(name);
if (obj) {
// The %p specifier typically produce at most 16 hex digits, possibly with a
// 0x prefix. But format is implementation defined, so add some margin.
char buf[30];
snprintf(buf, sizeof(buf), " 0x%p", obj);
name_ += buf;
}
return true;
}
void Thread::SetDispatchWarningMs(int deadline) {
if (!IsCurrent()) {
PostTask([this, deadline]() { SetDispatchWarningMs(deadline); });
return;
}
RTC_DCHECK_RUN_ON(this);
dispatch_warning_ms_ = deadline;
}
bool Thread::Start() {
RTC_DCHECK(!IsRunning());
if (IsRunning())
return false;
Restart(); // reset IsQuitting() if the thread is being restarted
// Make sure that ThreadManager is created on the main thread before
// we start a new thread.
ThreadManager::Instance();
owned_ = true;
#if defined(WEBRTC_WIN)
thread_ = CreateThread(nullptr, 0, PreRun, this, 0, &thread_id_);
if (!thread_) {
return false;
}
#elif defined(WEBRTC_POSIX)
pthread_attr_t attr;
pthread_attr_init(&attr);
int error_code = pthread_create(&thread_, &attr, PreRun, this);
if (0 != error_code) {
RTC_LOG(LS_ERROR) << "Unable to create pthread, error " << error_code;
thread_ = 0;
return false;
}
RTC_DCHECK(thread_);
#endif
return true;
}
bool Thread::WrapCurrent() {
return WrapCurrentWithThreadManager(ThreadManager::Instance(), true);
}
void Thread::UnwrapCurrent() {
// Clears the platform-specific thread-specific storage.
ThreadManager::Instance()->SetCurrentThread(nullptr);
#if defined(WEBRTC_WIN)
if (thread_ != nullptr) {
if (!CloseHandle(thread_)) {
RTC_LOG_GLE(LS_ERROR)
<< "When unwrapping thread, failed to close handle.";
}
thread_ = nullptr;
thread_id_ = 0;
}
#elif defined(WEBRTC_POSIX)
thread_ = 0;
#endif
}
void Thread::SafeWrapCurrent() {
WrapCurrentWithThreadManager(ThreadManager::Instance(), false);
}
void Thread::Join() {
if (!IsRunning())
return;
RTC_DCHECK(!IsCurrent());
if (Current() && !Current()->blocking_calls_allowed_) {
RTC_LOG(LS_WARNING) << "Waiting for the thread to join, "
"but blocking calls have been disallowed";
}
#if defined(WEBRTC_WIN)
RTC_DCHECK(thread_ != nullptr);
WaitForSingleObject(thread_, INFINITE);
CloseHandle(thread_);
thread_ = nullptr;
thread_id_ = 0;
#elif defined(WEBRTC_POSIX)
pthread_join(thread_, nullptr);
thread_ = 0;
#endif
}
bool Thread::SetAllowBlockingCalls(bool allow) {
RTC_DCHECK(IsCurrent());
bool previous = blocking_calls_allowed_;
blocking_calls_allowed_ = allow;
return previous;
}
// static
void Thread::AssertBlockingIsAllowedOnCurrentThread() {
#if !defined(NDEBUG)
Thread* current = Thread::Current();
RTC_DCHECK(!current || current->blocking_calls_allowed_);
#endif
}
// static
#if defined(WEBRTC_WIN)
DWORD WINAPI Thread::PreRun(LPVOID pv) {
#else
void* Thread::PreRun(void* pv) {
#endif
Thread* thread = static_cast<Thread*>(pv);
ThreadManager::Instance()->SetCurrentThread(thread);
rtc::SetCurrentThreadName(thread->name_.c_str());
#if defined(WEBRTC_MAC)
ScopedAutoReleasePool pool;
#endif
thread->Run();
ThreadManager::Instance()->SetCurrentThread(nullptr);
#ifdef WEBRTC_WIN
return 0;
#else
return nullptr;
#endif
} // namespace rtc
void Thread::Run() {
ProcessMessages(kForever);
}
bool Thread::IsOwned() {
RTC_DCHECK(IsRunning());
return owned_;
}
void Thread::Stop() {
Thread::Quit();
Join();
}
void Thread::BlockingCallImpl(rtc::FunctionView<void()> functor,
const webrtc::Location& location) {
TRACE_EVENT0("webrtc", "Thread::BlockingCall");
RTC_DCHECK(!IsQuitting());
if (IsQuitting())
return;
if (IsCurrent()) {
#if RTC_DCHECK_IS_ON
RTC_DCHECK(this->IsInvokeToThreadAllowed(this));
RTC_DCHECK_RUN_ON(this);
could_be_blocking_call_count_++;
#endif
functor();
return;
}
#if RTC_DCHECK_IS_ON
if (Thread* current_thread = Thread::Current()) {
RTC_DCHECK_RUN_ON(current_thread);
RTC_DCHECK(current_thread->blocking_calls_allowed_);
current_thread->blocking_call_count_++;
RTC_DCHECK(current_thread->IsInvokeToThreadAllowed(this));
ThreadManager::Instance()->RegisterSendAndCheckForCycles(current_thread,
this);
}
#endif
Event done;
absl::Cleanup cleanup = [&done] { done.Set(); };
PostTask([functor, cleanup = std::move(cleanup)] { functor(); });
done.Wait(Event::kForever);
}
// Called by the ThreadManager when being set as the current thread.
void Thread::EnsureIsCurrentTaskQueue() {
task_queue_registration_ =
std::make_unique<TaskQueueBase::CurrentTaskQueueSetter>(this);
}
// Called by the ThreadManager when being set as the current thread.
void Thread::ClearCurrentTaskQueue() {
task_queue_registration_.reset();
}
void Thread::AllowInvokesToThread(Thread* thread) {
#if (!defined(NDEBUG) || RTC_DCHECK_IS_ON)
if (!IsCurrent()) {
PostTask([thread, this]() { AllowInvokesToThread(thread); });
return;
}
RTC_DCHECK_RUN_ON(this);
allowed_threads_.push_back(thread);
invoke_policy_enabled_ = true;
#endif
}
void Thread::DisallowAllInvokes() {
#if (!defined(NDEBUG) || RTC_DCHECK_IS_ON)
if (!IsCurrent()) {
PostTask([this]() { DisallowAllInvokes(); });
return;
}
RTC_DCHECK_RUN_ON(this);
allowed_threads_.clear();
invoke_policy_enabled_ = true;
#endif
}
#if RTC_DCHECK_IS_ON
uint32_t Thread::GetBlockingCallCount() const {
RTC_DCHECK_RUN_ON(this);
return blocking_call_count_;
}
uint32_t Thread::GetCouldBeBlockingCallCount() const {
RTC_DCHECK_RUN_ON(this);
return could_be_blocking_call_count_;
}
#endif
// Returns true if no policies added or if there is at least one policy
// that permits invocation to `target` thread.
bool Thread::IsInvokeToThreadAllowed(rtc::Thread* target) {
#if (!defined(NDEBUG) || RTC_DCHECK_IS_ON)
RTC_DCHECK_RUN_ON(this);
if (!invoke_policy_enabled_) {
return true;
}
for (const auto* thread : allowed_threads_) {
if (thread == target) {
return true;
}
}
return false;
#else
return true;
#endif
}
void Thread::Delete() {
Stop();
delete this;
}
bool Thread::IsProcessingMessagesForTesting() {
return (owned_ || IsCurrent()) && !IsQuitting();
}
bool Thread::ProcessMessages(int cmsLoop) {
// Using ProcessMessages with a custom clock for testing and a time greater
// than 0 doesn't work, since it's not guaranteed to advance the custom
// clock's time, and may get stuck in an infinite loop.
RTC_DCHECK(GetClockForTesting() == nullptr || cmsLoop == 0 ||
cmsLoop == kForever);
int64_t msEnd = (kForever == cmsLoop) ? 0 : TimeAfter(cmsLoop);
int cmsNext = cmsLoop;
while (true) {
#if defined(WEBRTC_MAC)
ScopedAutoReleasePool pool;
#endif
absl::AnyInvocable<void()&&> task = Get(cmsNext);
if (!task)
return !IsQuitting();
Dispatch(std::move(task));
if (cmsLoop != kForever) {
cmsNext = static_cast<int>(TimeUntil(msEnd));
if (cmsNext < 0)
return true;
}
}
}
bool Thread::WrapCurrentWithThreadManager(ThreadManager* thread_manager,
bool need_synchronize_access) {
RTC_DCHECK(!IsRunning());
#if defined(WEBRTC_WIN)
if (need_synchronize_access) {
// We explicitly ask for no rights other than synchronization.
// This gives us the best chance of succeeding.
thread_ = OpenThread(SYNCHRONIZE, FALSE, GetCurrentThreadId());
if (!thread_) {
RTC_LOG_GLE(LS_ERROR) << "Unable to get handle to thread.";
return false;
}
thread_id_ = GetCurrentThreadId();
}
#elif defined(WEBRTC_POSIX)
thread_ = pthread_self();
#endif
owned_ = false;
thread_manager->SetCurrentThread(this);
return true;
}
bool Thread::IsRunning() {
#if defined(WEBRTC_WIN)
return thread_ != nullptr;
#elif defined(WEBRTC_POSIX)
return thread_ != 0;
#endif
}
AutoThread::AutoThread()
: Thread(CreateDefaultSocketServer(), /*do_init=*/false) {
if (!ThreadManager::Instance()->CurrentThread()) {
// DoInit registers with ThreadManager. Do that only if we intend to
// be rtc::Thread::Current(), otherwise ProcessAllMessageQueuesInternal will
// post a message to a queue that no running thread is serving.
DoInit();
ThreadManager::Instance()->SetCurrentThread(this);
}
}
AutoThread::~AutoThread() {
Stop();
DoDestroy();
if (ThreadManager::Instance()->CurrentThread() == this) {
ThreadManager::Instance()->SetCurrentThread(nullptr);
}
}
AutoSocketServerThread::AutoSocketServerThread(SocketServer* ss)
: Thread(ss, /*do_init=*/false) {
DoInit();
old_thread_ = ThreadManager::Instance()->CurrentThread();
// Temporarily set the current thread to nullptr so that we can keep checks
// around that catch unintentional pointer overwrites.
rtc::ThreadManager::Instance()->SetCurrentThread(nullptr);
rtc::ThreadManager::Instance()->SetCurrentThread(this);
if (old_thread_) {
ThreadManager::Remove(old_thread_);
}
}
AutoSocketServerThread::~AutoSocketServerThread() {
RTC_DCHECK(ThreadManager::Instance()->CurrentThread() == this);
// Stop and destroy the thread before clearing it as the current thread.
// Sometimes there are messages left in the Thread that will be
// destroyed by DoDestroy, and sometimes the destructors of the message and/or
// its contents rely on this thread still being set as the current thread.
Stop();
DoDestroy();
rtc::ThreadManager::Instance()->SetCurrentThread(nullptr);
rtc::ThreadManager::Instance()->SetCurrentThread(old_thread_);
if (old_thread_) {
ThreadManager::Add(old_thread_);
}
}
} // namespace rtc
|