summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/test/network/cross_traffic.cc
blob: dd34bd02f1baa9a71a011376488b520e2d4aecc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/*
 *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "test/network/cross_traffic.h"

#include <math.h>

#include <utility>

#include "absl/memory/memory.h"
#include "absl/types/optional.h"
#include "cross_traffic.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"

namespace webrtc {
namespace test {

RandomWalkCrossTraffic::RandomWalkCrossTraffic(RandomWalkConfig config,
                                               CrossTrafficRoute* traffic_route)
    : config_(config),
      traffic_route_(traffic_route),
      random_(config_.random_seed) {
  sequence_checker_.Detach();
}
RandomWalkCrossTraffic::~RandomWalkCrossTraffic() = default;

void RandomWalkCrossTraffic::Process(Timestamp at_time) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  if (last_process_time_.IsMinusInfinity()) {
    last_process_time_ = at_time;
  }
  TimeDelta delta = at_time - last_process_time_;
  last_process_time_ = at_time;

  if (at_time - last_update_time_ >= config_.update_interval) {
    intensity_ += random_.Gaussian(config_.bias, config_.variance) *
                  sqrt((at_time - last_update_time_).seconds<double>());
    intensity_ = rtc::SafeClamp(intensity_, 0.0, 1.0);
    last_update_time_ = at_time;
  }
  pending_size_ += TrafficRate() * delta;

  if (pending_size_ >= config_.min_packet_size &&
      at_time >= last_send_time_ + config_.min_packet_interval) {
    traffic_route_->SendPacket(pending_size_.bytes());
    pending_size_ = DataSize::Zero();
    last_send_time_ = at_time;
  }
}

TimeDelta RandomWalkCrossTraffic::GetProcessInterval() const {
  return config_.min_packet_interval;
}

DataRate RandomWalkCrossTraffic::TrafficRate() const {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  return config_.peak_rate * intensity_;
}

ColumnPrinter RandomWalkCrossTraffic::StatsPrinter() {
  return ColumnPrinter::Lambda(
      "random_walk_cross_traffic_rate",
      [this](rtc::SimpleStringBuilder& sb) {
        sb.AppendFormat("%.0lf", TrafficRate().bps() / 8.0);
      },
      32);
}

PulsedPeaksCrossTraffic::PulsedPeaksCrossTraffic(
    PulsedPeaksConfig config,
    CrossTrafficRoute* traffic_route)
    : config_(config), traffic_route_(traffic_route) {
  sequence_checker_.Detach();
}
PulsedPeaksCrossTraffic::~PulsedPeaksCrossTraffic() = default;

void PulsedPeaksCrossTraffic::Process(Timestamp at_time) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  TimeDelta time_since_toggle = at_time - last_update_time_;
  if (time_since_toggle.IsInfinite() ||
      (sending_ && time_since_toggle >= config_.send_duration)) {
    sending_ = false;
    last_update_time_ = at_time;
  } else if (!sending_ && time_since_toggle >= config_.hold_duration) {
    sending_ = true;
    last_update_time_ = at_time;
    // Start sending period.
    last_send_time_ = at_time;
  }

  if (sending_) {
    DataSize pending_size = config_.peak_rate * (at_time - last_send_time_);

    if (pending_size >= config_.min_packet_size &&
        at_time >= last_send_time_ + config_.min_packet_interval) {
      traffic_route_->SendPacket(pending_size.bytes());
      last_send_time_ = at_time;
    }
  }
}

TimeDelta PulsedPeaksCrossTraffic::GetProcessInterval() const {
  return config_.min_packet_interval;
}

DataRate PulsedPeaksCrossTraffic::TrafficRate() const {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  return sending_ ? config_.peak_rate : DataRate::Zero();
}

ColumnPrinter PulsedPeaksCrossTraffic::StatsPrinter() {
  return ColumnPrinter::Lambda(
      "pulsed_peaks_cross_traffic_rate",
      [this](rtc::SimpleStringBuilder& sb) {
        sb.AppendFormat("%.0lf", TrafficRate().bps() / 8.0);
      },
      32);
}

TcpMessageRouteImpl::TcpMessageRouteImpl(Clock* clock,
                                         TaskQueueBase* task_queue,
                                         EmulatedRoute* send_route,
                                         EmulatedRoute* ret_route)
    : clock_(clock),
      task_queue_(task_queue),
      request_route_(send_route,
                     [this](TcpPacket packet, Timestamp) {
                       OnRequest(std::move(packet));
                     }),
      response_route_(ret_route,
                      [this](TcpPacket packet, Timestamp arrival_time) {
                        OnResponse(std::move(packet), arrival_time);
                      }) {}

void TcpMessageRouteImpl::SendMessage(size_t size,
                                      std::function<void()> on_received) {
  task_queue_->PostTask([this, size, handler = std::move(on_received)] {
    // If we are currently sending a message we won't reset the connection,
    // we'll act as if the messages are sent in the same TCP stream. This is
    // intended to simulate recreation of a TCP session for each message
    // in the typical case while avoiding the complexity overhead of
    // maintaining multiple virtual TCP sessions in parallel.
    if (pending_.empty() && in_flight_.empty()) {
      cwnd_ = 10;
      ssthresh_ = INFINITY;
    }
    int64_t data_left = static_cast<int64_t>(size);
    int64_t kMaxPacketSize = 1200;
    int64_t kMinPacketSize = 4;
    Message message{std::move(handler)};
    while (data_left > 0) {
      int64_t packet_size = std::min(data_left, kMaxPacketSize);
      int fragment_id = next_fragment_id_++;
      pending_.push_back(MessageFragment{
          fragment_id,
          static_cast<size_t>(std::max(kMinPacketSize, packet_size))});
      message.pending_fragment_ids.insert(fragment_id);
      data_left -= packet_size;
    }
    messages_.emplace_back(message);
    SendPackets(clock_->CurrentTime());
  });
}

void TcpMessageRouteImpl::OnRequest(TcpPacket packet_info) {
  for (auto it = messages_.begin(); it != messages_.end(); ++it) {
    if (it->pending_fragment_ids.count(packet_info.fragment.fragment_id) != 0) {
      it->pending_fragment_ids.erase(packet_info.fragment.fragment_id);
      if (it->pending_fragment_ids.empty()) {
        it->handler();
        messages_.erase(it);
      }
      break;
    }
  }
  const size_t kAckPacketSize = 20;
  response_route_.SendPacket(kAckPacketSize, packet_info);
}

void TcpMessageRouteImpl::OnResponse(TcpPacket packet_info, Timestamp at_time) {
  auto it = in_flight_.find(packet_info.sequence_number);
  if (it != in_flight_.end()) {
    last_rtt_ = at_time - packet_info.send_time;
    in_flight_.erase(it);
  }
  auto lost_end = in_flight_.lower_bound(packet_info.sequence_number);
  for (auto lost_it = in_flight_.begin(); lost_it != lost_end;
       lost_it = in_flight_.erase(lost_it)) {
    pending_.push_front(lost_it->second.fragment);
  }

  if (packet_info.sequence_number - last_acked_seq_num_ > 1) {
    HandleLoss(at_time);
  } else if (cwnd_ <= ssthresh_) {
    cwnd_ += 1;
  } else {
    cwnd_ += 1.0f / cwnd_;
  }
  last_acked_seq_num_ =
      std::max(packet_info.sequence_number, last_acked_seq_num_);
  SendPackets(at_time);
}

void TcpMessageRouteImpl::HandleLoss(Timestamp at_time) {
  if (at_time - last_reduction_time_ < last_rtt_)
    return;
  last_reduction_time_ = at_time;
  ssthresh_ = std::max(static_cast<int>(in_flight_.size() / 2), 2);
  cwnd_ = ssthresh_;
}

void TcpMessageRouteImpl::SendPackets(Timestamp at_time) {
  const TimeDelta kPacketTimeout = TimeDelta::Seconds(1);
  int cwnd = std::ceil(cwnd_);
  int packets_to_send = std::max(cwnd - static_cast<int>(in_flight_.size()), 0);
  while (packets_to_send-- > 0 && !pending_.empty()) {
    auto seq_num = next_sequence_number_++;
    TcpPacket send;
    send.sequence_number = seq_num;
    send.send_time = at_time;
    send.fragment = pending_.front();
    pending_.pop_front();
    request_route_.SendPacket(send.fragment.size, send);
    in_flight_.insert({seq_num, send});
    task_queue_->PostDelayedTask(
        [this, seq_num] {
          HandlePacketTimeout(seq_num, clock_->CurrentTime());
        },
        kPacketTimeout);
  }
}

void TcpMessageRouteImpl::HandlePacketTimeout(int seq_num, Timestamp at_time) {
  auto lost = in_flight_.find(seq_num);
  if (lost != in_flight_.end()) {
    pending_.push_front(lost->second.fragment);
    in_flight_.erase(lost);
    HandleLoss(at_time);
    SendPackets(at_time);
  }
}

FakeTcpCrossTraffic::FakeTcpCrossTraffic(FakeTcpConfig config,
                                         EmulatedRoute* send_route,
                                         EmulatedRoute* ret_route)
    : conf_(config), route_(this, send_route, ret_route) {}

TimeDelta FakeTcpCrossTraffic::GetProcessInterval() const {
  return conf_.process_interval;
}

void FakeTcpCrossTraffic::Process(Timestamp at_time) {
  SendPackets(at_time);
}

void FakeTcpCrossTraffic::OnRequest(int sequence_number, Timestamp at_time) {
  const size_t kAckPacketSize = 20;
  route_.SendResponse(kAckPacketSize, sequence_number);
}

void FakeTcpCrossTraffic::OnResponse(int sequence_number, Timestamp at_time) {
  ack_received_ = true;
  auto it = in_flight_.find(sequence_number);
  if (it != in_flight_.end()) {
    last_rtt_ = at_time - in_flight_.at(sequence_number);
    in_flight_.erase(sequence_number);
  }
  if (sequence_number - last_acked_seq_num_ > 1) {
    HandleLoss(at_time);
  } else if (cwnd_ <= ssthresh_) {
    cwnd_ += 1;
  } else {
    cwnd_ += 1.0f / cwnd_;
  }
  last_acked_seq_num_ = std::max(sequence_number, last_acked_seq_num_);
  SendPackets(at_time);
}

void FakeTcpCrossTraffic::HandleLoss(Timestamp at_time) {
  if (at_time - last_reduction_time_ < last_rtt_)
    return;
  last_reduction_time_ = at_time;
  ssthresh_ = std::max(static_cast<int>(in_flight_.size() / 2), 2);
  cwnd_ = ssthresh_;
}

void FakeTcpCrossTraffic::SendPackets(Timestamp at_time) {
  int cwnd = std::ceil(cwnd_);
  int packets_to_send = std::max(cwnd - static_cast<int>(in_flight_.size()), 0);
  bool timeouts = false;
  for (auto it = in_flight_.begin(); it != in_flight_.end();) {
    if (it->second < at_time - conf_.packet_timeout) {
      it = in_flight_.erase(it);
      timeouts = true;
    } else {
      ++it;
    }
  }
  if (timeouts)
    HandleLoss(at_time);
  for (int i = 0; i < packets_to_send; ++i) {
    if ((total_sent_ + conf_.packet_size) > conf_.send_limit) {
      break;
    }
    in_flight_.insert({next_sequence_number_, at_time});
    route_.SendRequest(conf_.packet_size.bytes<size_t>(),
                       next_sequence_number_++);
    total_sent_ += conf_.packet_size;
  }
}

}  // namespace test
}  // namespace webrtc