summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/video/frame_cadence_adapter.cc
blob: 4aea1acec660e2e5506c68abbad7d632d3bca074 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
/*
 *  Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "video/frame_cadence_adapter.h"

#include <algorithm>
#include <atomic>
#include <deque>
#include <memory>
#include <utility>
#include <vector>

#include "absl/algorithm/container.h"
#include "absl/base/attributes.h"
#include "absl/cleanup/cleanup.h"
#include "api/sequence_checker.h"
#include "api/task_queue/pending_task_safety_flag.h"
#include "api/task_queue/task_queue_base.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "api/video/video_frame.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/race_checker.h"
#include "rtc_base/rate_statistics.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/system/no_unique_address.h"
#include "rtc_base/system/unused.h"
#include "rtc_base/task_utils/repeating_task.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/metrics.h"
#include "system_wrappers/include/ntp_time.h"

namespace webrtc {
namespace {

// Abstracts concrete modes of the cadence adapter.
class AdapterMode {
 public:
  virtual ~AdapterMode() = default;

  // Called on the worker thread for every frame that enters.
  virtual void OnFrame(Timestamp post_time,
                       bool queue_overload,
                       const VideoFrame& frame) = 0;

  // Returns the currently estimated input framerate.
  virtual absl::optional<uint32_t> GetInputFrameRateFps() = 0;

  // Updates the frame rate.
  virtual void UpdateFrameRate() = 0;
};

// Implements a pass-through adapter. Single-threaded.
class PassthroughAdapterMode : public AdapterMode {
 public:
  PassthroughAdapterMode(Clock* clock,
                         FrameCadenceAdapterInterface::Callback* callback)
      : clock_(clock), callback_(callback) {
    sequence_checker_.Detach();
  }

  // Adapter overrides.
  void OnFrame(Timestamp post_time,
               bool queue_overload,
               const VideoFrame& frame) override {
    RTC_DCHECK_RUN_ON(&sequence_checker_);
    callback_->OnFrame(post_time, queue_overload, frame);
  }

  absl::optional<uint32_t> GetInputFrameRateFps() override {
    RTC_DCHECK_RUN_ON(&sequence_checker_);
    return input_framerate_.Rate(clock_->TimeInMilliseconds());
  }

  void UpdateFrameRate() override {
    RTC_DCHECK_RUN_ON(&sequence_checker_);
    input_framerate_.Update(1, clock_->TimeInMilliseconds());
  }

 private:
  Clock* const clock_;
  FrameCadenceAdapterInterface::Callback* const callback_;
  RTC_NO_UNIQUE_ADDRESS SequenceChecker sequence_checker_;
  // Input frame rate statistics for use when not in zero-hertz mode.
  RateStatistics input_framerate_ RTC_GUARDED_BY(sequence_checker_){
      FrameCadenceAdapterInterface::kFrameRateAveragingWindowSizeMs, 1000};
};

// Implements a frame cadence adapter supporting zero-hertz input.
class ZeroHertzAdapterMode : public AdapterMode {
 public:
  ZeroHertzAdapterMode(TaskQueueBase* queue,
                       Clock* clock,
                       FrameCadenceAdapterInterface::Callback* callback,
                       double max_fps,
                       std::atomic<int>& frames_scheduled_for_processing,
                       bool zero_hertz_queue_overload);
  ~ZeroHertzAdapterMode() { refresh_frame_requester_.Stop(); }

  // Reconfigures according to parameters.
  // All spatial layer trackers are initialized as unconverged by this method.
  void ReconfigureParameters(
      const FrameCadenceAdapterInterface::ZeroHertzModeParams& params);

  // Updates spatial layer quality convergence status.
  void UpdateLayerQualityConvergence(size_t spatial_index,
                                     bool quality_converged);

  // Updates spatial layer enabled status.
  void UpdateLayerStatus(size_t spatial_index, bool enabled);

  // Adapter overrides.
  void OnFrame(Timestamp post_time,
               bool queue_overload,
               const VideoFrame& frame) override;
  absl::optional<uint32_t> GetInputFrameRateFps() override;
  void UpdateFrameRate() override {}

  // Notified on dropped frames.
  void OnDiscardedFrame();

  // Conditionally requests a refresh frame via
  // Callback::RequestRefreshFrame.
  void ProcessKeyFrameRequest();

  // Updates the restrictions of max frame rate for the video source.
  // Always called during construction using latest `restricted_frame_delay_`.
  void UpdateVideoSourceRestrictions(absl::optional<double> max_frame_rate);

 private:
  // The tracking state of each spatial layer. Used for determining when to
  // stop repeating frames.
  struct SpatialLayerTracker {
    // If unset, the layer is disabled. Otherwise carries the quality
    // convergence status of the layer.
    absl::optional<bool> quality_converged;
  };
  // The state of a scheduled repeat.
  struct ScheduledRepeat {
    ScheduledRepeat(Timestamp origin,
                    int64_t origin_timestamp_us,
                    int64_t origin_ntp_time_ms)
        : scheduled(origin),
          idle(false),
          origin(origin),
          origin_timestamp_us(origin_timestamp_us),
          origin_ntp_time_ms(origin_ntp_time_ms) {}
    // The instant when the repeat was scheduled.
    Timestamp scheduled;
    // True if the repeat was scheduled as an idle repeat (long), false
    // otherwise.
    bool idle;
    // The moment we decided to start repeating.
    Timestamp origin;
    // The timestamp_us of the frame when we started repeating.
    int64_t origin_timestamp_us;
    // The ntp_times_ms of the frame when we started repeating.
    int64_t origin_ntp_time_ms;
  };

  // Returns true if all spatial layers can be considered to be converged in
  // terms of quality.
  // Convergence means QP has dropped to a low-enough level to warrant ceasing
  // to send identical frames at high frequency.
  bool HasQualityConverged() const RTC_RUN_ON(sequence_checker_);
  // Resets quality convergence information. HasQualityConverged() returns false
  // after this call.
  void ResetQualityConvergenceInfo() RTC_RUN_ON(sequence_checker_);
  // Processes incoming frames on a delayed cadence.
  void ProcessOnDelayedCadence(Timestamp post_time)
      RTC_RUN_ON(sequence_checker_);
  // Schedules a later repeat with delay depending on state of layer trackers
  // and if UpdateVideoSourceRestrictions has been called or not.
  // If true is passed in `idle_repeat`, the repeat is going to be
  // kZeroHertzIdleRepeatRatePeriod. Otherwise it'll be the maximum value of
  // `frame_delay` or `restricted_frame_delay_` if it has been set.
  void ScheduleRepeat(int frame_id, bool idle_repeat)
      RTC_RUN_ON(sequence_checker_);
  // Repeats a frame in the absence of incoming frames. Slows down when quality
  // convergence is attained, and stops the cadence terminally when new frames
  // have arrived.
  void ProcessRepeatedFrameOnDelayedCadence(int frame_id)
      RTC_RUN_ON(sequence_checker_);
  // Sends a frame, updating the timestamp to the current time. Also updates
  // `queue_overload_count_` based on the time it takes to encode a frame and
  // the amount of received frames while encoding. The `queue_overload`
  // parameter in the OnFrame callback will be true while
  // `queue_overload_count_` is larger than zero to allow the client to drop
  // frames and thereby mitigate delay buildups.
  // Repeated frames are sent with `post_time` set to absl::nullopt.
  void SendFrameNow(absl::optional<Timestamp> post_time,
                    const VideoFrame& frame) RTC_RUN_ON(sequence_checker_);
  // Returns the repeat duration depending on if it's an idle repeat or not.
  TimeDelta RepeatDuration(bool idle_repeat) const
      RTC_RUN_ON(sequence_checker_);
  // Returns the frame duration taking potential restrictions into account.
  TimeDelta FrameDuration() const RTC_RUN_ON(sequence_checker_);
  // Unless timer already running, starts repeatedly requesting refresh frames
  // after a grace_period. If a frame appears before the grace_period has
  // passed, the request is cancelled.
  void MaybeStartRefreshFrameRequester() RTC_RUN_ON(sequence_checker_);

  TaskQueueBase* const queue_;
  Clock* const clock_;
  FrameCadenceAdapterInterface::Callback* const callback_;

  // The configured max_fps.
  // TODO(crbug.com/1255737): support max_fps updates.
  const double max_fps_;

  // Number of frames that are currently scheduled for processing on the
  // `queue_`.
  const std::atomic<int>& frames_scheduled_for_processing_;

  // Can be used as kill-switch for the queue overload mechanism.
  const bool zero_hertz_queue_overload_enabled_;

  // How much the incoming frame sequence is delayed by.
  const TimeDelta frame_delay_ = TimeDelta::Seconds(1) / max_fps_;

  RTC_NO_UNIQUE_ADDRESS SequenceChecker sequence_checker_;
  // A queue of incoming frames and repeated frames.
  std::deque<VideoFrame> queued_frames_ RTC_GUARDED_BY(sequence_checker_);
  // The current frame ID to use when starting to repeat frames. This is used
  // for cancelling deferred repeated frame processing happening.
  int current_frame_id_ RTC_GUARDED_BY(sequence_checker_) = 0;
  // Has content when we are repeating frames.
  absl::optional<ScheduledRepeat> scheduled_repeat_
      RTC_GUARDED_BY(sequence_checker_);
  // Convergent state of each of the configured simulcast layers.
  std::vector<SpatialLayerTracker> layer_trackers_
      RTC_GUARDED_BY(sequence_checker_);
  // Repeating task handle used for requesting refresh frames until arrival, as
  // they can be dropped in various places in the capture pipeline.
  RepeatingTaskHandle refresh_frame_requester_
      RTC_GUARDED_BY(sequence_checker_);
  // Can be set by UpdateVideoSourceRestrictions when the video source restricts
  // the max frame rate.
  absl::optional<TimeDelta> restricted_frame_delay_
      RTC_GUARDED_BY(sequence_checker_);
  // Set in OnSendFrame to reflect how many future frames will be forwarded with
  // the `queue_overload` flag set to true.
  int queue_overload_count_ RTC_GUARDED_BY(sequence_checker_) = 0;

  ScopedTaskSafety safety_;
};

// Implements a frame cadence adapter supporting VSync aligned encoding.
class VSyncEncodeAdapterMode : public AdapterMode {
 public:
  VSyncEncodeAdapterMode(
      Clock* clock,
      TaskQueueBase* queue,
      rtc::scoped_refptr<PendingTaskSafetyFlag> queue_safety_flag,
      Metronome* metronome,
      TaskQueueBase* worker_queue,
      FrameCadenceAdapterInterface::Callback* callback)
      : clock_(clock),
        queue_(queue),
        queue_safety_flag_(queue_safety_flag),
        callback_(callback),
        metronome_(metronome),
        worker_queue_(worker_queue) {
    queue_sequence_checker_.Detach();
    worker_sequence_checker_.Detach();
  }

  // Adapter overrides.
  void OnFrame(Timestamp post_time,
               bool queue_overload,
               const VideoFrame& frame) override;

  absl::optional<uint32_t> GetInputFrameRateFps() override {
    RTC_DCHECK_RUN_ON(&queue_sequence_checker_);
    return input_framerate_.Rate(clock_->TimeInMilliseconds());
  }

  void UpdateFrameRate() override {
    RTC_DCHECK_RUN_ON(&queue_sequence_checker_);
    input_framerate_.Update(1, clock_->TimeInMilliseconds());
  }

  void EncodeAllEnqueuedFrames();

 private:
  // Holds input frames coming from the client ready to be encoded.
  struct InputFrameRef {
    InputFrameRef(const VideoFrame& video_frame, Timestamp time_when_posted_us)
        : time_when_posted_us(time_when_posted_us),
          video_frame(std::move(video_frame)) {}
    Timestamp time_when_posted_us;
    const VideoFrame video_frame;
  };

  Clock* const clock_;
  TaskQueueBase* queue_;
  RTC_NO_UNIQUE_ADDRESS SequenceChecker queue_sequence_checker_;
  rtc::scoped_refptr<PendingTaskSafetyFlag> queue_safety_flag_;
  // Input frame rate statistics for use when not in zero-hertz mode.
  RateStatistics input_framerate_ RTC_GUARDED_BY(queue_sequence_checker_){
      FrameCadenceAdapterInterface::kFrameRateAveragingWindowSizeMs, 1000};
  FrameCadenceAdapterInterface::Callback* const callback_;

  Metronome* metronome_;
  TaskQueueBase* const worker_queue_;
  RTC_NO_UNIQUE_ADDRESS SequenceChecker worker_sequence_checker_;
  // `worker_safety_` protects tasks on the worker queue related to `metronome_`
  // since metronome usage must happen on worker thread.
  ScopedTaskSafetyDetached worker_safety_;
  Timestamp expected_next_tick_ RTC_GUARDED_BY(worker_sequence_checker_) =
      Timestamp::PlusInfinity();
  // Vector of input frames to be encoded.
  std::vector<InputFrameRef> input_queue_
      RTC_GUARDED_BY(worker_sequence_checker_);
};

class FrameCadenceAdapterImpl : public FrameCadenceAdapterInterface {
 public:
  FrameCadenceAdapterImpl(Clock* clock,
                          TaskQueueBase* queue,
                          Metronome* metronome,
                          TaskQueueBase* worker_queue,
                          const FieldTrialsView& field_trials);
  ~FrameCadenceAdapterImpl();

  // FrameCadenceAdapterInterface overrides.
  void Initialize(Callback* callback) override;
  void SetZeroHertzModeEnabled(
      absl::optional<ZeroHertzModeParams> params) override;
  absl::optional<uint32_t> GetInputFrameRateFps() override;
  void UpdateFrameRate() override;
  void UpdateLayerQualityConvergence(size_t spatial_index,
                                     bool quality_converged) override;
  void UpdateLayerStatus(size_t spatial_index, bool enabled) override;
  void UpdateVideoSourceRestrictions(
      absl::optional<double> max_frame_rate) override;
  void ProcessKeyFrameRequest() override;

  // VideoFrameSink overrides.
  void OnFrame(const VideoFrame& frame) override;
  void OnDiscardedFrame() override;
  void OnConstraintsChanged(
      const VideoTrackSourceConstraints& constraints) override;

 private:
  // Called from OnFrame in both pass-through and zero-hertz mode.
  void OnFrameOnMainQueue(Timestamp post_time,
                          bool queue_overload,
                          const VideoFrame& frame) RTC_RUN_ON(queue_);

  // Returns true under all of the following conditions:
  // - constraints min fps set to 0
  // - constraints max fps set and greater than 0,
  // - field trial enabled
  // - zero-hertz mode enabled
  bool IsZeroHertzScreenshareEnabled() const RTC_RUN_ON(queue_);

  // Configures current adapter on non-ZeroHertz mode, called when Initialize or
  // MaybeReconfigureAdapters.
  void ConfigureCurrentAdapterWithoutZeroHertz();

  // Handles adapter creation on configuration changes.
  void MaybeReconfigureAdapters(bool was_zero_hertz_enabled) RTC_RUN_ON(queue_);

  Clock* const clock_;
  TaskQueueBase* const queue_;

  // True if we support frame entry for screenshare with a minimum frequency of
  // 0 Hz.
  const bool zero_hertz_screenshare_enabled_;

  // Kill-switch for the queue overload mechanism in zero-hertz mode.
  const bool frame_cadence_adapter_zero_hertz_queue_overload_enabled_;

  // The three possible modes we're under.
  absl::optional<PassthroughAdapterMode> passthrough_adapter_;
  absl::optional<ZeroHertzAdapterMode> zero_hertz_adapter_;
  // The `vsync_encode_adapter_` must be destroyed on the worker queue since
  // VSync metronome needs to happen on worker thread.
  std::unique_ptr<VSyncEncodeAdapterMode> vsync_encode_adapter_;
  // If set, zero-hertz mode has been enabled.
  absl::optional<ZeroHertzModeParams> zero_hertz_params_;
  // Cache for the current adapter mode.
  AdapterMode* current_adapter_mode_ = nullptr;

  // VSync encoding is used when this valid.
  Metronome* const metronome_;
  TaskQueueBase* const worker_queue_;

  // Timestamp for statistics reporting.
  absl::optional<Timestamp> zero_hertz_adapter_created_timestamp_
      RTC_GUARDED_BY(queue_);

  // Set up during Initialize.
  Callback* callback_ = nullptr;

  // The source's constraints.
  absl::optional<VideoTrackSourceConstraints> source_constraints_
      RTC_GUARDED_BY(queue_);

  // Stores the latest restriction in max frame rate set by
  // UpdateVideoSourceRestrictions. Ensures that a previously set restriction
  // can be maintained during reconstructions of the adapter.
  absl::optional<double> restricted_max_frame_rate_ RTC_GUARDED_BY(queue_);

  // Race checker for incoming frames. This is the network thread in chromium,
  // but may vary from test contexts.
  rtc::RaceChecker incoming_frame_race_checker_;

  // Number of frames that are currently scheduled for processing on the
  // `queue_`.
  std::atomic<int> frames_scheduled_for_processing_{0};

  ScopedTaskSafetyDetached safety_;
};

ZeroHertzAdapterMode::ZeroHertzAdapterMode(
    TaskQueueBase* queue,
    Clock* clock,
    FrameCadenceAdapterInterface::Callback* callback,
    double max_fps,
    std::atomic<int>& frames_scheduled_for_processing,
    bool zero_hertz_queue_overload_enabled)
    : queue_(queue),
      clock_(clock),
      callback_(callback),
      max_fps_(max_fps),
      frames_scheduled_for_processing_(frames_scheduled_for_processing),
      zero_hertz_queue_overload_enabled_(zero_hertz_queue_overload_enabled) {
  sequence_checker_.Detach();
  MaybeStartRefreshFrameRequester();
}

void ZeroHertzAdapterMode::ReconfigureParameters(
    const FrameCadenceAdapterInterface::ZeroHertzModeParams& params) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  RTC_DLOG(LS_INFO) << __func__ << " this " << this << " num_simulcast_layers "
                    << params.num_simulcast_layers;

  // Start as unconverged.
  layer_trackers_.clear();
  layer_trackers_.resize(params.num_simulcast_layers,
                         SpatialLayerTracker{false});
}

void ZeroHertzAdapterMode::UpdateLayerQualityConvergence(
    size_t spatial_index,
    bool quality_converged) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  TRACE_EVENT_INSTANT2(TRACE_DISABLED_BY_DEFAULT("webrtc"), __func__,
                       "spatial_index", spatial_index, "converged",
                       quality_converged);
  if (spatial_index >= layer_trackers_.size())
    return;
  if (layer_trackers_[spatial_index].quality_converged.has_value())
    layer_trackers_[spatial_index].quality_converged = quality_converged;
}

void ZeroHertzAdapterMode::UpdateLayerStatus(size_t spatial_index,
                                             bool enabled) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  TRACE_EVENT_INSTANT2(TRACE_DISABLED_BY_DEFAULT("webrtc"), __func__,
                       "spatial_index", spatial_index, "enabled", enabled);
  if (spatial_index >= layer_trackers_.size())
    return;
  if (enabled) {
    if (!layer_trackers_[spatial_index].quality_converged.has_value()) {
      // Assume quality has not converged until hearing otherwise.
      layer_trackers_[spatial_index].quality_converged = false;
    }
  } else {
    layer_trackers_[spatial_index].quality_converged = absl::nullopt;
  }
}

void ZeroHertzAdapterMode::OnFrame(Timestamp post_time,
                                   bool queue_overload,
                                   const VideoFrame& frame) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  TRACE_EVENT0("webrtc", "ZeroHertzAdapterMode::OnFrame");
  refresh_frame_requester_.Stop();

  // Assume all enabled layers are unconverged after frame entry.
  ResetQualityConvergenceInfo();

  // Remove stored repeating frame if needed.
  if (scheduled_repeat_.has_value()) {
    RTC_DCHECK(queued_frames_.size() == 1);
    RTC_DLOG(LS_VERBOSE) << __func__ << " this " << this
                         << " cancel repeat and restart with original";
    queued_frames_.pop_front();
  }

  // Store the frame in the queue and schedule deferred processing.
  queued_frames_.push_back(frame);
  current_frame_id_++;
  scheduled_repeat_ = absl::nullopt;
  TimeDelta time_spent_since_post = clock_->CurrentTime() - post_time;
  queue_->PostDelayedHighPrecisionTask(
      SafeTask(safety_.flag(),
               [this, post_time] {
                 RTC_DCHECK_RUN_ON(&sequence_checker_);
                 ProcessOnDelayedCadence(post_time);
               }),
      std::max(frame_delay_ - time_spent_since_post, TimeDelta::Zero()));
}

void ZeroHertzAdapterMode::OnDiscardedFrame() {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  TRACE_EVENT0("webrtc", __func__);

  // Under zero hertz source delivery, a discarded frame ending a sequence of
  // frames which happened to contain important information can be seen as a
  // capture freeze. Avoid this by starting requesting refresh frames after a
  // grace period.
  MaybeStartRefreshFrameRequester();
}

absl::optional<uint32_t> ZeroHertzAdapterMode::GetInputFrameRateFps() {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  return max_fps_;
}

void ZeroHertzAdapterMode::UpdateVideoSourceRestrictions(
    absl::optional<double> max_frame_rate) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc"), __func__,
                       "max_frame_rate", max_frame_rate.value_or(-1));
  if (max_frame_rate.value_or(0) > 0) {
    // Set new, validated (> 0) and restricted frame rate.
    restricted_frame_delay_ = TimeDelta::Seconds(1) / *max_frame_rate;
  } else {
    // Source reports that the frame rate is now unrestricted.
    restricted_frame_delay_ = absl::nullopt;
  }
}

void ZeroHertzAdapterMode::ProcessKeyFrameRequest() {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  TRACE_EVENT_INSTANT0("webrtc", __func__);
  // If we're new and don't have a frame, there's no need to request refresh
  // frames as this was being triggered for us when zero-hz mode was set up.
  //
  // The next frame encoded will be a key frame. Reset quality convergence so we
  // don't get idle repeats shortly after, because key frames need a lot of
  // refinement frames.
  ResetQualityConvergenceInfo();

  // If we're not repeating, or we're repeating with short duration, we will
  // very soon send out a frame and don't need a refresh frame.
  if (!scheduled_repeat_.has_value() || !scheduled_repeat_->idle) {
    RTC_LOG(LS_INFO) << __func__ << " this " << this
                     << " not requesting refresh frame because of recently "
                        "incoming frame or short repeating.";
    return;
  }

  // If the repeat is scheduled within a short (i.e. frame_delay_) interval, we
  // will very soon send out a frame and don't need a refresh frame.
  Timestamp now = clock_->CurrentTime();
  if (scheduled_repeat_->scheduled + RepeatDuration(/*idle_repeat=*/true) -
          now <=
      frame_delay_) {
    RTC_LOG(LS_INFO) << __func__ << " this " << this
                     << " not requesting refresh frame because of soon "
                        "happening idle repeat";
    return;
  }

  // Cancel the current repeat and reschedule a short repeat now. No need for a
  // new refresh frame.
  RTC_LOG(LS_INFO) << __func__ << " this " << this
                   << " not requesting refresh frame and scheduling a short "
                      "repeat due to key frame request";
  ScheduleRepeat(++current_frame_id_, /*idle_repeat=*/false);
  return;
}

bool ZeroHertzAdapterMode::HasQualityConverged() const {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  // 1. Define ourselves as unconverged with no spatial layers configured. This
  // is to keep short repeating until the layer configuration comes.
  // 2. Unset layers implicitly imply that they're converged to support
  // disabling layers when they're not needed.
  const bool quality_converged =
      !layer_trackers_.empty() &&
      absl::c_all_of(layer_trackers_, [](const SpatialLayerTracker& tracker) {
        return tracker.quality_converged.value_or(true);
      });
  return quality_converged;
}

void ZeroHertzAdapterMode::ResetQualityConvergenceInfo() {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  RTC_DLOG(LS_INFO) << __func__ << " this " << this;
  for (auto& layer_tracker : layer_trackers_) {
    if (layer_tracker.quality_converged.has_value())
      layer_tracker.quality_converged = false;
  }
}

void ZeroHertzAdapterMode::ProcessOnDelayedCadence(Timestamp post_time) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  RTC_DCHECK(!queued_frames_.empty());
  TRACE_EVENT0("webrtc", __func__);

  // Avoid sending the front frame for encoding (which could take a long time)
  // until we schedule a repeat.
  VideoFrame front_frame = queued_frames_.front();

  // If there were two or more frames stored, we do not have to schedule repeats
  // of the front frame.
  if (queued_frames_.size() > 1) {
    queued_frames_.pop_front();
  } else {
    // There's only one frame to send. Schedule a repeat sequence, which is
    // cancelled by `current_frame_id_` getting incremented should new frames
    // arrive.
    ScheduleRepeat(current_frame_id_, HasQualityConverged());
  }
  SendFrameNow(post_time, front_frame);
}

void ZeroHertzAdapterMode::ScheduleRepeat(int frame_id, bool idle_repeat) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  Timestamp now = clock_->CurrentTime();
  if (!scheduled_repeat_.has_value()) {
    scheduled_repeat_.emplace(now, queued_frames_.front().timestamp_us(),
                              queued_frames_.front().ntp_time_ms());
  }
  scheduled_repeat_->scheduled = now;
  scheduled_repeat_->idle = idle_repeat;

  TimeDelta repeat_delay = RepeatDuration(idle_repeat);
  queue_->PostDelayedHighPrecisionTask(
      SafeTask(safety_.flag(),
               [this, frame_id] {
                 RTC_DCHECK_RUN_ON(&sequence_checker_);
                 ProcessRepeatedFrameOnDelayedCadence(frame_id);
               }),
      repeat_delay);
}

void ZeroHertzAdapterMode::ProcessRepeatedFrameOnDelayedCadence(int frame_id) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  TRACE_EVENT0("webrtc", __func__);
  RTC_DCHECK(!queued_frames_.empty());

  // Cancel this invocation if new frames turned up.
  if (frame_id != current_frame_id_)
    return;
  RTC_DCHECK(scheduled_repeat_.has_value());

  VideoFrame& frame = queued_frames_.front();

  // Since this is a repeated frame, nothing changed compared to before.
  VideoFrame::UpdateRect empty_update_rect;
  empty_update_rect.MakeEmptyUpdate();
  frame.set_update_rect(empty_update_rect);

  // Adjust timestamps of the frame of the repeat, accounting for the actual
  // delay since we started repeating.
  //
  // NOTE: No need to update the RTP timestamp as the VideoStreamEncoder
  // overwrites it based on its chosen NTP timestamp source.
  TimeDelta total_delay = clock_->CurrentTime() - scheduled_repeat_->origin;
  if (frame.timestamp_us() > 0) {
    frame.set_timestamp_us(scheduled_repeat_->origin_timestamp_us +
                           total_delay.us());
  }
  if (frame.ntp_time_ms()) {
    frame.set_ntp_time_ms(scheduled_repeat_->origin_ntp_time_ms +
                          total_delay.ms());
  }

  // Schedule another repeat before sending the frame off which could take time.
  ScheduleRepeat(frame_id, HasQualityConverged());
  SendFrameNow(absl::nullopt, frame);
}

void ZeroHertzAdapterMode::SendFrameNow(absl::optional<Timestamp> post_time,
                                        const VideoFrame& frame) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  TRACE_EVENT0("webrtc", __func__);

  Timestamp encode_start_time = clock_->CurrentTime();
  if (post_time.has_value()) {
    TimeDelta delay = (encode_start_time - *post_time);
    RTC_HISTOGRAM_COUNTS_10000("WebRTC.Screenshare.ZeroHz.DelayMs", delay.ms());
  }

  // Forward the frame and set `queue_overload` if is has been detected that it
  // is not possible to deliver frames at the expected rate due to slow
  // encoding.
  callback_->OnFrame(/*post_time=*/encode_start_time, queue_overload_count_ > 0,
                     frame);

  // WebRTC-ZeroHertzQueueOverload kill-switch.
  if (!zero_hertz_queue_overload_enabled_)
    return;

  // `queue_overload_count_` determines for how many future frames the
  // `queue_overload` flag will be set and it is only increased if:
  // o We are not already in an overload state.
  // o New frames have been scheduled for processing on the queue while encoding
  //   took place in OnFrame.
  // o The duration of OnFrame is longer than the current frame duration.
  // If all these conditions are fulfilled, `queue_overload_count_` is set to
  // `frames_scheduled_for_processing_` and any pending repeat is canceled since
  // new frames are available and the repeat is not needed.
  // If the adapter is already in an overload state, simply decrease
  // `queue_overload_count_` by one.
  if (queue_overload_count_ == 0) {
    const int frames_scheduled_for_processing =
        frames_scheduled_for_processing_.load(std::memory_order_relaxed);
    if (frames_scheduled_for_processing > 0) {
      TimeDelta encode_time = clock_->CurrentTime() - encode_start_time;
      if (encode_time > FrameDuration()) {
        queue_overload_count_ = frames_scheduled_for_processing;
        // Invalidates any outstanding repeat to avoid sending pending repeat
        // directly after too long encode.
        current_frame_id_++;
      }
    }
  } else {
    queue_overload_count_--;
  }
  RTC_HISTOGRAM_BOOLEAN("WebRTC.Screenshare.ZeroHz.QueueOverload",
                        queue_overload_count_ > 0);
}

TimeDelta ZeroHertzAdapterMode::FrameDuration() const {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  return std::max(frame_delay_, restricted_frame_delay_.value_or(frame_delay_));
}

TimeDelta ZeroHertzAdapterMode::RepeatDuration(bool idle_repeat) const {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  return idle_repeat
             ? FrameCadenceAdapterInterface::kZeroHertzIdleRepeatRatePeriod
             : FrameDuration();
}

void ZeroHertzAdapterMode::MaybeStartRefreshFrameRequester() {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  if (!refresh_frame_requester_.Running()) {
    refresh_frame_requester_ = RepeatingTaskHandle::DelayedStart(
        queue_,
        FrameCadenceAdapterInterface::kOnDiscardedFrameRefreshFramePeriod *
            frame_delay_,
        [this] {
          RTC_DLOG(LS_VERBOSE) << __func__ << " RequestRefreshFrame";
          if (callback_)
            callback_->RequestRefreshFrame();
          return frame_delay_;
        });
  }
}

void VSyncEncodeAdapterMode::OnFrame(Timestamp post_time,
                                     bool queue_overload,
                                     const VideoFrame& frame) {
  // We expect `metronome_` and `EncodeAllEnqueuedFrames()` runs on
  // `worker_queue_`.
  if (!worker_queue_->IsCurrent()) {
    worker_queue_->PostTask(SafeTask(
        worker_safety_.flag(), [this, post_time, queue_overload, frame] {
          OnFrame(post_time, queue_overload, frame);
        }));
    return;
  }

  RTC_DCHECK_RUN_ON(&worker_sequence_checker_);
  TRACE_EVENT0("webrtc", "VSyncEncodeAdapterMode::OnFrame");

  input_queue_.emplace_back(std::move(frame), post_time);

  // The `metronome_` tick period maybe throttled in some case, so here we only
  // align encode task to VSync event when `metronome_` tick period is less
  // than 34ms (30Hz).
  static constexpr TimeDelta kMaxAllowedDelay = TimeDelta::Millis(34);
  if (metronome_->TickPeriod() <= kMaxAllowedDelay) {
    // The metronome is ticking frequently enough that it is worth the extra
    // delay.
    metronome_->RequestCallOnNextTick(
        SafeTask(worker_safety_.flag(), [this] { EncodeAllEnqueuedFrames(); }));
  } else {
    // The metronome is ticking too infrequently, encode immediately.
    EncodeAllEnqueuedFrames();
  }
}

void VSyncEncodeAdapterMode::EncodeAllEnqueuedFrames() {
  RTC_DCHECK_RUN_ON(&worker_sequence_checker_);
  TRACE_EVENT0("webrtc", "VSyncEncodeAdapterMode::EncodeAllEnqueuedFrames");

  // Local time in webrtc time base.
  Timestamp post_time = clock_->CurrentTime();

  for (auto& input : input_queue_) {
    TRACE_EVENT1("webrtc", "FrameCadenceAdapterImpl::EncodeAllEnqueuedFrames",
                 "VSyncEncodeDelay",
                 (post_time - input.time_when_posted_us).ms());

    const VideoFrame frame = std::move(input.video_frame);
    queue_->PostTask(SafeTask(queue_safety_flag_, [this, post_time, frame] {
      RTC_DCHECK_RUN_ON(queue_);

      // TODO(b/304158952): Support more refined queue overload control.
      callback_->OnFrame(post_time, /*queue_overload=*/false, frame);
    }));
  }

  input_queue_.clear();
}

FrameCadenceAdapterImpl::FrameCadenceAdapterImpl(
    Clock* clock,
    TaskQueueBase* queue,
    Metronome* metronome,
    TaskQueueBase* worker_queue,
    const FieldTrialsView& field_trials)
    : clock_(clock),
      queue_(queue),
      zero_hertz_screenshare_enabled_(
          !field_trials.IsDisabled("WebRTC-ZeroHertzScreenshare")),
      frame_cadence_adapter_zero_hertz_queue_overload_enabled_(
          !field_trials.IsDisabled("WebRTC-ZeroHertzQueueOverload")),
      metronome_(metronome),
      worker_queue_(worker_queue) {}

FrameCadenceAdapterImpl::~FrameCadenceAdapterImpl() {
  RTC_DLOG(LS_VERBOSE) << __func__ << " this " << this;

  // VSync adapter needs to be destroyed on worker queue when metronome is
  // valid.
  if (metronome_) {
    absl::Cleanup cleanup = [adapter = std::move(vsync_encode_adapter_)] {};
    worker_queue_->PostTask([cleanup = std::move(cleanup)] {});
  }
}

void FrameCadenceAdapterImpl::Initialize(Callback* callback) {
  callback_ = callback;
  // Use VSync encode mode if metronome is valid, otherwise passthrough mode
  // would be used.
  if (metronome_) {
    vsync_encode_adapter_ = std::make_unique<VSyncEncodeAdapterMode>(
        clock_, queue_, safety_.flag(), metronome_, worker_queue_, callback_);
  } else {
    passthrough_adapter_.emplace(clock_, callback);
  }
  ConfigureCurrentAdapterWithoutZeroHertz();
}

void FrameCadenceAdapterImpl::SetZeroHertzModeEnabled(
    absl::optional<ZeroHertzModeParams> params) {
  RTC_DCHECK_RUN_ON(queue_);
  bool was_zero_hertz_enabled = zero_hertz_params_.has_value();
  zero_hertz_params_ = params;
  MaybeReconfigureAdapters(was_zero_hertz_enabled);
}

absl::optional<uint32_t> FrameCadenceAdapterImpl::GetInputFrameRateFps() {
  RTC_DCHECK_RUN_ON(queue_);
  return current_adapter_mode_->GetInputFrameRateFps();
}

void FrameCadenceAdapterImpl::UpdateFrameRate() {
  RTC_DCHECK_RUN_ON(queue_);
  // The frame rate need not be updated for the zero-hertz adapter. The
  // vsync encode and passthrough adapter however uses it. Always pass frames
  // into the vsync encode or passthrough to keep the estimation alive should
  // there be an adapter switch.
  if (metronome_) {
    RTC_CHECK(vsync_encode_adapter_);
    vsync_encode_adapter_->UpdateFrameRate();
  } else {
    RTC_CHECK(passthrough_adapter_);
    passthrough_adapter_->UpdateFrameRate();
  }
}

void FrameCadenceAdapterImpl::UpdateLayerQualityConvergence(
    size_t spatial_index,
    bool quality_converged) {
  if (zero_hertz_adapter_.has_value())
    zero_hertz_adapter_->UpdateLayerQualityConvergence(spatial_index,
                                                       quality_converged);
}

void FrameCadenceAdapterImpl::UpdateLayerStatus(size_t spatial_index,
                                                bool enabled) {
  if (zero_hertz_adapter_.has_value())
    zero_hertz_adapter_->UpdateLayerStatus(spatial_index, enabled);
}

void FrameCadenceAdapterImpl::UpdateVideoSourceRestrictions(
    absl::optional<double> max_frame_rate) {
  RTC_DCHECK_RUN_ON(queue_);
  // Store the restriction to ensure that it can be reapplied in possible
  // future adapter creations on configuration changes.
  restricted_max_frame_rate_ = max_frame_rate;
  if (zero_hertz_adapter_) {
    zero_hertz_adapter_->UpdateVideoSourceRestrictions(max_frame_rate);
  }
}

void FrameCadenceAdapterImpl::ProcessKeyFrameRequest() {
  RTC_DCHECK_RUN_ON(queue_);
  if (zero_hertz_adapter_)
    zero_hertz_adapter_->ProcessKeyFrameRequest();
}

void FrameCadenceAdapterImpl::OnFrame(const VideoFrame& frame) {
  // This method is called on the network thread under Chromium, or other
  // various contexts in test.
  RTC_DCHECK_RUNS_SERIALIZED(&incoming_frame_race_checker_);
  TRACE_EVENT0("webrtc", "FrameCadenceAdapterImpl::OnFrame");

  // Local time in webrtc time base.
  Timestamp post_time = clock_->CurrentTime();
  frames_scheduled_for_processing_.fetch_add(1, std::memory_order_relaxed);
  queue_->PostTask(SafeTask(safety_.flag(), [this, post_time, frame] {
    RTC_DCHECK_RUN_ON(queue_);
    if (zero_hertz_adapter_created_timestamp_.has_value()) {
      TimeDelta time_until_first_frame =
          clock_->CurrentTime() - *zero_hertz_adapter_created_timestamp_;
      zero_hertz_adapter_created_timestamp_ = absl::nullopt;
      RTC_HISTOGRAM_COUNTS_10000(
          "WebRTC.Screenshare.ZeroHz.TimeUntilFirstFrameMs",
          time_until_first_frame.ms());
    }

    const int frames_scheduled_for_processing =
        frames_scheduled_for_processing_.fetch_sub(1,
                                                   std::memory_order_relaxed);
    OnFrameOnMainQueue(post_time, frames_scheduled_for_processing > 1,
                       std::move(frame));
  }));
}

void FrameCadenceAdapterImpl::OnDiscardedFrame() {
  callback_->OnDiscardedFrame();
  queue_->PostTask(SafeTask(safety_.flag(), [this] {
    RTC_DCHECK_RUN_ON(queue_);
    if (zero_hertz_adapter_) {
      zero_hertz_adapter_->OnDiscardedFrame();
    }
  }));
}

void FrameCadenceAdapterImpl::OnConstraintsChanged(
    const VideoTrackSourceConstraints& constraints) {
  RTC_LOG(LS_INFO) << __func__ << " this " << this << " min_fps "
                   << constraints.min_fps.value_or(-1) << " max_fps "
                   << constraints.max_fps.value_or(-1);
  queue_->PostTask(SafeTask(safety_.flag(), [this, constraints] {
    RTC_DCHECK_RUN_ON(queue_);
    bool was_zero_hertz_enabled = IsZeroHertzScreenshareEnabled();
    source_constraints_ = constraints;
    MaybeReconfigureAdapters(was_zero_hertz_enabled);
  }));
}

void FrameCadenceAdapterImpl::OnFrameOnMainQueue(Timestamp post_time,
                                                 bool queue_overload,
                                                 const VideoFrame& frame) {
  RTC_DCHECK_RUN_ON(queue_);
  current_adapter_mode_->OnFrame(post_time, queue_overload, frame);
}

bool FrameCadenceAdapterImpl::IsZeroHertzScreenshareEnabled() const {
  RTC_DCHECK_RUN_ON(queue_);
  return zero_hertz_screenshare_enabled_ && source_constraints_.has_value() &&
         source_constraints_->max_fps.value_or(-1) > 0 &&
         source_constraints_->min_fps.value_or(-1) == 0 &&
         zero_hertz_params_.has_value();
}

void FrameCadenceAdapterImpl::ConfigureCurrentAdapterWithoutZeroHertz() {
  // Enable VSyncEncodeAdapterMode if metronome is valid.
  if (metronome_) {
    RTC_CHECK(vsync_encode_adapter_);
    current_adapter_mode_ = vsync_encode_adapter_.get();
  } else {
    RTC_CHECK(passthrough_adapter_);
    current_adapter_mode_ = &passthrough_adapter_.value();
  }
}

void FrameCadenceAdapterImpl::MaybeReconfigureAdapters(
    bool was_zero_hertz_enabled) {
  RTC_DCHECK_RUN_ON(queue_);
  bool is_zero_hertz_enabled = IsZeroHertzScreenshareEnabled();
  if (is_zero_hertz_enabled) {
    bool max_fps_has_changed = GetInputFrameRateFps().value_or(-1) !=
                               source_constraints_->max_fps.value_or(-1);
    if (!was_zero_hertz_enabled || max_fps_has_changed) {
      RTC_LOG(LS_INFO) << "Zero hertz mode enabled (max_fps="
                       << source_constraints_->max_fps.value() << ")";
      zero_hertz_adapter_.emplace(
          queue_, clock_, callback_, source_constraints_->max_fps.value(),
          frames_scheduled_for_processing_,
          frame_cadence_adapter_zero_hertz_queue_overload_enabled_);
      zero_hertz_adapter_->UpdateVideoSourceRestrictions(
          restricted_max_frame_rate_);
      zero_hertz_adapter_created_timestamp_ = clock_->CurrentTime();
    }
    zero_hertz_adapter_->ReconfigureParameters(zero_hertz_params_.value());
    current_adapter_mode_ = &zero_hertz_adapter_.value();
  } else {
    if (was_zero_hertz_enabled) {
      zero_hertz_adapter_ = absl::nullopt;
      RTC_LOG(LS_INFO) << "Zero hertz mode disabled.";
    }
    ConfigureCurrentAdapterWithoutZeroHertz();
  }
}

}  // namespace

std::unique_ptr<FrameCadenceAdapterInterface>
FrameCadenceAdapterInterface::Create(Clock* clock,
                                     TaskQueueBase* queue,
                                     Metronome* metronome,
                                     TaskQueueBase* worker_queue,
                                     const FieldTrialsView& field_trials) {
  return std::make_unique<FrameCadenceAdapterImpl>(clock, queue, metronome,
                                                   worker_queue, field_trials);
}

}  // namespace webrtc