1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
//! AHash is a high performance keyed hash function.
//!
//! It quickly provides a high quality hash where the result is not predictable without knowing the Key.
//! AHash works with `HashMap` to hash keys, but without allowing for the possibility that an malicious user can
//! induce a collision.
//!
//! # How aHash works
//!
//! When it is available aHash uses the hardware AES instructions to provide a keyed hash function.
//! When it is not, aHash falls back on a slightly slower alternative algorithm.
//!
//! Because aHash does not have a fixed standard for its output, it is able to improve over time.
//! But this also means that different computers or computers using different versions of ahash may observe different
//! hash values for the same input.
#![cfg_attr(
all(
feature = "std",
any(feature = "compile-time-rng", feature = "runtime-rng", feature = "no-rng")
),
doc = r##"
# Basic Usage
AHash provides an implementation of the [Hasher] trait.
To construct a HashMap using aHash as its hasher do the following:
```
use ahash::{AHasher, RandomState};
use std::collections::HashMap;
let mut map: HashMap<i32, i32, RandomState> = HashMap::default();
map.insert(12, 34);
```
### Randomness
The above requires a source of randomness to generate keys for the hashmap. By default this obtained from the OS.
It is also possible to have randomness supplied via the `compile-time-rng` flag, or manually.
### If randomess is not available
[AHasher::default()] can be used to hash using fixed keys. This works with
[BuildHasherDefault](std::hash::BuildHasherDefault). For example:
```
use std::hash::BuildHasherDefault;
use std::collections::HashMap;
use ahash::AHasher;
let mut m: HashMap<_, _, BuildHasherDefault<AHasher>> = HashMap::default();
# m.insert(12, 34);
```
It is also possible to instantiate [RandomState] directly:
```
use ahash::HashMap;
use ahash::RandomState;
let mut m = HashMap::with_hasher(RandomState::with_seed(42));
# m.insert(1, 2);
```
Or for uses besides a hashhmap:
```
use std::hash::BuildHasher;
use ahash::RandomState;
let hash_builder = RandomState::with_seed(42);
let hash = hash_builder.hash_one("Some Data");
```
There are several constructors for [RandomState] with different ways to supply seeds.
# Convenience wrappers
For convenience, both new-type wrappers and type aliases are provided.
The new type wrappers are called called `AHashMap` and `AHashSet`.
```
use ahash::AHashMap;
let mut map: AHashMap<i32, i32> = AHashMap::new();
map.insert(12, 34);
```
This avoids the need to type "RandomState". (For convenience `From`, `Into`, and `Deref` are provided).
# Aliases
For even less typing and better interop with existing libraries (such as rayon) which require a `std::collection::HashMap` ,
the type aliases [HashMap], [HashSet] are provided.
```
use ahash::{HashMap, HashMapExt};
let mut map: HashMap<i32, i32> = HashMap::new();
map.insert(12, 34);
```
Note the import of [HashMapExt]. This is needed for the constructor.
"##
)]
#![deny(clippy::correctness, clippy::complexity, clippy::perf)]
#![allow(clippy::pedantic, clippy::cast_lossless, clippy::unreadable_literal)]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#![cfg_attr(feature = "specialize", feature(min_specialization))]
#![cfg_attr(feature = "nightly-arm-aes", feature(stdarch_arm_neon_intrinsics))]
#[macro_use]
mod convert;
mod fallback_hash;
cfg_if::cfg_if! {
if #[cfg(any(
all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri)),
all(feature = "nightly-arm-aes", target_arch = "aarch64", target_feature = "aes", not(miri)),
all(feature = "nightly-arm-aes", target_arch = "arm", target_feature = "aes", not(miri)),
))] {
mod aes_hash;
pub use crate::aes_hash::AHasher;
} else {
pub use crate::fallback_hash::AHasher;
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "std")] {
mod hash_map;
mod hash_set;
pub use crate::hash_map::AHashMap;
pub use crate::hash_set::AHashSet;
/// [Hasher]: std::hash::Hasher
/// [HashMap]: std::collections::HashMap
/// Type alias for [HashMap]<K, V, ahash::RandomState>
pub type HashMap<K, V> = std::collections::HashMap<K, V, crate::RandomState>;
/// Type alias for [HashSet]<K, ahash::RandomState>
pub type HashSet<K> = std::collections::HashSet<K, crate::RandomState>;
}
}
#[cfg(test)]
mod hash_quality_test;
mod operations;
pub mod random_state;
mod specialize;
pub use crate::random_state::RandomState;
use core::hash::BuildHasher;
use core::hash::Hash;
use core::hash::Hasher;
#[cfg(feature = "std")]
/// A convenience trait that can be used together with the type aliases defined to
/// get access to the `new()` and `with_capacity()` methods for the HashMap type alias.
pub trait HashMapExt {
/// Constructs a new HashMap
fn new() -> Self;
/// Constructs a new HashMap with a given initial capacity
fn with_capacity(capacity: usize) -> Self;
}
#[cfg(feature = "std")]
/// A convenience trait that can be used together with the type aliases defined to
/// get access to the `new()` and `with_capacity()` methods for the HashSet type aliases.
pub trait HashSetExt {
/// Constructs a new HashSet
fn new() -> Self;
/// Constructs a new HashSet with a given initial capacity
fn with_capacity(capacity: usize) -> Self;
}
#[cfg(feature = "std")]
impl<K, V, S> HashMapExt for std::collections::HashMap<K, V, S>
where
S: BuildHasher + Default,
{
fn new() -> Self {
std::collections::HashMap::with_hasher(S::default())
}
fn with_capacity(capacity: usize) -> Self {
std::collections::HashMap::with_capacity_and_hasher(capacity, S::default())
}
}
#[cfg(feature = "std")]
impl<K, S> HashSetExt for std::collections::HashSet<K, S>
where
S: BuildHasher + Default,
{
fn new() -> Self {
std::collections::HashSet::with_hasher(S::default())
}
fn with_capacity(capacity: usize) -> Self {
std::collections::HashSet::with_capacity_and_hasher(capacity, S::default())
}
}
/// Provides a default [Hasher] with fixed keys.
/// This is typically used in conjunction with [BuildHasherDefault] to create
/// [AHasher]s in order to hash the keys of the map.
///
/// Generally it is preferable to use [RandomState] instead, so that different
/// hashmaps will have different keys. However if fixed keys are desirable this
/// may be used instead.
///
/// # Example
/// ```
/// use std::hash::BuildHasherDefault;
/// use ahash::{AHasher, RandomState};
/// use std::collections::HashMap;
///
/// let mut map: HashMap<i32, i32, BuildHasherDefault<AHasher>> = HashMap::default();
/// map.insert(12, 34);
/// ```
///
/// [BuildHasherDefault]: std::hash::BuildHasherDefault
/// [Hasher]: std::hash::Hasher
/// [HashMap]: std::collections::HashMap
impl Default for AHasher {
/// Constructs a new [AHasher] with fixed keys.
/// If `std` is enabled these will be generated upon first invocation.
/// Otherwise if the `compile-time-rng`feature is enabled these will be generated at compile time.
/// If neither of these features are available, hardcoded constants will be used.
///
/// Because the values are fixed, different hashers will all hash elements the same way.
/// This could make hash values predictable, if DOS attacks are a concern. If this behaviour is
/// not required, it may be preferable to use [RandomState] instead.
///
/// # Examples
///
/// ```
/// use ahash::AHasher;
/// use std::hash::Hasher;
///
/// let mut hasher_1 = AHasher::default();
/// let mut hasher_2 = AHasher::default();
///
/// hasher_1.write_u32(1234);
/// hasher_2.write_u32(1234);
///
/// assert_eq!(hasher_1.finish(), hasher_2.finish());
/// ```
#[inline]
fn default() -> AHasher {
RandomState::with_fixed_keys().build_hasher()
}
}
/// Used for specialization. (Sealed)
pub(crate) trait BuildHasherExt: BuildHasher {
#[doc(hidden)]
fn hash_as_u64<T: Hash + ?Sized>(&self, value: &T) -> u64;
#[doc(hidden)]
fn hash_as_fixed_length<T: Hash + ?Sized>(&self, value: &T) -> u64;
#[doc(hidden)]
fn hash_as_str<T: Hash + ?Sized>(&self, value: &T) -> u64;
}
impl<B: BuildHasher> BuildHasherExt for B {
#[inline]
#[cfg(feature = "specialize")]
default fn hash_as_u64<T: Hash + ?Sized>(&self, value: &T) -> u64 {
let mut hasher = self.build_hasher();
value.hash(&mut hasher);
hasher.finish()
}
#[inline]
#[cfg(not(feature = "specialize"))]
fn hash_as_u64<T: Hash + ?Sized>(&self, value: &T) -> u64 {
let mut hasher = self.build_hasher();
value.hash(&mut hasher);
hasher.finish()
}
#[inline]
#[cfg(feature = "specialize")]
default fn hash_as_fixed_length<T: Hash + ?Sized>(&self, value: &T) -> u64 {
let mut hasher = self.build_hasher();
value.hash(&mut hasher);
hasher.finish()
}
#[inline]
#[cfg(not(feature = "specialize"))]
fn hash_as_fixed_length<T: Hash + ?Sized>(&self, value: &T) -> u64 {
let mut hasher = self.build_hasher();
value.hash(&mut hasher);
hasher.finish()
}
#[inline]
#[cfg(feature = "specialize")]
default fn hash_as_str<T: Hash + ?Sized>(&self, value: &T) -> u64 {
let mut hasher = self.build_hasher();
value.hash(&mut hasher);
hasher.finish()
}
#[inline]
#[cfg(not(feature = "specialize"))]
fn hash_as_str<T: Hash + ?Sized>(&self, value: &T) -> u64 {
let mut hasher = self.build_hasher();
value.hash(&mut hasher);
hasher.finish()
}
}
// #[inline(never)]
// #[doc(hidden)]
// pub fn hash_test(input: &[u8]) -> u64 {
// let a = RandomState::with_seeds(11, 22, 33, 44);
// <[u8]>::get_hash(input, &a)
// }
#[cfg(feature = "std")]
#[cfg(test)]
mod test {
use crate::convert::Convert;
use crate::specialize::CallHasher;
use crate::*;
use std::collections::HashMap;
#[test]
fn test_ahash_alias_map_construction() {
let mut map = super::HashMap::with_capacity(1234);
map.insert(1, "test");
}
#[test]
fn test_ahash_alias_set_construction() {
let mut set = super::HashSet::with_capacity(1234);
set.insert(1);
}
#[test]
fn test_default_builder() {
use core::hash::BuildHasherDefault;
let mut map = HashMap::<u32, u64, BuildHasherDefault<AHasher>>::default();
map.insert(1, 3);
}
#[test]
fn test_builder() {
let mut map = HashMap::<u32, u64, RandomState>::default();
map.insert(1, 3);
}
#[test]
fn test_conversion() {
let input: &[u8] = b"dddddddd";
let bytes: u64 = as_array!(input, 8).convert();
assert_eq!(bytes, 0x6464646464646464);
}
#[test]
fn test_non_zero() {
let mut hasher1 = AHasher::new_with_keys(0, 0);
let mut hasher2 = AHasher::new_with_keys(0, 0);
"foo".hash(&mut hasher1);
"bar".hash(&mut hasher2);
assert_ne!(hasher1.finish(), 0);
assert_ne!(hasher2.finish(), 0);
assert_ne!(hasher1.finish(), hasher2.finish());
let mut hasher1 = AHasher::new_with_keys(0, 0);
let mut hasher2 = AHasher::new_with_keys(0, 0);
3_u64.hash(&mut hasher1);
4_u64.hash(&mut hasher2);
assert_ne!(hasher1.finish(), 0);
assert_ne!(hasher2.finish(), 0);
assert_ne!(hasher1.finish(), hasher2.finish());
}
#[test]
fn test_non_zero_specialized() {
let hasher_build = RandomState::with_seeds(0, 0, 0, 0);
let h1 = str::get_hash("foo", &hasher_build);
let h2 = str::get_hash("bar", &hasher_build);
assert_ne!(h1, 0);
assert_ne!(h2, 0);
assert_ne!(h1, h2);
let h1 = u64::get_hash(&3_u64, &hasher_build);
let h2 = u64::get_hash(&4_u64, &hasher_build);
assert_ne!(h1, 0);
assert_ne!(h2, 0);
assert_ne!(h1, h2);
}
#[test]
fn test_ahasher_construction() {
let _ = AHasher::new_with_keys(1234, 5678);
}
}
|