summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/test/time_controller/simulated_time_controller_unittest.cc
blob: c1c0ac2c0e753801fac62a1158194ea97838e244 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/*
 *  Copyright 2019 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "test/time_controller/simulated_time_controller.h"

#include <atomic>
#include <memory>

#include "api/task_queue/task_queue_base.h"
#include "api/units/time_delta.h"
#include "rtc_base/event.h"
#include "rtc_base/task_queue_for_test.h"
#include "rtc_base/task_utils/repeating_task.h"
#include "test/gmock.h"
#include "test/gtest.h"

// NOTE: Since these tests rely on real time behavior, they will be flaky
// if run on heavily loaded systems.
namespace webrtc {
namespace {
using ::testing::AtLeast;
using ::testing::Invoke;
using ::testing::MockFunction;
using ::testing::NiceMock;
using ::testing::Return;
constexpr Timestamp kStartTime = Timestamp::Seconds(1000);
}  // namespace

TEST(SimulatedTimeControllerTest, TaskIsStoppedOnStop) {
  const TimeDelta kShortInterval = TimeDelta::Millis(5);
  const TimeDelta kLongInterval = TimeDelta::Millis(20);
  const int kShortIntervalCount = 4;
  const int kMargin = 1;
  GlobalSimulatedTimeController time_simulation(kStartTime);
  std::unique_ptr<TaskQueueBase, TaskQueueDeleter> task_queue =
      time_simulation.GetTaskQueueFactory()->CreateTaskQueue(
          "TestQueue", TaskQueueFactory::Priority::NORMAL);
  std::atomic_int counter(0);
  auto handle = RepeatingTaskHandle::Start(task_queue.get(), [&] {
    if (++counter >= kShortIntervalCount)
      return kLongInterval;
    return kShortInterval;
  });
  // Sleep long enough to go through the initial phase.
  time_simulation.AdvanceTime(kShortInterval * (kShortIntervalCount + kMargin));
  EXPECT_EQ(counter.load(), kShortIntervalCount);

  task_queue->PostTask(
      [handle = std::move(handle)]() mutable { handle.Stop(); });

  // Sleep long enough that the task would run at least once more if not
  // stopped.
  time_simulation.AdvanceTime(kLongInterval * 2);
  EXPECT_EQ(counter.load(), kShortIntervalCount);
}

TEST(SimulatedTimeControllerTest, TaskCanStopItself) {
  std::atomic_int counter(0);
  GlobalSimulatedTimeController time_simulation(kStartTime);
  std::unique_ptr<TaskQueueBase, TaskQueueDeleter> task_queue =
      time_simulation.GetTaskQueueFactory()->CreateTaskQueue(
          "TestQueue", TaskQueueFactory::Priority::NORMAL);

  RepeatingTaskHandle handle;
  task_queue->PostTask([&] {
    handle = RepeatingTaskHandle::Start(task_queue.get(), [&] {
      ++counter;
      handle.Stop();
      return TimeDelta::Millis(2);
    });
  });
  time_simulation.AdvanceTime(TimeDelta::Millis(10));
  EXPECT_EQ(counter.load(), 1);
}

TEST(SimulatedTimeControllerTest, Example) {
  class ObjectOnTaskQueue {
   public:
    void DoPeriodicTask() {}
    TimeDelta TimeUntilNextRun() { return TimeDelta::Millis(100); }
    void StartPeriodicTask(RepeatingTaskHandle* handle,
                           TaskQueueBase* task_queue) {
      *handle = RepeatingTaskHandle::Start(task_queue, [this] {
        DoPeriodicTask();
        return TimeUntilNextRun();
      });
    }
  };
  GlobalSimulatedTimeController time_simulation(kStartTime);
  std::unique_ptr<TaskQueueBase, TaskQueueDeleter> task_queue =
      time_simulation.GetTaskQueueFactory()->CreateTaskQueue(
          "TestQueue", TaskQueueFactory::Priority::NORMAL);
  auto object = std::make_unique<ObjectOnTaskQueue>();
  // Create and start the periodic task.
  RepeatingTaskHandle handle;
  object->StartPeriodicTask(&handle, task_queue.get());
  // Restart the task
  task_queue->PostTask(
      [handle = std::move(handle)]() mutable { handle.Stop(); });
  object->StartPeriodicTask(&handle, task_queue.get());
  task_queue->PostTask(
      [handle = std::move(handle)]() mutable { handle.Stop(); });

  task_queue->PostTask([object = std::move(object)] {});
}

TEST(SimulatedTimeControllerTest, DelayTaskRunOnTime) {
  GlobalSimulatedTimeController time_simulation(kStartTime);
  std::unique_ptr<TaskQueueBase, TaskQueueDeleter> task_queue =
      time_simulation.GetTaskQueueFactory()->CreateTaskQueue(
          "TestQueue", TaskQueueFactory::Priority::NORMAL);

  bool delay_task_executed = false;
  task_queue->PostDelayedTask([&] { delay_task_executed = true; },
                              TimeDelta::Millis(10));

  time_simulation.AdvanceTime(TimeDelta::Millis(10));
  EXPECT_TRUE(delay_task_executed);
}

TEST(SimulatedTimeControllerTest, ThreadYeildsOnSynchronousCall) {
  GlobalSimulatedTimeController sim(kStartTime);
  auto main_thread = sim.GetMainThread();
  auto t2 = sim.CreateThread("thread", nullptr);
  bool task_has_run = false;
  // Posting a task to the main thread, this should not run until AdvanceTime is
  // called.
  main_thread->PostTask([&] { task_has_run = true; });
  SendTask(t2.get(), [] {
    rtc::Event yield_event;
    // Wait() triggers YieldExecution() which will runs message processing on
    // all threads that are not in the yielded set.

    yield_event.Wait(TimeDelta::Zero());
  });
  // Since we are doing an invoke from the main thread, we don't expect the main
  // thread message loop to be processed.
  EXPECT_FALSE(task_has_run);
  sim.AdvanceTime(TimeDelta::Seconds(1));
  ASSERT_TRUE(task_has_run);
}

TEST(SimulatedTimeControllerTest, SkipsDelayedTaskForward) {
  GlobalSimulatedTimeController sim(kStartTime);
  auto main_thread = sim.GetMainThread();
  constexpr auto duration_during_which_nothing_runs = TimeDelta::Seconds(2);
  constexpr auto shorter_duration = TimeDelta::Seconds(1);
  MockFunction<void()> fun;
  EXPECT_CALL(fun, Call).WillOnce(Invoke([&] {
    ASSERT_EQ(sim.GetClock()->CurrentTime(),
              kStartTime + duration_during_which_nothing_runs);
  }));
  main_thread->PostDelayedTask(fun.AsStdFunction(), shorter_duration);
  sim.SkipForwardBy(duration_during_which_nothing_runs);
  // Run tasks that were pending during the skip.
  sim.AdvanceTime(TimeDelta::Zero());
}

}  // namespace webrtc