summaryrefslogtreecommitdiffstats
path: root/third_party/python/taskcluster_taskgraph/taskgraph/task.py
blob: 45427ac4f76630ede7df85e13f2c225b4c192af3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

from dataclasses import dataclass, field
from typing import Any, Dict, List, Union


@dataclass
class Task:
    """
    Representation of a task in a TaskGraph.  Each Task has, at creation:

    - kind: the name of the task kind
    - label; the label for this task
    - attributes: a dictionary of attributes for this task (used for filtering)
    - task: the task definition (JSON-able dictionary)
    - optimization: optimization to apply to the task (see taskgraph.optimize)
    - dependencies: tasks this one depends on, in the form {name: label}, for example
      {'build': 'build-linux64/opt', 'docker-image': 'build-docker-image-desktop-test'}
    - soft_dependencies: tasks this one may depend on if they are available post
      optimisation. They are set as a list of tasks label.
    - if_dependencies: only run this task if at least one of these dependencies
      are present.

    And later, as the task-graph processing proceeds:

    - task_id -- TaskCluster taskId under which this task will be created

    This class is just a convenience wrapper for the data type and managing
    display, comparison, serialization, etc. It has no functionality of its own.
    """

    kind: str
    label: str
    attributes: Dict
    task: Dict
    description: str = ""
    task_id: Union[str, None] = field(default=None, init=False)
    optimization: Union[Dict[str, Any], None] = field(default=None)
    dependencies: Dict = field(default_factory=dict)
    soft_dependencies: List = field(default_factory=list)
    if_dependencies: List = field(default_factory=list)

    def __post_init__(self):
        self.attributes["kind"] = self.kind

    def to_json(self):
        rv = {
            "kind": self.kind,
            "label": self.label,
            "description": self.description,
            "attributes": self.attributes,
            "dependencies": self.dependencies,
            "soft_dependencies": self.soft_dependencies,
            "if_dependencies": self.if_dependencies,
            "optimization": self.optimization,
            "task": self.task,
        }
        if self.task_id:
            rv["task_id"] = self.task_id
        return rv

    @classmethod
    def from_json(cls, task_dict):
        """
        Given a data structure as produced by taskgraph.to_json, re-construct
        the original Task object.  This is used to "resume" the task-graph
        generation process, for example in Action tasks.
        """
        rv = cls(
            kind=task_dict["kind"],
            label=task_dict["label"],
            description=task_dict.get("description", ""),
            attributes=task_dict["attributes"],
            task=task_dict["task"],
            optimization=task_dict["optimization"],
            dependencies=task_dict.get("dependencies"),
            soft_dependencies=task_dict.get("soft_dependencies"),
            if_dependencies=task_dict.get("if_dependencies"),
        )
        if "task_id" in task_dict:
            rv.task_id = task_dict["task_id"]
        return rv